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Abstract: Forecasting wind speed using only one single model may not be satisfactory; however, the
combination of several models may provide better results, especially in case of doubt about the best
estimator (predicator). In this paper, we propose a short-term forecasting system in order predict the
hourly averaged wind speed (HAWS) in the region of Adrar, Algeria. The proposed system is based
on adaptive combination of two different models. The first model is an ARMA-based model, while
the second model is an artificial neural network ANN-based model. To allow adaptive combination,
models are associated to time varying coefficients that are updated recursively using the recursive
least square algorithm (RLS). Numerical simulations have shown that for few hours in advance, the
prediction error of the combined system is lower or at least equal to the best estimator.

Keywords: autoregressive moving average process; artificial neural networks; recursive least square
method; wind speed forecasting; combined models

1. Introduction

In wind energy industry, there is always some uncertainty about the final product
due to the fact that wind speed is highly variable. The ability to predict wind speed for
few hours in advance will help to ensure efficient utilization of the power generated, and
therefore, enhance the position of wind energy compared to other forms of energy.

Forecasting of wind speed has been the subject of a lot of studies. Statistical and
artificial neural networks are the approaches the most found in literature. Based on the
hourly averaged wind speed (HAWS), several models have been developed using time
series methodologies. In 1984, Geerts has proposed a short-term forecasting of wind speed
using ARMA models [1]. A comparison of the performances of ARMA models developed
using one-year data with those of the persistent model has indicated that for more than
1 h, ARMA models provide better forecasting. This shows that models developed using
several years data could provide better results than those developed using only one-year
data. Daniel and Chen (1991) have used a three-year long time series to develop ARMA
models [2]. Since then, several similar studies have been realized for many sites around
the world. Using 12-year data, Nfaoui et al. (1996) concluded that an AR(2) model is
able to simulate the wind speed data of Tangiers (Morocco) [3]. Such methodologies have
been confirmed by Kamal and Jafri (1997) using data of Quetta (Pakistan) [4]. Torres et al.
(2004) used data of five locations in Navarre (Spain) to identify up to 10 different ARMA
models [5].

Models based on artificial neural networks have been compared with ARMA models
by Sfetsos (1999) [6]. Using only data of one month (March), the author has concluded
that ANN models outperform the linear models. Using ANN and ARIMA models, More
et al. (2003) have forecasted daily and monthly wind speed in India. Results indicate
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that performances of ANN models are better than ARIMA models [7]. Using one-month
long data (January), Erasmo et al. (2009) concluded that for the particular case of La
Venta (México), a model with two layers and three neurons was the best for training and
forecasting [8].

In the following work, we propose HAWS forecasting systems based on adaptive
combinations of two alternative (individual) models. The first model is based on ARMA
approach, while the second is based on ANN approach. Adaptive combination is done by
associating time-varying weights to the alternative models. The time-varying weights are
adapted recursively using recursive least square algorithm (RLS). An important motive to
combine forecasts from different models is the fundamental assumption that one model
cannot identify the true process exactly, but different models may play a complementary
role in the approximation of the data generating process, especially in case of doubt about
the existence of the best estimator.

Data used in this work are measured over four years (November 2004 to October 2008)
by the meteorological station situated at the airport of Adrar, Algeria (27.9◦ N, 0.3◦ W).
Because of the gaps found in time series, our study is limited only for three months (January,
November, and December). Data of the three first years are used to identify ARMA and
train ANN models. The four-year data are used as an independent dataset to verify the
forecasting ability of the obtained models.

2. ARMA Modeling

ARMA modeling for HAWS consists of three main steps: the first step is the power
transformation which is done in order to carry the wind speed from Weibull distribution
to Gaussian distribution [2]. The second step is the standardization step. The purpose of
this step is to eliminate non-stationarity due to daily cyclical behaviors. The last step is the
identification step which consists of the order determination and parameters estimation.

2.1. Power Transformation

For lot of sites over the word, it has been found that Weibull distribution (Equation (1))
fits the wind distribution the best:

f (v) =
k
c

(v
c

)k−1
e−(

v
c )

k
(1)

where v is the wind speed, k is the form factor, and c is the scale factor.
In order to fit ARMA models to the HAWS, power transformation of the observed data

must be performed. The aim of the power transformation is to approximate the distribution
of the wind data from a Weibull distribution to Gaussian one. The power transformation
is performed by raising each value of the observed data by the same power index. For
more accurate approximation, Daniel and Chen (1991) have proposed to use x = k/3.6 as a
reference to obtain more accurate index m using skewness statistics is given as [2]:

Sm =
Y

∑
y=1

N

∑
n=1

[(
vm

n,y −mean(vm
n,y)
)

/std(v)
]3

Y.N
(2)

where Y is the number of considered years and N is the number of samples per month.
After iterative calculations using several values of m, the selected m is the one that makes
distribution of vm symmetric i.e., Sm ≈ 0. Values of Weibull parameters, of Dubey’s index
x and asymmetry index m are evaluated for the three proposed months and presented in
Table 1.
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Table 1. Estimated parameters for the Weibull distribution and ARMA models.

