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Abstract: The conversion of semicarbazones to 1,2,4-triazolidin-3-ones and vice versa (ring-chain
isomerism) was studied using the DFT B3LYP/6-311++G(d,p) method. The thermodynamic and
kinetic characteristics of this reaction were calculated and discussed.
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1. Introduction

Ring-chain isomerism is a phenomenon in which a molecule can exist in either cyclic or
acyclic isomeric forms [1,2]. This type of isomerism is of great importance for understanding
the structural features of various organic compounds and their chemical transformations.
One of two principal pathways of chain-to-ring conversion involves the intramolecular addi-
tion of a functional group to a polar multiple bond. The reverse reaction of elimination leads
to the conversion of a cyclic compound into its acyclic isomer. Ring-to-chain transformation
of functionalized hydrazones (and vice versa) (for review, see ref. [3]), and in particular,
the interconversion of aldehyde semicarbazones/1,2,4-triazolidin-3-ones, is an important
example of ring-chain isomerism from both practical and theoretical points of view. Indeed,
aldehyde semicarbazones are readily available compounds and their closed-ring isomeriza-
tion followed by oxidative aromatization of the formed 1,2,4-triazolidin-3-ones could give
access to 2,4-dihydro-3H-1,2,4-triazol-3-ones possessing various useful properties [4–8].
However, the cyclization of aldehyde semicarbazones to 1,2,4-triazolidin-3-ones still re-
mains practically unexplored. There is only one report on the study of the ring-chain
isomerism of semicarbazones of aromatic aldehydes using 1H NMR spectroscopy [9]. The
authors demonstrated that all the 36 tested compounds in DMSO-d6 solution exist only in
acyclic semicarbazone form. This form is also the only one in CF3COOD solution, except for
four compounds of the series of 2,4-dimethyl-substituted semicarbazones, which result in
mixtures of the starting material with the corresponding 1,2,4-triazolidin-3-ones. It should
be noted that all the experiments were performed in NMR tubes without isolating products.
To the best of our knowledge, no preparative works on the chain-to-ring isomerization of
any aldehyde semicarbazones into 1,2,4-triazolidin-3-ones have been described. There are
a few reports on the one-pot syntheses of 1,2,4-triazolidin-3-ones via the reaction of some
aromatic aldehydes with semicarbazide in the presence of complex catalysts [10–12], where
the intermediate formation of semicarbazones followed by their cyclization is hypothesized.
However, analysis of the reported spectroscopic data for the products obtained showed that,
in at least in two studies [11,12], these products were the corresponding semicarbazones
and not 1,2,4-triazolidin-3-ones. It should be noted that one of these articles [12] was
retracted by the authors. Thus, the study of semicarbazones/1,2,4-triazolidin-3-ones inter-
conversion remains a challenge for synthetic and theoretical chemistry. As a continuation of
our interest in ring-chain isomerism [13] and the synthesis of polyaza compounds based on
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semicarbazones [14,15], we initiated a research program aiming to study the isomerization
of semicarbazones into 1,2,4-triazolidin-3-ones.

Our preliminary experimental data showed that the cyclization of 2-alkylsubstituted
semicarbazones of benzaldehyde 1 (R = Ph) does not proceed under various acidic condi-
tions. In contrast, 2-alkylsubstituted semicarbazones of aliphatic aldehydes 1 (R = alkyl)
completely cyclized under the action of very strong Brønsted acids (TfOH, HCl) in apro-
tic solvents at room temperature to obtain the corresponding salts of the N1-protonated
1,2,4-triazolidin-3-ones 2 (Scheme 1).
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Scheme 1. Acid-promoted cyclization of 2-alkylsubstituted semicarbazones 1 to 1,2,4-triazolidin-3-
ones 2 and 3.

Herein, we report on the DFT B3LYP/6-311++G(d,p) study of the ring-chain isomerism
of 2-alkylsubstituted semicarbazones. A plausible mechanism of this reaction is discussed.
A comparison of chain-to-ring isomerization for 2-alkylsemicarbazones of aliphatic and
aromatic aldehydes is presented.

2. Results and Discussion

Cyclization of 2-alkylsubstituted semicarbazones of aliphatic aldehydes was studied
using the DFT B3LYP/6-311++G(d,p) method using ethanal 2-methylsemicarbazone (4) as a
model compound and triflic acid as a promoter. Thermodynamic and kinetic parameters for
the TfOH-promoted transformation of semicarbazone 4 into triazolidine salt 5 (Scheme 2)
in CHCl3 and MeCN solutions were calculated by employing the polarizable continuum
model. Table 1 and Figure 1 show the obtained results.
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Scheme 2. TfOH-promoted cyclization of ethanal 2-methylsemicarbazone (4) to triazolidine salt 5.

The calculations showed that the first step of the reaction involves the formation of
the pre-reaction complex of semicarbazone 4 with TfOH (intermediate 6) followed by the
proton transfer to obtain triflate 7. Noteworthy, the protonation leads to a significant change
in the conformation via rotation around the N-N bond. Indeed, in CHCl3 solution, the C=N-
N-C dihedral angle in the most stable conformation of semicarbazone 4 is −179.46◦, and in
the intermediate 7 this angle is −94.58◦. In MeCN solution, these angles are −179.49◦ and
−99.42◦, respectively (Figure 2a). This change is explained by a strong repulsion between
the C=NH proton and one of the protons of the NH2 group in the planar conformation of
salt 7.
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Table 1. Relative electronic (∆E, kcal/mol) and Gibbs free energies (∆G, kcal/mol) of the transition
state (TS#), the most stable stereoisomers of the intermediates 6–8, and the final product 5 a.

