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Abstract: The fabrication of semi-finished hot and cold rolled sheets includes a complex evolution 
of both microstructure and texture to meet the demanded mechanical properties and suitable form-
ability characteristics. The desired mechanical properties along with the optimum grain size can be 
obtained through the control of both recovery and recrystallization processes. This work examines 
the effect of recovery and recrystallization on the resulting crystallographic texture and on the local 
plastic deformation. A processing approach for EBSD-KAM (Electron Back Scatter Diffraction—
Kernel average misorientation) evaluation is suggested with the purpose of effectively evaluating 
all the possible misorientation angles in-between the grains and of observing the recovery phenom-
enon from a different point of view. The results showed that although texture components did not 
alternate significantly during recovery, the fraction of sub-grain boundaries was increased indicat-
ing the completion of recovery at the selected temperature exhibited a maximum value of 90%. The 
initiation of recrystallization was illustrated by a different aspect, underlying newly formed grains 
and points which exhibited high misorientation angle, critical for the evolution of the recrystalliza-
tion process and texture evolution. 
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1. Introduction 
The AA3104 is a strain-hardenable alloy and uses Mn as a main alloying element for 

mechanical properties and formability improvement. At the same time, it presents good 
resistance to corrosion [1–3]. In addition, chemical composition, the thermomechanical 
process also plays an important role on the performance of the selected aluminum alloy 
with regard to specific application requirements [4,5]. In the rolling process, for instance, 
the effect of the reduction of the rolling passes and of thermal treatments, could be quan-
tified in terms of texture [6–10]. Recovery and recrystallization processes which are pre-
sent during the various thermomechanical stages are known as among the most important 
ones, they are not yet fully understood despite being critical with regards to producing 
suitable microstructure for several applications [11]. 

Measurements, which are still debatable in the academic community though, are uti-
lized qualitatively in order to measure strain build-up/relief during annealing [12–14]. 
EBSD (electron backscatter diffraction) measurements, and especially KAM (kernel aver-
age misorientation) maps, are widely used for measurements and illustration of local plas-
tic deformation, whereas several studies are concerned with the selection of the optimal 
scanning and processing parameters [13–18]. One of these measurements is the KAM 
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(Kernel average misorientation angle), which indicates the local plastic strain within the 
grains. The higher the KAM value, the greater the GND (geometrically necessary disloca-
tion) concentration; hence, the presence of strained grains. 

In the present study, the evolution of KAM during the annealing process at different 
soaking times is studied. The recrystallized grains exhibit KAM values near 0 [19], 
whereas grains and points which are deformed exhibit a more complex distribution of 
misorientation angles. A processing approach considering all the possible misorientation 
angles and not only those exhibiting maximum 5°, as it has been used to date [15–22], was 
conducted in order to establish the use of this different criterium for strain analysis pur-
poses of non-recrystallized materials and for the localization of possible crucial points for 
nucleation. 

2. Experimental Procedure 
ΑΑ 3104 sheet samples were cross-sectioned parallel to rolling direction and the spec-

imens were cold mounted to avoid any annealing effects. Metallographic preparation was 
conducted by means of grinding and polishing. Optical microscopy examination was con-
ducted by use of a Nikon Epiphot 300 inverted metallographic microscope. Higher mag-
nification microscopic observations were performed by use of a FEI XL40 SFEG Scanning 
Electron Microscope (SEM) under a 20 kV accelerating voltage, coupled with an EDAX 
Apollo XF equivalent to Octane Super EDS, silicon drift detector (SDD) with a detecting 
surface of sensor 60 mm2, in cooperation with TEAM software. Electron backscatter dif-
fraction (EBSD) analysis was performed with an EDAX Hikari XP EBSD, high-speed cam-
era, on the longitudinal cross-sections in order for the orientation of the Al crystals to be 
revealed as well as to determine the preferred texture components resulting from the ap-
plied manufacturing process. 

Samples corresponding to the most indicative thermal processes are presented as fol-
lows: (a) hot rolled sample, (b) 95% reduction cold rolled sample and the 95% reduction 
cold rolled sample after annealing at 250 °C and (c) soaking time 90’, (d) soaking time 100’, 
(e) soaking time 120’ and (f) soaking time 600’. 

EBSD scans were collected using a hexagonal grid with a 0.1–0.2 μm step. The SEM 
magnification was set at 2000–4000× with an accelerating voltage of 20 kV at a working 
distance 10–12 mm. OIM software was used to process the retrieved EBSD results. The 
utilized confidence index was 0.1–0.05. IPF (inverse pole figure) diagrams and plots, KAM 
(kernel average misorientation) maps and GOS (grain orientation spread) maps were also 
used for the estimation of texture evolution, local plastic deformation and recrystallization 
percentage. 

