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Abstract: Recent droughts worldwide have significantly affected ecosystems in various regions.
Among these affected areas, the Lake Urmia Basin (LUB) has experienced substantial effects from
both drought and human activity in recent years. Lake Urmia, known as one of the hypersaline lakes
globally, has been particularly influenced by these activities. The extraction of water since 1995 has
resulted in an increase in the extent of salty land, leading to the frequent occurrence of salt storms.
To address this issue, the current study utilized various machine learning algorithms within the
Google Earth Engine (GEE) platform to map the probability of saline storm occurrences. Landsat
time-series images spanning from 2000 to 2022 were employed. Soil salinity indices, Ground Points
(GPs), and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products were utilized
to prepare the training data, which served as input for constructing and running the models. The
results demonstrated that the Support Vector Machine (SVM) performed effectively in identifying
the probability of saline storm occurrence areas, achieving high R2 values of 91.12%, 90.45%, 91.78%,
and 91.65% for the years 2000, 2010, 2015, and 2022, respectively. Additionally, the findings reveal an
increase in areas exhibiting a very high probability of saline storm occurrences from 2000 to 2022. In
summary, the results of this study indicate that the frequency of salt storms is expected to rise in the
near future, owing to the increasing levels of soil salinity resources within the Lake Urmia Basin.

Keywords: soil salinity; salt storm; google earth engine; machine learning algorithms; Lake Urmia
Basin

1. Introduction

In recent years, humans have improperly exploited soil and water resources, leading
to threatened ecosystems and sometimes unstable landforms and new-born ecosystems [1].
Wind-erodible sediment beds are one of the adverse consequences of the unprincipled
exploitation of soil and water resources, leading to the disappearance of inland lakes
and wetlands [2,3]. Soil salinity is a dynamic process with significant social and economic
impacts, posing a threat to the communities exposed to it [4]. Soil salinity poses a significant
environmental threat, particularly in arid and semiarid regions [5]. It is a detrimental
consequence of irrigation and intensified agricultural practices, and represents a critical
issue within the spectrum of soil degradation [6]. A high volume of soil salinity in an area
easily allows saline storms to be created by unstable conditions [7,8].

Recent advancements in remote sensing have revolutionized the field of soil mapping,
shifting from traditional methods to digital soil mapping. This transition has brought about
more efficient and cost-effective tools for the widespread modeling and monitoring of soil
salinity over large areas [9,10]. Moreover, the availability of remote sensing data with medium
and high resolutions has further enhanced the capabilities of soil salinity detection [11].
Numerous studies have highlighted the considerable potential of Sentinel-2 and Landsat
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images for modeling and mapping soil salinity [12–17]. These images have proven valuable
in their contribution to understanding and monitoring soil salinity patterns.

Many indices have been developed for soil salinity detection using satellite-based
datasets [18,19]. Spectral reflectance is a key factor in mapping soil salinity using soil salinity
indices [20]. Nevertheless, it is important to consider various factors that can influence the
spectral reflectance of satellite image bands when analyzing soil salinity. Physical features,
chemical characteristics, soil color, moisture content, and surface roughness are among the
factors that can impact spectral reflectance [21,22]. Additionally, saline soils with a dark,
puffy surface crust tend to exhibit lower spectral reflectance [23]. These factors should be
considered to ensure the accurate interpretation and assessment of soil salinity levels from
satellite imagery.

