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Abstract: The glass system of B2O3-SiO2-TeO2-Bi2O3-ZnO-BaO doped with Gd2O3 (x = 0, 1, 2, 3,
and 4 mol%) (BiTeGd-x) was prepared by using the melt-quench technique. The density of glasses
increased from 5.323–5.579 g cm−3 for 0–4 mol% with an increase in Gd2O3 concentration. The
simulation results obtained using Photon Shielding and Dosimetry (PSD) software (Phy-X version)
produced the maximum mass attenuation coefficient (MAC) and minimum half-value layer (HVL) in
the entire photon energy spectrum 0.015–15 MeV, suggesting the highest potential of BiTeGd-4 glass
to act as a shield against low and high-energy radiation photons.

Keywords: Gd3+ ions; tellurite glass; radiation shielding; mass attenuation coefficient

1. Introduction

The usefulness of glass materials for protection against radiation has been extensively
explored by researchers. Simple fabrication techniques, non-toxicity, transparency, chemical
durability, and chemical flexibility are the main contributing factors of glasses to enhance
radiation shielding proficiency and achieve high density [1]. Certain glasses designed have
transcended conventional shielding materials such as concretes and bricks with appropriate
attenuation coefficients and half-value layers (HVL). Tellurite glasses show promising
results for thermal and chemical stability with a low melting temperature and density [2].

Rare-earth oxide such as Gd2O3 has been reported to improve the physical, optical,
and mechanical properties of tellurite glasses by increasing their density, refractive index,
and hardness values [3]. Kaewjaeng et al. [4] suggested that Gd3+ doping reduced HVT
significantly, allowing the glass to perform better than commercial X-ray windows, con-
crete, and bricks [5]. There are limited investigations on the effect of Gd3+ ions and the
overall improvement of the stability of glasses and radiation shielding properties. The
present study was carried out to explore the potential of this glass system in radiation
field application by analyzing the physical, optical, and radiation-blocking development of
B2O3-SiO2-Gd2O3-TeO2-Bi2O3-ZnO-BaO glass system (BiTeGd-x).

2. Materials and Methods

Melt quenching was conducted to produce the BiTeGd-x system where Gd2O3 mol%
varied as 0, 1, 2, 3, and 4. A furnace temperature of 1100–1120 ◦C was used for its syn-
thesis [6]. The density of prepared glasses was determined using Archimedes theory and
distilled water. Carl Zeiss FESEM recorder was used to study its surface morphology
through EDAX measurement. Theoretical values of terms to evaluate the gamma-ray
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shielding property such as mass attenuation coefficient (MAC), and HVL of the synthesized
glasses were obtained by using Photon Shielding and Dosimetry (PSD)(Phy-X version)
software in an energy region of 0.015–15 MeV [7].

3. Results and Discussion
3.1. Physical Properties

The synthesized Gd3+ tellurite glasses are shown in Figure 1, where Gd2O3 incorpora-
tion improved the transparency and changed the color of the glass from reddish-orange
to light yellow. Archimedes’ principle was used to determine the density of the sample
(Table 1). Physical parameters such as molecular weight and molar volume were calculated
for the fabricated glasses with other parameters using the following relations.
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Table 1. Different physical parameters calculated for Gd3+-doped glasses.

Sample Code BiTeHost BiTeGd-1 BiTeGd-2 BiTeGd-3 BiTeGd-4

Average molecular weight, M (g/mol) 159.76 161.78 163.81 165.84 167.87

Density, ρ (g/cc) (±0.01) 5.2844 5.4229 5.4429 5.4935 5.5793

Molar volume, Vm (cm3) 30.231 29.8335 30.0967 30.1888 30.0882

Number density of Gd3+ ions in host glass, NGd
(×1023 ions/mol)

0 0.202 0.400 0.598 0.801

Inter-ionic separation
between Gd3+, ri (nm) 0 36.727 29.236 25.566 23.202

For the number density of Gd3+ ions,

NGd =
xNAρ

M
(1)

The interionic separation between Gd3+ ions was obtained with

ri =

(
1

NGd

) 1
3

(2)