Title 1 Month C K x m ARMA AR MA

January 6.43 7.19 2.55 0.70 0.68 (3,0)
ARMA(3, 0)

φ1 = 0.70
φ2 = 0.10
φ3 = 0.06

November 5.89 6.61 2.23 0.62 0.75 (3,0)
φ1 = 0.72
φ2 = 0.09
φ3 = 0.07

-

December 6.02 6.74 2.22 0.63 0.57 (3,0)
φ1 = 0.72
φ2 = 0.11
φ3 = 0.04

-

2.2. Standarisation

Diurnal non-stationarity can be eliminated by subtraction the hourly averaged wind
speed u(t) from the transformed HAWS then dividing by the hourly standard deviation
s(t) [5]. Transformed and standardized HAWS (TS-HAWS) are given as:

v∗n,y = (vm
n,y − u(t))/s(t) (3)

where

u(t) =

Y
∑

y=1

d
∑

i=1
vm

y,i∗24+t

Y ∗ d
(4)

and

s(t) =

√√√√√ Y
∑

y=1

d
∑

i=1

(
vm

y,i∗24+t − u(t)
)2

Y ∗ d
(5)

It is assumed that u(t) and s(t) are periodic functions, i.e., u(1) = u(25), u(2) = u(26),
s(1) = s(25), and s(2) = s(26), where d is the number days for given month.

To illustrate the effect of standardization on HAWS, periodograms of original HAWS
and TS-HASW are evaluated and presented in Figure 1. It is clear that diurnal and semid-
iurnal harmonics present in the periodogram of HAWS in the form of peaks have been
canceled from the periodogram of the TS-HAW.
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Figure 1. Periodograms of HAWS (a) and TS-HAWS (b).
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2.3. ARMA Fitting

The following section consists of fitting ARMA models to TS-HAWS. A general model
is given as:

v∗n,y =
(
φ1L + φ2L2 + · · ·+ φpLp)v∗n,y

+εn,y
(
1− θ1L− θ2L2 − · · · − θqLq) (6)

where p is the order of the autoregressive part, q is the order of the moving part, L is the lag
operator, and ε is a white Gaussian noise of zero mean and variance σ2

ε .

2.3.1. Order Determination

The following section consist of identifying the values of p and q. A pure MA process
exhibits a cut of after q lags in the autocorrelation function (ACF); however, for pure AV or
mixed ARMA process, the ACF deceases exponentially. Order of AV part can be determined
using the partial autocorrelation function (PACF) that cut off after p lags for a pure AV
process while it dies gradually in case of pure MA process.

Figures 2 and 3 present the ACF and PACF, respectively, evaluated for January, Novem-
ber, and December. While the ACFs of the three proposed months decrease exponentially,
the PACFs cut almost zeros after the third order; this implies that HAWS can be modeled
by a low order ARMA(p, q).
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Figure 2. Autocorrelation function of HAWS for (a) January and (b) November.
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Figure 3. Partial Autocorrelation function of HAWS for (a) January and (b) November.

ACF and PACF are used to determine an adequate group of ARMA models. Appro-
priate orders (p, q) are determined with the help of an additional criterion, such as Akaike
information criterion [Storres].

AIC(p, q) = (Y.N) · ln
(

σ2
ε (p, q)

)
+ 2T) (7)
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where T is the total number of parameters to be estimated.

2.3.2. Parameters Estimation Phase

Once p and q have been identified. The model coefficients φi and θi along the variance
of the residuals σ2

ε can be estimated. The preliminary estimation is done applying the Yule–
Walker relations for φi, while θi values are obtained using Newton–Raphson Algorithm.
Final estimation of the parameters using the method of least squares error. Selected models
for each month are presented in Table 1.

Note that for the three studied months, it has been found that ARMA(3, 0) is the best
model (Table 1).

Finally, the models are validated by evaluating the ACF of the residuals. The fitted
model can be accepted if the residuals are uncorrelated and normally distributed (Figure 4).

Eng. Proc. 2023, 29, 11 5 of 4 
 

 

Finally, the models are validated by evaluating the ACF of the residuals. The fitted 

model can be accepted if the residuals are uncorrelated and normally distributed (Figure 

4). 

  

(a) (b) 

Figure 3. Partial Autocorrelation function of HAWS for (a) January and (b) November. 

  

(a) (b) 

Figure 4. Autocorrelation function of the residues HAWS for (a) January and (b) November. 