Although spectral indices for mapping soil salinity using remote sensing have been
employed in the domain of soil science, it is important to consider new platforms such
as the Google Earth Engine (GEE) to update these approaches. The GEE offers enhanced
capabilities for analyzing and mapping soil salinity distributions, providing opportunities
to improve the accuracy and efficiency of inventory soil maps [24]. The GEE operates on
cloud computing, utilizing Google’s computational infrastructure and a vast collection of
freely available remote sensing imagery with different resolutions. This powerful platform
has found effective applications across various Earth science disciplines [25]. It has been
utilized in deforestation analysis [26,27], land use mapping [28,29], monitoring the impacts
of climate change [30], and air pollution monitoring [31,32]. One of the key features of
the GEE is its ability to perform automated parallel processing, making use of Google’s
fast computing platform. This significantly reduces processing time and addresses the
challenges associated with handling large volumes of data. The platform offers access to a
wealth of free image information spanning 40 years, including imagery from the Sentinel
series, Landsat, MODIS series, and more [33]. Given the widespread adoption of machine
learning techniques in remote sensing, the GEE aims to facilitate the implementation of
various machine learning algorithms. These algorithms can be broadly classified into four
main groups [34]: (a) Statistical learning algorithms: This group includes methods such as
Fast Naïve Bayes, which leverage statistical principles to make predictions. (b) Perceptron-
based methods: This category encompasses algorithms like Winnow and Perceptron, which
are based on the principles of neural networks and pattern recognition. (c) Logic-based
algorithms: Algorithms like Random Forests, CART (Classification and Regression Trees),
and Gmo Max Entropy fall under this group. They employ logical and decision tree-
based approaches to analyze and classify remote sensing data. (d) Support Vector Machine
(SVM) based algorithms: This group involves algorithms such as Margin SVM, Voting
SVM, Pegasos, and IKPamir. SVM is a popular machine learning technique that utilizes
geometric principles to separate and classify data [35–37]. Through the support of these
machine learning algorithms, the GEE aims to enhance the capabilities of remote sensing
data analysis and interpretation [28].

Machine learning algorithms and the GEE have gained significant popularity in
geosciences due to their flexibility, performance, and high accuracy in modeling and
predicting various phenomena [38]. The availability of large datasets has transformed the
GEE into a powerful big data technology, further contributing to its growing prominence
in the geoscience community. However, despite their widespread use, the comprehensive
application and comparative analysis of machine learning techniques in the GEE have
not been extensively addressed by previous researchers. As these innovative technologies
are in a paradigm shift in the field of remote sensing, there is a need for more in-depth
investigations into the efficiency and effectiveness of machine learning algorithms within
the GEE framework. Specifically, there is a research gap in the detection of saline diffusion
resources using the GEE and machine learning algorithms with spatial analysis. The
absence of comprehensive studies in this area presents an opportunity for significant
contributions to the field of remote sensing, representing a state-of-the-art research direction.
Therefore, this study aims to identify and map the distribution of soil salinity in order
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to detect the areas susceptible to salt storm in the LUB, Iran. To this end, Landsat series
images as well as Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol
Optical Depth (MCD19A2.061: Terra & Aqua MAIAC Land Aerosol Optical Depth Daily
1 km) were employed from 2000 to 2020.

2. Location of Study Area

The Lake Urmia Basin (LUB) is located in northwestern Iran (Figure 1). Lake Urmia
is one of the largest hypersaline lakes in the world that covers a wide part of the LUB. In
recent years, most of the lake has been become unusable land [39]. Drought and a rapid
increase in agricultural activities are the most important reasons behind the shrinkage of
the lake. These environmental changes may cause negative impacts such as the spread
of diseases, destruction of agricultural lands, and massive damage to the local economy,
resulting in the mass migration of local people, as has happened in the Aral Sea over the
past decades [40].
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Over the past few decades, there has been a rapid decline in the volume of water in
Lake Urmia. The lake’s surface area has diminished significantly, reducing from 6100 square
kilometers in 1995 to 953 square kilometers by August 2013 [41]. According to the Lake
Urmia Restoration Program (LURP) announced in 2019, several factors have been identified
as contributing to the drought of the lake. These include climate change, the increased
discharge of groundwater for traditional irrigated agriculture, reduced precipitation, the
construction of numerous dams, and the construction of a causeway across the lake. These
factors have collectively played a role in the decline of water levels in the lake. Consequently,
the shrinking of Lake Urmia since 1995 has resulted in noticeable and negative ecological
changes in the surrounding areas. These changes include soil salinization, the salinization
of groundwater, and an increase in the rate of saline dust [42].