All calculated parameters are summarized in Table 1. Gd3+ increased the density of
the glass from 5.323 to 5.5793 gcm−3 from 0 to 4 mol% of Gd2O3. The high molecular
weight of Gd2O3 compared to TeO2 caused a density increase in the glass. The tendency of
Gd3+ ions to form a closed-packed network by filling the interstitial spaces has also in-
creased the density. Moreover, the Gd3+ ions have an ionic radius of 1.19 Å which is greater
than that of Te4+ and Bi3+ ions (0.99 and 1.03 Å), which also increased the density. Molar
volume (Vm) initially decreased but increased depending on the concentration of Gd2O3.
BiTeGd-1 glass with the minimum molar volume confirmed polymerization in this glass
network [8]. The number density of Gd3+ ions increased with the increase in Gd2O3 concen-
tration. The interionic radius (ri) decreased with successive addition of Gd2O3 molecules,
indicating the shrinkage of ionic clouds due to Gd3+ ions.

The XRD images of the Gd3+ glasses are shown in Figure 2a. Sharp crystalline peaks
were absent in the XRD images, assuring the amorphous nature of the current glasses.
In addition, the broad hump observed in Bragg’s angle of 20–30◦ also reflected the non-



Eng. Proc. 2023, 55, 97 3 of 6

crystallinity of the glasses. The surface morphology of Gd3+-doped tellurium borosilicate
glass BiTeGd-2 was examined by using SEM images (Figure 2b).

Eng. Proc. 2023, 55, x FOR PEER REVIEW 3 of 6 
 

 

addition, the broad hump observed in Bragg’s angle of 20–300 also reflected the non-crys-
tallinity of the glasses. The surface morphology of Gd3+-doped tellurium borosilicate glass 
BiTeGd-2 was examined by using SEM images (Figure 2b). 

  
Figure 2. (a) XRD profiles, (b) SEM micrograph, (c) EDAX record, and (d) chart representing weight 
percentage of all the constituent elements in BiTeGd-2 glass. 

The occurrence of smooth and homogenous texture in the SEM images without any 
cluster of unresolved particles proved the amorphous character of the synthesized glasses. 
The compositional analysis of the BiTeEu-2 glass was performed using EDAX measure-
ment. The EDAX spectrum shows properly distributed elements such as boron (B), oxy-
gen (O), silicon (Si), europium (Eu), tellurium (Te), bismuth (Bi), barium (Ba), and zinc 
(Zn) (Figure 2c). Aluminium (Al) was detected in the glass composition because of the 
alumina crucible used in the glass melting process. A bar chart representing the weights 
of all constituent elements (Figure 2d) exhibited the highest weight of Bismuth (Bi) as Bi 
has the heaviest atomic weight. 

3.2. Optical Properties 
The function of Gd3+ ions in enhancing the optical properties of the glass was studied 

by calculating parameters such as refractive index (n), dielectric constant (ε), molar refrac-
tivity (Rm), reflectance loss (R in %), and molar electron polarizability (αm) [9] using the 
following set of equations. ε = nଶ (3) 

Figure 2. (a) XRD profiles, (b) SEM micrograph, (c) EDAX record, and (d) chart representing weight
percentage of all the constituent elements in BiTeGd-2 glass.

The occurrence of smooth and homogenous texture in the SEM images without any
cluster of unresolved particles proved the amorphous character of the synthesized glasses.
The compositional analysis of the BiTeEu-2 glass was performed using EDAX measurement.
The EDAX spectrum shows properly distributed elements such as boron (B), oxygen
(O), silicon (Si), europium (Eu), tellurium (Te), bismuth (Bi), barium (Ba), and zinc (Zn)
(Figure 2c). Aluminium (Al) was detected in the glass composition because of the alumina
crucible used in the glass melting process. A bar chart representing the weights of all
constituent elements (Figure 2d) exhibited the highest weight of Bismuth (Bi) as Bi has the
heaviest atomic weight.

3.2. Optical Properties

The function of Gd3+ ions in enhancing the optical properties of the glass was studied
by calculating parameters such as refractive index (n), dielectric constant (ε), molar refrac-
tivity (Rm), reflectance loss (R in %), and molar electron polarizability (αm) [9] using the
following set of equations.