In order to validate the estimated models, we evaluated the residual autocorrelation 

functions (Figure 5). If the residuals are jointly independent, their autocorrelation func-

tions cancel for a lag τ= 0. From Figure 5, we can see that the residuals are uncorrelated. 

Thus the models are retained. 

 

Figure 5. Neural network architecture with four neurons and two layers. 

3. The Persistent Model 

Persistent model as defined in [5] is given as: 

ttht
P vv =+ /  (8) 

0 2 4 6 8 10 12 14 16 18 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lags in hours

P
A

C
F

January

0 2 4 6 8 10 12 14 16 18 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lags in hours

P
A

C
F

November

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

January

lag in hours 

A
C

F

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lags in hours

A
C

F

December

n 

n 

n 

n 

 

 

 

 

Figure 4. Autocorrelation function of the residues HAWS for (a) January and (b) November.

In order to validate the estimated models, we evaluated the residual autocorrelation
functions (Figure 5). If the residuals are jointly independent, their autocorrelation functions
cancel for a lag τ = 0. From Figure 5, we can see that the residuals are uncorrelated. Thus
the models are retained.
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Figure 5. Neural network architecture with four neurons and two layers.

3. The Persistent Model

Persistent model as defined in [5] is given as:

vP
t+h/t = vt (8)

Equation (8) is equivalent to saying that the wind at instant h + t is simply the same
as it was at time t. This model is developed by meteorologists as a comparison tool to
supplement the other models. The accuracy of this model decreases rapidly with an increase
of prediction lead time.
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4. Neural Networks

Thus far, we have examined linear prediction with ARMA models, which constitute
a mostly linear approach to data analysis. Now, we turn to the more complex neural
networks. Neural networks have similar uses to linear prediction filters, and can be applied
to the same general set of problems.

In general, rules to determine the number of inputs, outputs, and layers do not
exist. In the following work, and based on results obtained by Sfetsos (1999) and Erasmo
(2009) [9,10], it was decided to use feed-forward ANN (Figure 6). In fact, Sfetsos has found
that with the Levenberg–Marquard algorithm as a training method, the feed-forward ANN
is very adequate to model the wind speed.
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vt = f2

(
3

∑
q=1

wq f1

(
3

∑
j=1

wq,jvt−j + bj

)
+ bq

)
(9)

where f1 and f2 are nonlinear sigmoid activation functions.
The proposed ANN networks are trained to predict the wind speed one step ahead.

Prediction of h hours in advance is obtained iteratively, i.e., v(ANN)
t+2/t is predicted using

v(ANN)
t+1/t , v(ANN)

t+3/t is predicted using v(ANN)
t+3/t , and so on.

5. Forecast Combination

When several candidate models are available to forecast single variable, we can either
select the best model or combine them. Combination of forecast is very advised in case of
doubt about the existence of the best model. Our purpose in the following section is to
build a linear combination vComb

t/t−h of the competing forecasts as:

vComb
t/t−h = w(ARMA)

t v(ARMA)
t/t−h + w(ANN)

t v(ANN)
t/t−h (10)

where w(ARMA)
t and w(ANN)

t are time varying coefficients that are updated recursively
using recursive least square method (RLS). RLS estimation consists of minimizing the cost
function given as:

S2
t (w) =

t
∑
j

κ(t, j)
(

vComb
j/j−h −w · vj/j−h

)2

= S2
t−1(w) + κ(t, t)

(
vComb

t/t−h −w · vt/t−h

)2
(11)
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where w =
[
w(ARMA) w(ANN)

]
, vt/t−h =

[
v(ARMA)

t/t−h v(ANN)
t/t−h

]
and κ(t, j) is the forgetting

profile. Usually, κ(t, j) = Πt
i=j+1λi, where 0 ≤ λi ≤ 1 is the forgetting factor [11] The

forgetting profile κ(t, j) is the weight associated to the jth residual and it allows to reduce
the importance of old data recursively.

According to [11], the RLS estimator of wt is given as:

wt = wt−1 + Γtvt/t−1at (12)

where at = vt − vt/t−1wt−1, which is the one step-ahead prediction error, and Γt is called
the gain matrix or the weighted covariance matrix that can be estimated as [12]:

Γt =
1
λ

(
Γt−1 −

Γt−1vt/t−1vt/t−1
′Γt−1

λ + vt/t−1
′Γt−1vt/t−1

)
(13)

The choice of λ is very important in the recursive estimation of weights. It is in-
dicated in [13] that most applications use a constant forgetting factor typically inside
0.950 ≤ λ ≤ 0.999.

6. Results and Discussion

To allow a comparison of models, the evolution of the RMSE is evaluated for the
persistent, ARMA, feed-forward, and combined models when forecasts are done 1–7 h
in advance.