3. Materials and Methodology
3.1. Materials

In order to map and monitor the distribution of soil salinity and identify areas with a
high potential for salt storms in the LUB, satellite images from Landsat 5 TM, 7 ETM+, and
8 OLI were utilized for the years 2000, 2010, 2015, and 2022. These images were specifically
acquired for the month of August, which is known to be the driest month in the LUB [5].
Furthermore, all image processing was conducted in the GEE environment, which includes
atmospheric correction for the images.

Ground Points (GPs) were collected at the end of the dry season from the study area
where maximum salt accumulation exists in the topsoil. Based on real field observations,
existing digital soil type, and land use/cover maps, a total of 1000 soil sampling points were
selected for the years 2000, 2010, 2015, and 2022, respectively. A soil drill was used to collect
and combine four topsoil samples (from 0 to 20 cm) at each sampling point. A portable
global positioning system (GPS) device (UniStrong G120, with a positioning accuracy of
≤5 m) was also employed to record the geographic positions of the soil sampling points.
All soil samples were appropriately sealed, labeled, and transported to the laboratory. The
soil samples were completely air-dried. To eliminate non-soil materials, the soil samples
passed through a 2 mm sieve. Finally, the soil electrical conductivity and soil–water ratio
were determined at room temperature (25 ◦C) using a digital multi-parameter measuring
instrument (Multi 3420 Set B, WTW GmbH, Munich, Germany) based on the prepared soil
leachate at a 1:2.5 soil-to-water ratio. These GPs were divided into two groups, with 70%
allocated for training the algorithms and 30% used for testing the accuracy of the machine
learning results. Additionally, various soil salinity indexes (as shown in Table 1) were
employed to create an inventory map for the training and validation process.

Table 1. Various soil salinity indexes used to generate an inventory map of soil salinity distribution.

Spectral Indexes Acronym Formula References R2 (2000) R2 (2010) R2 (2015) R2 (2022)

Normalized
difference salinity NDSI (R − NIR)/(R + NIR) [18] 0.48 0.66 0.58 0.63

Salinity index 1 SI1 (G × R)0.5 [18] 0.63 0.79 0.56 0.48

Salinity index 2 SI2
[
(G)2 + (R)2 + (NIR)2

]0.5 [43] 066 0.68 0.85 0.88

Salinity index 3 SI3
[
(R)2 + (G)2

]0.5 [19] 0.78 0.49 0.58 0.89

Salinity index I S1 B/R [18] 0.33 0.75 0.68 0.54
Salinity index II S2 (B − R)/(B + R) [19] 0.32 0.77 0.66 0.52
Salinity index III S3 (G × R)/B [19] 0.55 0.75 0.73 0.69
Salinity index V S5 (B × R)/G [18] 0.63 0.83 0.86 0.83
Salinity index VI S6 (R × NIR)/G [18] 0.51 0.22 0.37 0.52

To enhance the accuracy of the results, data from the MODIS Aerosol Optical Depth
(MCD19A2.061: Terra & Aqua MAIAC Land Aerosol Optical Depth Daily 1 km) were also
incorporated in this study in the GEE environment. MCD19A2 is the shortname for the



Pollutants 2024, 4 5

Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm-based Level-2
gridded (L2G) aerosol optical thickness over land surfaces product. Derived using both Terra
and Aqua MODIS inputs, this L2 product is produced daily at a 1 km pixel resolution. This
product helps generate a number of atmospheric and geometric properties/parameters that
are used to produce another facet of the MAIAC algorithm: the land surface bidirectional
reflectance factor (For more information, see the MAIAC user guide).

