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Abstract: The imbalance cost pass-through (ICPT) is a flexible component of the incentive-based
regulation (IBR) that empowers power producers to adjust tariffs in response to variable fuel prices,
thereby enhancing the economic resilience of electricity generation. In Malaysia, the Energy Commis-
sion has conducted biannual reviews of fuel and other generation costs. Any cost savings or increases
identified during these reviews will be passed on to customers in the form of rebates or surcharges.
Meanwhile, if an increment in the ICPT price signal can be provided to electricity providers and con-
sumers, early preparation for operation budgeting can be realised, and energy management program
development can be properly prepared. Due to this reason, this study proposes ICPT price forecasting
for the electricity market in Peninsular Malaysia that will benefit the stakeholders. The study aims
to construct an ICPT-related baseline model for the peninsular generation data by employing three
forecasting methods. The forecasting performance is analysed using the mean absolute percentage
error (MAPE). In light of our findings, the ARIMA method is one of the most accurate forecasting
methods for fuel prices compared to the moving average (MA) and LSSVM methods. The observed
price differences between the ARIMA and LSSVM models for ICPT are minimal. The ICPT price for
July–December 2022 and January–June 2023 is MYR 0.21/kWh for the ARIMA and MYR 0.18/kWh
for LSSVM, which are close to the actual TNB’s ICPT tariff. As for forecasting, the ICPT price is
expected to drop in the next announcement. The findings of this study may have a positive impact
on the sustainability of the energy sector in Malaysia.

Keywords: electricity price; incentive-based regulation; electricity market; forecasting; time series;
machine learning

1. Introduction

Malaysian Electricity Supply Industry (MESI) 1.0, which took place from 2010 to
2014, was approved by the government in 2009. The objectives were to improve the
tariff mechanism, fuel supply, and security, and to achieve effective governance in power
sector management. The ring-fenced, single-buyer model was established due to those
initiatives [1]. Additionally, the single-buyer (SB) and grid system operator (GSO) divisions
joined the MESI following their separation from Tenaga National Berhad (TNB). In 2015,
the Energy Commission launched the New Enhanced Dispatched Agreement (NEDA) to
provide an opportunity for the power sector to increase its efficiency and be more cost-
effective in generating electricity. This new method can reduce power production costs
while benefiting consumers in the long run. The NEDA regime has implemented short-run
competition in generating dispatch daily among Independent Power Producers (IPPs)
with Power Purchase Agreements (PPAs), TNB generation with Service Level Agreements
(SLAs), and merchant generators without PPAs. All generation players are required to use
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the System Marginal Price (SMP). The introduction of the MESI and NEDA has resulted
in some positive industry impacts. Still, more effort is needed to keep tariffs as stable as
possible, while the efficiency of power generation system operations needs to be improved
to protect against exposure to fuel price volatility.

Thus, in 2018, MESI 2.0 was introduced with the core idea of redesigning MESI 1.0 [2].
The MESI 2.0 reform aimed to make the electricity market more effective by making it
more efficient, transparent, sustainable, and competitive [3]. In addition to managing
Power Purchase Agreements (PPAs) and settlements, the SB department oversees least-
cost dispatch scheduling, managing the forecasting of electricity demand, and planning
generation capacity, whereas the Energy Commission (EC) is entrusted explicitly with
acquiring additional generation capacity identified previously by the SB [4]. In all cases,
power plants will sell energy to the SB at the PPA pricing. The producing company will be
compensated in two ways: the capacity payment and the energy payment [5]. Moreover,
the GSO is a ring-fenced department within TNB accountable for the operational planning,
real-time rescheduling, dispatch, and management of the grid system following grid code
requirements. The GSO is also responsible for coordinating all parties involved in the grid
system, including electricity generation, transmission, and distribution networks across
multiple countries or continents [6].

However, fuel and generating expenses have increased to around 70% of the overall
tariff costs paid by consumers, with the remaining 30% made up of operations and main-
tenance costs [7]. TNB and the government cannot prevent changes in electricity tariffs
because the adjustment depends on global fuel price changes, including coal and natural
gas prices. Around 70% of Malaysia’s coal is bought from Indonesia, and the remaining is
imported from Australia, South Africa, and Russia [8]. Due to this reason, MESI reform
initiatives began introducing an incentive-based regulation (IBR), which consists of two
types of fundamental tariff, (a) a base tariff and (b) the imbalance cost pass-through (ICPT)
mechanism, which has helped keep electricity tariffs stable through Malaysia’s single-buyer
model. The base tariff was set at 39.45 cents/kWh and has remained the same price up to
the present. For instance, if coal cost USD 87.50 (MYR 337.3)/ton, LNG would cost MYR
41.68/mmBtu, and regulated gas would cost MYR 15.20/mmBtu. The Energy Commission
(EC) continues to audit and review past performance while accommodating new utility
company requests. The utility must provide its expected revenue requirement for the
next three to four years based on forecasted capital expenditure (CAPEX), operational
expenditure (OPEX), and expected return. The three to four years is known as a regulatory
period (RP), during which the utility must operate within the allowed CAPEX and OPEX to
deliver the required service. The cost of coal was about MYR 250 per metric ton when the
ICPT was introduced. The cost of coal had risen to more than MYR 370 per metric ton by the
beginning of 2018 [9], a 47% increase in price. Since the ICPT price depends on the fuel price
and other generation costs, the Energy Commission will conduct biannual reviews with
any cost savings or increases identified during these reviews will be passed on to customers
in the form of rebates or surcharges. The ICPT charge on electricity bills differs for each
consumer, as the ICPT charge is based on the monthly energy consumption (kWh) [10].
Thus, Figure 1 illustrates the complexity of the MESI in Peninsular Malaysia, where the
integrity and transparency of the electricity market have been set as main objectives for the
framework design.