Compound or Transition State
CHCl3 Solution MeCN Solution

∆E ∆G ∆E ∆G

Pre-reaction complex of semicarbazone
4 with TfOH (intermediate 6) 0.00 0.00 0.00 0.00

Triflate of protonated semicarbazone 4
(intermediate 7) −13.38 −9.63 −15.45 −11.88

Transition state (TS#) 1.56 6.31 −0.15 4.25

Triflate of N4-protonated
triazolidinone (intermediate 8) −10.72 −4.23 −12.61 −5.77

Triflate of N1-protonated
triazolidinone (product 5) −15.38 −9.31 −17.95 −12.98

a Calculations were performed at the B3LYP/6-311++G(d,p) level. Free energies at 298 K and 1 atm.
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Interestingly, two oxygen atoms of the triflate anion in the formed non-planar con-
formation of salt 7 form two hydrogen bonds with the C=NH proton and one of the NH2
protons. It should be noted that the described conformation of the intermediate 7 signifi-
cantly facilitates its subsequent cyclization. The cyclization proceeds via the transition state
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TS# (Figure 2c) to result in the N4-protonated triazolidinone triflate (intermediate 8) where
two oxygen atoms of the triflate anion form two hydrogen bonds with the N(1)-H and
N(4)-H protons (Figure 2b). The IRC analysis demonstrated that the found transition state
connects the desired minima. The calculated activation barrier for the 7 → 8 transformation
is rather low (∆G# = 15.95 kcal/mol in CHCl3, ∆G# = 16.13 kcal/mol in MeCN). The final
step of the reaction involves the proton transfer from the N(4) nitrogen to the N(1) nitrogen
to result in a more stable compound, the target product 5.

The transformation of semicarbazone 7 to triazolidinone 5 is thermodynamically
favorable (∆G = −1.10 kcal/mol) in MeCN and unfavorable (∆G = 0.30 kcal/mol) in CHCl3
solution. However, precipitation of the cyclization products in CHCl3 (our experimental
data) undoubtedly changes the thermodynamic characteristics of the reaction, resulting in
its completion.

The DFT calculations also showed that Brønsted acid is required for the cyclization
of aliphatic aldehyde semicarbazones to the corresponding triazolidin-3-ones. For exam-
ple, the cyclization of semicarbazone 4 to 2,5-dimethyl-1,2,4-triazolidin-3-one without an
acidic promoter is thermodynamically very unfavorable (∆G = 7.17 kcal/mol in CHCl3,
∆G = 6.77 kcal/mol in MeCN).

In contrast to aliphatic aldehyde semicarbazones, no cyclization products formed from
benzaldehyde semicarbazones in the presence of very strong Brønsted acid (vide supra).
To explain this difference, we performed the DFT B3LYP/6-311++G(d,p) calculations using
benzaldehyde 2-methylsemicarbazone (9) as a model compound. Thermodynamic and
kinetic parameters for the TfOH-promoted transformation of semicarbazone 9 into triazoli-
dine salt 10 (Scheme 3) in MeCN solution were estimated by employing the polarizable
continuum model.
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Scheme 3. TfOH-promoted cyclization of benzaldehyde 2-methylsemicarbazone (9) to triazolidinone
salt 10.

The calculations showed that the cyclization of the intermediate salt 11 proceeds via
the transition state TS# to result in the N4-protonated triazolidinone triflate 12 followed
by proton transfer, affording the final product 10. The IRC analysis demonstrated that the
found transition state connects the desired minima. The activation barrier ∆G# for the 11
→ 12 transformation is low (19.67 kcal/mol in MeCN) (Figure 3).

However, the transformation of semicarbazone hydrotriflate 11 to triazolidinone salt
10 is thermodynamically unfavorable in MeCN (∆G = 4.55 kcal/mol). This can be explained
by the collapse of the π-π conjugation between the benzene ring and the C=N bond during
the reaction.
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vents (CHCl3, MeCN) undergo protonation at the N(1) nitrogen, and the salts formed
are completely cyclized at room temperature to give the corresponding salts of the N1-
protonated 1,2,4-triazolidin-3-ones. The DFT calculations performed for the reaction of
ethanal 2-methylsemicarbazone as a model compound with TfOH showed that the acti-
vation barrier of the cyclization is rather low (15.95 kcal/mol in CHCl3, 16.13 kcal/mol
in MeCN). From a thermodynamic viewpoint, the reaction in MeCN solution is favor-
able (∆G = −1.10 kcal/mol) and in CHCl3 solution it is unfavorable (∆G = 0.30 kcal/mol);
however, precipitation of the product in CHCl3 shifts the equilibrium towards the N1-
protonated 1,2,4-triazolidin-3-one triflates. In contrast to aliphatic aldehyde semicar-
bazones, the cyclization of benzaldehyde semicarbazones does not proceed in the presence
of very strong Brønsted acids, which is explained by the unfavorable thermodynamics
of this reaction. The DFT calculations performed for the reaction of benzaldehyde 2-
methylsemicarbazone with TfOH in MeCN showed a positive change in the Gibbs free
energy (∆G = 4.55 kcal/mol) with a low activation barrier (∆G# = 19.67 kcal/mol).
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