3.2. Methodology

This study utilized an integrated approach, combining remote sensing and GEE to
monitor the probability of saline storm occurrence. The implementation of the entire study
was conducted within the GEE environment. The first step involved the utilization of GPs
and the generation of inventory maps using soil salinity indices and MODIS AOD products.
These inventory maps were used to train and test the machine learning algorithms within
the GEE platform. To validate the results obtained from the applied machine learning
techniques, the k-fold cross-validation method was employed. This evaluation method
helped assess the accuracy and effectiveness of the algorithms in predicting the soil salinity
distribution and identifying areas prone to salt storm occurrences. An overview of the
applied methodology to map soil salinity distribution and identify potential areas for salt
storms is depicted in Figure 2.
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3.2.1. Google Earth Engine

The data catalog of the GEE consists of numerous datasets commonly utilized by
researchers, including the Landsat and Sentinel series images, and MODIS products (For
more information, see https://modis.gsfc.nasa.gov, accessed on 1 August 2023). Addi-
tionally, there are lesser-known datasets such as hyperspectral data, night lights data,
weather and climate data, and over 900 other datasets [44]. Users also have the option
to upload their own data to the GEE server using the asset catalog. By colocating user
data with the expanding GEE data catalog on the cloud, the integration and processing of
data are expedited. The GEE’s server-hosted data can be manipulated using a wide array
of pre-loaded functions, algorithms, and tools, or by developing user-specific algorithms
and functions tailored to their requirements [45]. The computational power of Google’s
servers and the active GEE developer community are leveraged to accomplish this. No-
tably, the high processing speeds offered by the platform enable the swift prototyping
of new algorithms, allowing for efficient experimentation and the development of novel
approaches [46]. Additionally, several machine learning algorithms are available in the
GEE that are listed below:

3.2.2. Support Vector Machine (SVM)

Indeed, SVM is a supervised and non-parametric approach, and one of its significant
strengths is its ability to produce good results even with a limited number of training
samples. This attribute is particularly valuable in scenarios where obtaining a large, labeled
dataset may be challenging or costly. SVM achieves this by effectively maximizing the
margin, which is the distance between the decision boundary (hyperplane) and the support
vectors [47]. By maximizing the margin, SVM aims to achieve better generalization and
robustness to new, unseen data points. This property allows SVM to perform well in
situations where the number of training samples is small compared to the complexity of the
problem [48,49]. In essence, SVM’s ability to handle limited training samples stems from
its emphasis on finding the optimal separating hyperplane based on the support vectors.
These support vectors capture the essential information required for classification, making
SVM an effective approach even in cases where data availability is limited [50,51].

SVM employs various kernel functions, including linear, polynomial, radial basis
function (RBF), and sigmoid. In this particular study, the RBF kernel was chosen due to its
demonstrated superiority over other kernels and its widespread usage. The RBF kernel
relies on two important parameters: ‘cost’ (C) and gamma [52,53]. The C parameter plays
a crucial role in controlling the misclassification of training points. A higher value of C
implies that fewer training points will be misclassified. On the other hand, the gamma
parameter determines the ‘spread’ or reach of the kernel. A lower gamma value means
that the influence of a single training sample extends farther, while a higher gamma value
results in a more localized influence [54,55].

3.2.3. Random Forest (RF)

The RF classifier is a classification method based on ensemble learning, which aims to
improve classification performance by constructing multiple classifiers instead of a single
one [56]. The RF combines multiple decision trees that are independent of each other
to create a robust model. Each decision tree undergoes its own evaluation process, and
the results from these trees are averaged to produce the final output of the RF classifier.
Decision trees, being weak learners, are combined to create a strong model [57]. RF can
be used for predicting either class variables or regression variables [58,59]. In the GEE
platform, there are six parameters related to RF that can be adjusted. These parameters
included the number of trees, variables per split (with a default value of the square root of
the number of variables), minimum leaf population (with a default value of 1), bag fraction
(with a default value of 0.5), maximum nodes (with an unlimited default), and seed (with a
default value of 0 for randomization). These parameter settings can be modified within the
GEE platform to customize the RF classifier according to specific requirements [60,61].