For ANN models, it has been found that forecasting wind speed using TS-HAWS
instead of HAWS data yields better performances. As indicated in Table 2, only in one case,
forecasting with HAWS has provided lower RMSE (1 h ahead in November). Improvement
of forecasting with TS-HAWS over HAWS is presented in Figure 6. Maximum improvement
of 15% has been obtained in January when forecasting 7 h ahead.

Table 2. Prediction performances comparison between transformed and non-transformed data.

Hours in
Advance

RMSE (January) RMSE (November) RMSE (December)
HAWS TS-HAWS HAWS TS-HAWS HAWS TS-HAWS

1 1.2933 1.2522 1.3188 1.3264 1.4032 1.3675
2 1.6143 1.4666 1.6987 1.6551 1.8266 1.6864
3 1.8770 1.6426 1.9715 1.9008 2.1000 1.9197
4 2.0053 1.7306 2.1686 2.0973 2.2858 2.0847
5 2.1302 1.8374 2.2954 2.2302 2.4260 2.2246
6 2.2145 1.8922 2.3655 2.3038 2.5648 2.3334
7 2.2723 1.9322 2.4007 2.3359 2.6599

For all the studied cases, we have found that the RMSE of the persistence models are
greater than the RMSE of the other models (Table 3). These results are similar to those
obtained by Torres [5] and Sfetsos [6], which indicated that ARMA- and ANN-based models
provide better forecasts than the persistence models.

Table 3. Prediction performances for January.

Hour in
Advance

RMSE in m/s Improvement over the Persistent Model %
Persistent ARMA ANN Combined ARMA ANN Combined

1 1.3676 1.2352 1.2522 1.2347 9.6845 8.4387 9.7188
2 1.7368 1.4546 1.4666 1.4542 16.2518 15.5609 16.2737
3 2.0730 1.6315 1.6426 1.6311 21.2987 20.7610 21.3178
4 2.2489 1.7308 1.7306 1.7310 23.0383 23.0483 23.0303
5 2.4499 1.8341 1.8374 1.8343 25.1331 25.0000 25.1272
6 2.5899 1.8922 1.8922 1.8926 26.9397 26.9372 26.9237
7 2.7073 1.9361 1.9322 1.9368 28.4834 28.6281 28.4596
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In 66.67% of the studied cases, it has been found that ARMA models provide relatively
lower RMSE than ANN models (Tables 3 and 4). Evaluation of the forecasting improvement
of ARMA models over ANN models varies between −0.61% and 03.49%. These results
differ from that obtained by Strores (1999), who has found that ANN models can achieve
lower RMSE than ARMA models.

Table 4. Prediction performances for November.

Hour in
Advance

RMSE in m/s Improvement over the Persistent Model (%)
Persistent ARMA ANN Combined ARMA ANN Combined

1 1.3621 1.3114 1.3264 1.3104 3.7196 2.6187 3.7928
2 1.7986 1.6550 1.6551 1.6494 7.9842 7.9780 8.2972
3 2.1484 1.8999 1.9008 1.8949 11.5639 11.5260 11.7971
4 2.4454 2.0983 2.0973 2.0912 14.1958 14.2358 14.4833
5 2.6646 2.2245 2.2302 2.2184 16.5186 16.3015 16.7471
6 2.8103 2.2948 2.3038 2.2888 18.3407 18.0203 18.5543
7 2.8887 2.3252 2.3359 2.3179 19.5068 19.1383 19.7606

Combined models provide relatively better performances than the ARMA and the
ANN models a few hours in advance (1–4 h); however, for long-term forecasting, individual
models can provide lower RMSE than the combined models (Table 3).

To better understand the role of individual models in the final combination, we have
presented in Figure 7 the variation of the combination coefficients when real wind is
measured for November and December 2007. The first 100 wind speed values have been
used to initialize coefficients and the covariance matrix. Figure 7a shows that the coefficient
of the ARMA model is greater than the one of the ANN model, which means that the
ARMA model is providing lower error for November 2007. In December 2007, and as
indicated in Figure 7b, the ANN model forecasts the wind speed better than ARMA models.
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Figure 7. Evolution of the combination coefficient for November and December.

7. Conclusions

In this study, models based on ARMA methodology as well as ANN theory have
been proposed to forecast the hourly wind speed. The obtained results have indicated
that both ARMA and ANN models are capable to predict wind speed for few hours in
advance. Performances comparison between ARMA and ANN models has indicated that
their performances are very close.

An adaptive combination of the two proposed approaches has proposed to improve
the forecasting performances. The obtained results have indicated that for a few hours in
advance, the combined model outperform the individual models.

For ANN modeling, it has been found in this work that the use of the transformed
and standardized TS-HAWS provides better results than HAWS.
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