KAM Maps 
KAM maps are measuring the local plastic deformation by considering a pixel as a 

kernel and by calculating the mean deviation of orientations among this pixel and the first 
or second neighbors. To date, the existing approach of KAM maps considers a maximum 
misorientation angle of 5° and diminishes the relative variation through orientation aver-
aging [13]. Different criteria had been selected in order to find the best fit for both the cold 
rolled and annealed samples. The range which was selected to examine the fluctuation of 
KAM was 0–65° with a 5° step. KAM was calculated considering the second neighbors 
and a maximum misorientation of 5° as suggested by the relevant literature, as well as a 
setting of 65° and by comparing with the first neighbor. 

3. Results and Discussion 
The hot rolled sample exhibited an elongated microstructure coexisting with few re-

crystallized large grains (see Figure 1a). After several cold passes, the final microstructure 
is revealed. The cold rolled sample, after being 95% reduced in thickness, exhibited a “fi-
brous” microstructure indicating the rolling direction and the high strain rate, Figure 1b. 
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After the first annealing process the microstructure did not alter significantly and retained 
its directivity towards RD (Figure 1c–e). The final annealing process resulted into a com-
pletely recrystallized microstructure characterized by large mostly equiaxed grains  
(Figure 1d). 

 
Figure 1. Optical micrographs showing (a) hot rolled sample, (b) cold rolled sample, (c) cold rolled and annealed for 90’, 
(d) cold rolled and annealed for 100’ and (e) cold rolled and annealed for 100’ and (f) cold rolled and annealed for 600’ 
after Barker’s etch. 

In order to observe the recovery evolution and determine its status, KAM and GOS 
maps were implemented. In particular, KAM maps with different criteria were used. It is 
noted that the first and the second neighbor as well as the maximum selected angle for 
the determination of the KAM mean angle and maps exhibit slightly different results. 
Moreover, in order to observe the misorientation within the grains all possible angles up 
to 65° were examined. 

Two different KAM maps are examined based on 
(a) the second neighbor and a maximum misorientation angle of 5° (as it is used widely 

in literature) and 
(b) the first neighbor and a maximum misorientation angle of 65°. 

These maps are used to characterize the state of each sample and to detect possible 
crucial points for nuclei formation. The 1st KAM map indicates the zone of high strain. 
The 2nd KAM map is “stricter” and colors a few areas among the deformed zones green, 
thus indicating the points with a misorientation higher than 15°. Even red pixels are de-
tected indicating misorientation values higher than 35°. These points are possibly those 
who lead to nucleation and could be characterized as nuclei. Finally, the GOS map indi-
cates the existence and the gradual growth of nuclei forming recrystallized grains. 

In Table 1, the evolution of SGBs (sub-grain boundaries), LAGBs (low-angle grain 
boundaries) and HAGBS (high-angle grain boundaries) is presented. SGB are reaching a 
maximum of ≈90%, indicating the completion of recovery and from this point onwards is 
the initiation of the recrystallization process. Finally, the recrystallized state of the mate-
rial the fraction of SGBs reaches ≈5%. 

As for LAGBs and HAGBs, they exhibit a similar tendency during the process till the 
final state of the material where the HAGBs dominates with ≈95%. 

As for KAM angles, the maximum mean KAM angle is observed for the hot rolled 
sample (≈2°) and the lowest for the recrystallized one (≈0.7°). All samples but the recrys-
tallized one exhibited a mean KAM angle lower than 1°; thus, its fully recrystallized state 
was verified. 
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The cold-rolled sheet in the as received condition had formed a fiber texture starting 
from (101) orientation towards (338). The fiber texture was maintained except from the 
final annealing treatment with a soaking time 600’ which exhibited a coarse, equiaxed 
grain structure (Figure 2). 

The IPF maps indicate the dominant orientation at each state in a qualitative way 
(Figure 2). The hot rolled sample exhibits two main orientations <101> and <338>. During 
the annealing processes these orientations are maintained along with a fiber of orienta-
tions between the two main ones. At the completion of recovery, the observed orientations 
closely resemble those formed during rolling. 

Although the crystallographic texture did not change significantly, intensity varied 
among the different thermal treatments. 

Table 1. Misorientation grain boundaries and KAM (kernel average misorientation) values meas-
ured for the examined samples. 

Misorientation Grain 
Boundaries 

Hot 
Rolled 

Cold 
Rolled 

Soaking 
Time 90’ 

Soaking 
Time 100’ 

Soaking 
Time 120’ 

Soaking 
Time 600’ 

2–5° (%) 48.5 86.6 83.8 89.8% 72.4 4.9 
5–15° (%) 26.9 6.3 8.5 5.9 14.8 0.8 

15–65° (%) 24.6 7.1 7.7 4.3 12.8 94.3 
KAM  

Mean KAM 
Angle (°) 

2.2 1.1 1.3 1.6 1.1 0.7 

KAM (%) 91 56.6 49.8 42.8 71.5 94.9 

The sub-grain boundaries fractions were lower after hot rolling, whereas they in-
creased significantly after cold rolling and decreased again after the thermal treatments 
(Table 1). 