https://modis.gsfc.nasa.gov
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3.2.4. Classification and Regression Trees (CART)

CART is a tree-based machine learning technique used for both regression and clas-
sification tasks [62]. It can handle numerical data for regression and categorical data for
classification. The CART classifier constructs a decision tree by iteratively splitting the data
at each node starting from the root. The training data are passed down the tree through
these splits, and at each node, a decision is made to determine the next direction for the
data. The decision is based on reducing the impurity at each node, which is determined
by a splitting rule. For classification trees, common splitting rule metrics include the mis-
classification error, Gini index, entropy index, and twoing [63,64]. The splitting process
continues until there is only one sample remaining, and a final decision is made at the
terminal node, which represents the predicted class or regression value [65,66]. In the con-
text of CART classifier implementation, the inputs typically consist of a feature collection
representing the training data (70% of the data), a class property (e.g., ‘Croplabel’) that
denotes the class labels, and input properties that encompass all the bands or features used
for classification. In this regard, the GEE platform offers CART classification and regression
algorithms. These algorithms require the definition of two parameters. The first parameter
is ‘maxNodes’, which determines the maximum number of leaf nodes in the decision tree.
By default, there is no limit on the maximum number of leaf nodes. The second parameter
is ‘minLeafPopulation’, which specifies the minimum number of data points required to
create new nodes during the construction of the decision tree. The default value for this
parameter is one [67–69]. In the mentioned study, all the parameters for CART classification
and regression were left as default values, meaning that the ‘maxNodes’ parameter had an
unlimited value, and the ‘minLeafPopulation’ parameter was set to one.

3.3. Accuracy Assessment

In this study, a k-fold cross-validation method was employed. This method involves
dividing the samples into k evenly sized folds. During each iteration, k − 1 folds were utilized
for training the model, while the remaining fold was used for validation. This process was
repeated k times, ensuring that each fold served as both a validation set and a training set.
Following k iterations, the regression results were averaged to obtain the final outcome [32].
To evaluate the performance of the model, two metrics were utilized: the root mean square
error (RMSE) and R-squared (R2). These metrics were calculated at every iteration, and the
average of all the iteration results was used to determine the accuracy of the model [70]. The
equations below illustrate the calculation of RMSE and R2, respectively:

RMSE =

√
1
n∑n

i=1

(
Xi − Yi)

2 (1)

R2 = 1 − ∑n
i=1

(
Xi − Yi)

2

∑n
i=1(Xi − Xi)2 (2)

where n is sample size, Xi is measured soil salinity value, Yi is the predicted soil salinity
value, and Xi is the average of the measured soil salinity values.

Table 2 shows the results of the k-fold cross validation method for monitoring the dis-
tribution of soil salinity to identify the potential areas for salt storm occurrence. According
to Table 2, the SVM machine performed well with an R2 of 91.12%, 90.45%, 91.78%, and
91.65% for the years 2000, 2010, 2015, and 2022, respectively, compared to RF and CART.
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Table 2. Results of the k-fold cross validation method.

Year
SVM RF CART

R2 RMSE R2 RMSE R2 RMSE

2000 91.12 4.21 87.36 5.89 85.65 6.65

2010 90.45 4.89 86.78 6.42 85.11 6.87

2015 91.78 3.99 87.12 6.24 84.99 7.12

2022 91.65 4.09 87.01 6.13 85.21 6.94

4. Results

This study aimed to monitor the distribution of soil salinity and identify potential areas
for salt storm occurrences using machine learning algorithms in the GEE environment. Three
machine learning algorithms, namely SVM, RF, and CART, were utilized in the GEE for this
purpose. Figure 3 depicts the distribution of soil salinity in the LUB from 2000 to 2022.
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This study found that SVM performed well in monitoring the probability of saline
storm occurrences compared to RF and CART, as indicated in Table 2. The results revealed
an increasing trend in the probability of saline storm occurrences in the LUB from 2000 to
2022. The maps generated using machine learning algorithms consistently showed an
increase in areas with very high concentrations of soil salinity throughout this period
(Table 3). Notably, the highest increase in soil salinity concentration occurred in 2015 when
the lake experienced significant drying.