ε = n2 (3)

Rm =

(
n2 − 1
n2 + 2

)
Vm (4)
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R =

(
n2 − 1
n2 + 2

)
% (5)

αm =
3

4πNA
Rm (6)

The values are presented in Table 2. The refractive index continuously increased with
doping Gd2O3. The refractive index was influenced by a larger atomic radius (1.79 Å)
of Gd [10] which is greater than that of tellurium (1.6 Å) and boron (0.98 Å). The higher
polarization ability of cations resulting from higher cation radius of Gd3+ ions induces
high n values, providing a platform for current Gd3+-doped glasses in the non-linear
optical application. An enhanced refractive index was also associated with a high dielectric
constant, molar refractivity, reflectance loss, and molar electron values as shown in Table 2.

Table 2. Optical parameters of Gd3+-doped glasses.

Sample Codes R. I
n

Dielectric
Constant

ε
Rm (cm3) R (%) Molar Electron Polarizability εm (Å3)

Band Gap
Eg (eV)

BiTeHost 1.975 3.901 14.7544 0.9508 5.854 3.153
BiTeGd-1 1.989 3.955 14.8053 0.9778 5.875 2.957
BiTeGd-2 1.991 3.9663 14.9635 0.9832 5.938 3.121
BiTeGd-3 1.998 3.9939 15.0792 0.9969 5.984 3.196
BiTeGd-4 2.01 4.0407 15.1455 1.0204 6.01 2.791

The absorption spectra recorded in the UV-visible region for the Gd-doped glasses
are shown in Figure 3a. The synthesized glasses including the undoped glass showed
maximum absorption in the UV region (300–400 nm). In addition, all the glasses showed a
broad low intense absorption peak around 500 nm which corresponds to the absorption
of Bi3+ ions. Higher transmittance observed in the visible of all samples was proof of
improved transparency of the Gd-doped glass.
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The relationship between absorbance and optical band gap Eg was provided by Tauc’s
relation as follows.

α =
B
(
hν− Eg

)
hν

γ

(7)

where α is the absorption coefficient, also given by α = 2.303 A/t, A is the absorbance, t is
the thickness of the sample material, B is the band tailing parameter, and the exponent γ
depends on the kind of electronic transition mechanism. Because glasses are amorphous,
we took γ = 2 as the transitions are indirect in nature. The resulting Tauc plot is represented
in Figure 3b, where the extrapolation of the linear part of the curve is taken as Eg (Table 2).
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The Eg values showed that the band gap of Gd3+-doped glass was less than that of the
undoped glass except for the BiTeGd-3 sample.

3.3. Radiation Shielding Parameters

MAC and HVL data simulated by Phy-X/PSD software in the 0.015–15 MeV photon
energy spectrum are represented in Figure 4 [7,10]. The influence of energy on the MAC
values of the glass was evident from the rapidly falling trend in the lower energy range,
constancy in the intermediate range, and an increase at the higher end of the spectrum.
This showed the occurrence of photoelectric absorption, Compton scattering, and electron–
positron pair formation in the three energy regions. The two sharp peaks at 0.035 and
0.1 MeV were the K-edges associated with Te and Bi. Furthermore, the effect of varying the
Gd2O3 content in MAC graphs on the continuous increase in MAC with the Gd3+ content
was studied. Such an effect was observed because of the increasing density values of
Gd2O3 from 5.323 to 5.579 gcm−3 from 0 to 4 mol% in concentration. Therefore, BiTeGd-4
glass exhibited the maximum attenuation compared to other Gd glasses.
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In Figure 4b, low-energy photons generated low HVL values due to the high photon
absorption mechanism. HVL increased continuously in the energy range of 0.1–5 MeV,
showing the maximum value at 5 MeV and a decrease to the energy of 15 MeV. This implied
that when the energy increased, the radiation penetrated deeper into the glass, and therefore
it was essential to increase the thickness of the material to shield it from the high radiation
photons. The maximum HVL was found at 5 MeV for BiTeGd-4 glass as 3.4619 cm, which
was thick enough to protect the glass from high-energy radiation. Additionally, the HVL
decreased with successive doping of Gd2O3 in the range of 0.015–15 MeV suggesting that
BiTeGd-4 glass had the lowest HVL.

4. Conclusions

Improved transparency with enhanced density values was proved with tellurite
glasses doped with Gd2O3. Non-crystalline nature and smooth glass surface morphology
were verified by XRD and FESEM results. Optical parameters including the refractive index
continuously increased with an increase in Gd2O3. MAC and HVL parameters computed
by PSD software in the energy range of 0.015–15 MeV showed that BiTeGd-4 was the
optimum glass for gamma radiation shielding.
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