The correlation between sub-grain boundaries and texture components showed that 
rolling texture components and recrystallization texture components exhibit an analogous 
trend at each thermal treatment, while sub grain boundaries exhibited an opposite behav-
ior with regards to their components. 

In 3XXX aluminum alloys which have been deformed, a proper recrystallization pro-
cess shall be utilized resulting into a controlled mean grain size and texture. Cold rolling 
induces energy in the form of dislocations, whereas this stored energy is released through 
the re-arrangement of dislocations during recovery yet at the same time no LAGBs and 
HAGBs occurs. Past this stage, recrystallization provokes the creation of newly formed 
strain-free grains that continue to grow when additional thermal energy is induced. Those 
stages are well known; yet, they are not fully understood. The understanding of the move-
ment of SGBs can lead to a more accurate definition of the initiation and completion of the 
recovery and recrystallization processes [11]. 

Growth of the sub-grain boundaries depends on the spread of the sub-grain size and 
LAGBs mobility. The mobility of LAGBs is of great importance in relation the recovery 
and recrystallization process and especially with regards to the creation of nuclei [19]. 

Determination of the sub-grain growth is challenging since the size, spread and mis-
orientation of LAGBs are easily disturbed by a number of factors. At the same time, 
LAGBs exhibit reduced mobility at the recovery stage, thus contributing to the difficulties 
encountered towards the understanding of the roots or recrystallization [19]. 

Researchers [23–25] who have tried to solve this vacancy observed that certain single 
crystals that formed microstructures through compression, exhibited sub-grains with a 
firm range of misorientation capable to provoke extensive recovery before recrystalliza-
tion. The evolution of EBSD precision has also assisted in the effort for the understanding 
of the sub-grain’s kinetics. Grains separated by LAGBs are considered to be remnants of 
deformation when found in a recrystallized material [26–30]. The thermal treatment in all 
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cases led to a high reduction in terms of HAGB fractions. The cold rolled sample exhibited 
a low percentage of HAGBs and dominant Cu, Brass and S oriented crystallites. 

 
Figure 2. Indicative results of the examined samples exhibiting (from left to right) IPF (inverse pole figure) maps, KAM 
maps (with maximum misorientation angle 5° and measuring the kernel according to the second neighbor) KAM maps 
(with maximum misorientation angle 65° and measuring the kernel according to the first neighbor) and GOS (grain ori-
entation spread) maps. 

The mean KAM angle in all annealed samples exhibited values less than 1° implying 
full recrystallization [20] since it is representative of a homogeneous distribution of defor-
mation within the grain, while mean KAM angle values higher than 1° refer to deformed 
grains [20]. When KAM values vary within the grain, this is due to an inhomogeneous 
distribution of plastic deformation. When KAM values approach 0° no significant plastic 
strain is detected after the thermal treatment. 
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Newly formed grains and areas exhibiting high misorientation angle which are crit-
ical for the evolution of the recrystallization process and the position of possible nuclei 
had been recognized. It is known that sub-grains which are capable of forming new re-
crystallized grains are those who exhibit high misorientation angle in relation to their 
neighbors. High misorientation at certain regions such as HAGBs which pre-existed be-
fore the thermal treatment can be nucleation points [8]. 

By reclaiming the retrieved results for the suggested KAM map processing, some 
interesting points regarding the nucleation process where detected and underlined in the 
current study. 

4. Conclusions 
• The hot-rolled sheet in the as received condition had formed orientations (101) and 

(338), which were maintained during all the annealing processes and coexisted with 
the orientations in-between before finally being restored at its initial state after the 
completion of recrystallization. 

• The SGBs were low after hot rolling any only increased significantly after cold rolling 
before decreasing again after the thermal treatments. 

• The increase of SGBs from the cold rolled condition until annealing with a soaking 
time 120′, which occurs mainly in orientations (101), allowed for the accurate defini-
tion of the completion point of recovery on the rolled 3104 sheet sample. 

• No significant orientation rotations were observed during the annealing process, 
whereas the mean KAM angle decreased during annealing. 

• The mobility of LAGBs at soaking times between 90′ and 120′ indicate the evolution 
of the recovery process. 

• The boundary mobility is found to decrease with a decreasing mean misorientation 
angle. The mobility of the LAGBs at the recrystallized state were found to be twelve 
times higher in comparison to the recrystallized state. 

• The KAM approach was focused on the actual misorientation relationships within 
the grain as well as the detection of the possible nucleation points by use of a simpler 
way of evaluation, ideal for industrial applications. Multiple samples can be effec-
tively examined in a timely manner; thus, various production stages could be effec-
tively monitored, in terms of microstructure evolution. 
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