Table 3. Spatio-temporal probability of saline storm occurrences in %, generated using machine
learning algorithms in the GEE for the years 2000, 2010, 2015, and 2022.

2000 2010

Class SVM RF CART Class SVM RF CART

Very low 12.00 16.20 16.22 Very low 12.93 21.42 23.79

Low 47.47 56.88 47.20 Low 66.10 60.92 58.55

Moderate 29.93 23.88 33.54 Moderate 16.17 14.50 14.65

High 9.54 2.12 2.12 High 3.71 2.00 1.76

Very high 1.07 0.92 0.92 Very high 1.09 1.17 1.26

2015 2022

Class SVM RF CART Class SVM RF CART

Very low 26.64 50.38 49.07 Very low 28.53 62.21 65.96

Low 67.08 43.02 44.33 Low 66.35 30.60 26.85

Moderate 2.51 3.29 3.30 Moderate 1.97 4.30 4.30

High 2.44 1.60 1.59 High 1.86 1.58 1.58

Very high 1.33 1.70 1.70 Very high 1.29 1.32 1.32

However, it is mentioned that the areas with a high distribution of soil salinity de-
creased, which contributed to the overall increase in very high distribution of soil salin-
ization in the LUB from 2000 to 2022. In summary, this study’s findings indicate that the
areas with the highest soil salinity levels increased during the period from 2000 to 2022,
consequently increasing the potential for salt storms in those areas.

In addition to monitoring the probability of saline storm occurrences, this study also
utilized the MODIS AOD product to track the time series of dust storms over the study
area from 2000 to 2022. Table 4 provides insights into the changes observed in the thickness
of dust over the LUB during this period. According to the data presented in Table 4, the
thickness of dust over the LUB in August 2000 was recorded as 0.285. Over the years, there
was an increase in the thickness of dust, with the value reaching 0.416 in August 2010.
Subsequently, in August 2015, the AOD thickness further increased to 0.423. By August
2022, the MODIS AOD product indicated a recorded value of approximately 0.459 for the
AOD thickness.

Table 4. The thickness of AOD over study area from 2000 to 2022 in August.

Product Name 2000 2010 2015 2022

AOD thickness 0.285 0.416 0.423 0.459

These results suggest that there has been a general increasing trend in the thickness of
dust storms over the study area from 2000 to 2022. The data show a gradual rise in AOD
thickness, indicating an escalation in the intensity or frequency of dust storms in the LUB
region over time. Table 5 also shows an R2 of 0.69, 0.69, and 0.73 between the very high class
for the concentration of soil salinity and aerosol thickness from 2000 to 2022. The results of the
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correlation coefficient show that an increase in the distribution of soil salinity would increase
the thickness of aerosol, which accordingly increases the frequency of salt storms.

Table 5. Correlation coefficient between the distribution of soil salinity and aerosol thickness from
2000 to 2022.

Methods SVM RF CART

R2 0.69 0.69 0.73

5. Discussion
5.1. General Discussion

In recent years, salt storms have become an unexpected natural disaster that occurs
within the territory of the LUB due to the significant drying of Lake Urmia. To address
this issue, this study employed three machine learning algorithms: SVM, RF, and CART,
in conjunction with the MODIS AOD product. The goal was to analyze the probability
of saline storm occurrences in the LUB. This study’s results indicate that the potential for
salt storms in the LUB has increased due to the rising distribution of soil salinity from
2000 to 2022. Furthermore, the findings highlight machine learning algorithms as promising
techniques for detecting the probability of saline storm occurrences on a large scale.

5.2. Probability of Saline Storm Occurrences from 2000 to 2022

As mentioned, the probability of saline storm occurrences increased from 2000 to
2022 in the LUB, as shown in Table 3. This increase is consistent with the values derived
from the MODIS AOD product, as presented in Table 4. According to Table 3, the very high
probability of saline storm occurrence was 1.07%, 1.09%, 1.33%, and 1.29% for the years
2000, 2010, 2015, and 2022, respectively. This probability class increased by approximately
0.22% from 2000 to 2022. We considered the SVM results because it demonstrated the
highest performance in mapping the probability of saline storm occurrence compared to
other techniques. The high probability of saline storm occurrence was estimated to be
9.54%, 3.71%, 2.44%, and 1.86% for the years 2000, 2010, 2015, and 2022, respectively, as
shown in Table 3. According to these results, there is a reduction in the class with a high
probability of saline storm occurrences from 2000 to 2022, which aligns with the increase in
the class with very high probability of saline storm occurrences. The results of this research
reveal that 1.07%, 1.09%, 1.33%, and 1.29% of the LUB area faced a very high probability of
saline storm occurrences for the years 2000, 2010, 2015, and 2022, respectively. This could
be a direct result of the recent dryness in Lake Urmia. The period from 2005 to 2015 was
the driest on record and led to a sharp drop in the water level, decreasing it by more than
seven meters [71]. According to the Department of Environment (DOE) in 2010, a water
level of 1274.1 m above sea level would be necessary for the lake to maintain its normal
ecological function and preserve its environmental diversity. However, based on the West
Azerbaijan Regional Water Organization’s report, the water level of Urmia Lake decreased
from 1275.74 m in 1978 to 1270.91 m in 2012. Figure 3 illustrates that areas with a high
probability of saline storm occurrence are located on the eastern and southern shores of
Urmia Lake. This distribution is attributed to the lower slope angles of these shores in
comparison to other regions [17]. Table 3 reveals that 29.93%, 16.17%, 2.51%, and 1.97% of
the study area face a moderate probability of saline storm occurrences for the years 2000,
2010, 2015, and 2022, respectively. These areas are predominantly found in the eastern
and southern parts of the Urmia Lake area, primarily due to the prevalence of barren land
and abandoned agricultural areas affected by soil salinity. Additionally, 47.47%, 66.10%,
67.08%, and 66.35% of the LUB exhibit a low probability of saline storm occurrences for the
years 2000, 2010, 2015, and 2022, respectively, while 12.00%, 12.93%, 26.64%, and 28.53%
have a very low probability of saline storm occurrence for the years 2000, 2010, 2015, and
2022 (Table 3). The analysis of electrical conductivity (EC) also indicates that the average
EC for 218 GCPs was 3.68 in the year 2000. This value rises to 5.09 in 2010 for 217 GCPs.
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Furthermore, the electrical analysis uncovers an EC mean value of 6.98 in 2015 for 278 GCPs.
The EC mean value for GCPs in 2022, numbering 287, is 6.65. This illustrates a notable
increase of 2.97 in EC from the year 2000 to 2022.

5.3. Efficiency of Remote Sensing and GEE for Modeling the Probability of Saline
Storm Occurrence

Traditional satellite-based approaches for soil salinity distribution rely on spectral
indexes, as outlined in Table 1. According to [72], soil salinity information obtained from
satellite images can be influenced by terrestrial and atmospheric factors. Consequently, it is
imperative to employ advanced methods to mitigate the impact of these factors. GEE, an
online platform that provides access to a diverse array of global satellite images and offers
image-processing and -classification capabilities, leverages contemporary methods like
machine learning and deep learning techniques. The results of this study affirm that GEE
is well suited for harnessing vast amounts of data and can serve as a testbed for various
machine learning algorithms. Monitoring the soil salinity distribution from remote sensing
images poses a challenge due to the diverse elements involved and their complex spatial
and spectral characteristics. However, this study successfully addresses these complexities
through the application of automated data-driven approaches. By demonstrating the
applicability of different machine learning algorithms within the GEE platform, this study
provides a comprehensive framework for monitoring various earth features, including soil
salinity distribution, at different scales and levels.

5.4. The Effects of Saline Storms on the Local Environment and Inhabitation

Soil salinity can have various impacts on different aspects of the environment and
human activities. The following are some of the key impacts of soil salinity: The expansion
of salt-affected areas: High soil salinity can contribute to the expansion of salt-affected
areas, which can lead to the formation of salt storms. When the soil becomes saline, the
salts can be carried by wind and deposited on nearby areas, causing damage to vegetation,
infrastructure, and affecting the overall ecosystem. Agricultural productivity loss: Soil
salinity poses a significant threat to agriculture. High salt levels in the soil can hinder
the germination, growth, and development of plants, leading to reduced crop yields and
economic losses for farmers. Salinity also affects the availability of water to plants, as
excessive salt levels can disrupt the water balance in plant cells. Soil degradation and
desertification: Persistent soil salinity can contribute to soil degradation and desertification.
Excessive salt accumulation can degrade soil structure, reduce its fertility, and make it less
suitable for plant growth. Over time, this can lead to the loss of topsoil, erosion, and the
conversion of productive land into barren, salt-affected areas. Impact on ecosystems: Soil
salinity can have negative effects on natural ecosystems. It can disrupt the balance of plant
and animal species adapted to specific soil conditions, leading to changes in biodiversity
and potentially causing a decline in or loss of certain species. Salinity can also impact water
bodies, as a high salt content in the soil can leach into groundwater or runoff into rivers,
affecting aquatic ecosystems. Health concerns: In areas affected by soil salinity, the salts can
contaminate water sources, making them unsuitable for human consumption. Additionally,
the inhalation of salt particles carried by wind during salt storms can have adverse effects
on respiratory health. Moreover, the lack of suitable agricultural areas due to soil salinity
can contribute to food insecurity and malnutrition in affected regions. To mitigate these
impacts, it is crucial to monitor and map soil salinity distribution, as mentioned earlier. This
information can help in developing strategies for soil management, irrigation techniques,
crop selection, and land use planning to minimize the negative effects of soil salinity and
promote sustainable land and water management practices.

5.5. Limitation of the Present Research

The potential applications of learning-based approaches are nearly limitless. In the
context of mapping the probability of saline storm occurrences, further research is essential
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to gain a better understanding of the dynamic nature of saline storms, allowing for the
simulation of their variations and effects in semi-arid and arid regions.

6. Conclusions

In this study, we employed machine learning algorithms such as SVM, RF, and CART
to effectively monitor the distribution of soil salinity and identify potential areas for salt
storm occurrences in the LUB region. The findings indicate that SVM performed well
with an R2 of 91.12%, 90.45%, 91.78%, and 91.65% for the years 2000, 2010, 2015, and 2022,
respectively, compared to RF and CART in monitoring soil salinity distribution in the area
of interest. Furthermore, the results reveal an increasing trend in the potential areas for
salt storm occurrence from 2000 to 2022 in the LUB. This is especially evident in the class
with a very high probability of salt storm occurrences, showing an increase of 0.22% for
SVM, 0.4% for RF, and 0.4% the CART from 2000 to 2022. This highlights the importance of
continuous monitoring and the assessment of soil salinity to better understand and predict
the occurrence of salt storms. The results also show a gradual rise in AOD thickness of
0.174 from 2000 to 2022, indicating an escalation in the intensity or frequency of dust storms
in the LUB region over time. This study found that the use of cloud-free platforms like the
GEE provides easy access to a wide range of datasets, eliminating the need for extensive
pre-processing stages. This integration of remote sensing datasets with the GEE platform
proved highly effective in monitoring and mapping the dynamic nature of soil salinization
over large areas. Overall, the results of this study offer insights and practical applications
for researchers, planners, and administrators, enabling them to identify areas most affected
by salinity and predict potential areas at risk of salt storms.
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