Unfortunately, the ICPT forecast charges are not made publicly available, which
creates a crucial need to provide consumers such as large commercial and industrial
businesses with an ICPT forecasting mechanism so that they are able to manage their
energy consumption and operations cost-efficiently. Hence, in this study, forecasting
models are introduced based on the time series (moving average), the ARIMA model, and
the LSSVM, which represent the most popular techniques used in the literature. These are
explained in detail in the following section. The contributions that this paper makes to this
topic are as follows:
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(1) It presents a novel forecasting formulation model for the ICPT regime in Malaysia,
where the accuracy of the model has been configured and tested with time series and
machine learning techniques.

(2) It provides a comprehensive analysis of the data collected from the real generation
system while putting forward much widespread discussion on the three-baseline
model for the ICPT’s main component.

(3) It contributes to providing valuable forecasting ICPT price information for electricity
consumers in Peninsular Malaysia, where the sustainable electricity market can be
enhanced significantly.

The remainder of the paper is organised as follows: In Section 2, the related previous
work on forecasting models is introduced. In Section 3, the formulation of the ICPT based
on the IBR regime is explained, while Section 4 demonstrates the implementation of the
forecasting methods. Section 5 discusses the findings, and the last conclusion section will
be Section 6.
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of tariffs, which are the ICPT and the base tariff, under the IBR.

2. Related Previous Work on Forecasting Models

The ARIMA forecasting model is the most common type of linear time series model,
based on the Box–Jenkins methodology, as presented in [11]. In most cases, this method-
ology does not require the estimation of many parameters to make the final choice of
model [12]. As an adaptation of this model, the authors in [13] applied it for the short-
term forecasting of Spanish day-ahead electricity market prices. Meanwhile, using the
Reference Price Data (RPD) from the UK energy market, the authors in [14] described and
analysed the ARIMA and ANN models for predicting the price of electricity up to three
steps (1.5 h) ahead. Based on the root-mean-square error (RMSE), the results show that the
ARIMA (4,1,2) model was more accurate when compared to the ANN model. Hence, the
application of the ARIMA model was used to investigate the USD-per-day price of gold
during short-term and long-term periods [15]. It is observed that the ARIMA is deemed
the most effective for predicting gold USD prices and in other related electricity pricing
forecasting, as explained in [8]. On the other hand, the well-known statistical test of the
analysis of variance (ANOVA) was conducted in [16,17] for forecasting electricity prices
one day ahead, based on the best possible synthesis of a few univariate and multivariate
approaches. Even though the ANN model was less accurate, the improvement model
was able to predict better, as explained in [14], where the application of it in predicting
long-term oil and real-time electricity prices was able to fulfil the standard accuracy per-
centage, as shown in [18,19]. Aside from the time series forecasting method, the machine
learning method has been applied in various fields, including the electricity market. The
studies in [20,21] explore the application of a hybrid forecasting model known as Grey
Wolf Optimizer–Least-Squares Support Vector Machines (GWO-LSSVMs) in the context of
price prediction. The authors of [22,23] propose a novel method for forecasting electricity
prices that combines clustering and Least-Squares Support Vector Machines (LSSVMs). A
methodology has been proposed that combines the advantages of clustering and LSSVMs
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to improve the precision of electricity price forecasts. These advancements are crucial for
consumers to manage energy consumption and operations cost-efficiently [24,25].

In the context of Malaysia, the application of the forecasting method in the electricity
market has been explored and discussed in various studies. These studies have focused
on developing more accurate and efficient forecasting models rather than considering the
ICPT charge. Hence, to the best of our knowledge, there are no presented findings that have
been published in a past study to discuss ICPT predictions for the IBR regime in Malaysia.
Even though Asian countries may have different electricity markets, the formulation of
the ICPT in this study can help them to manage a single-buyer-based market, where the
southern ASEAN countries are able to enhance their generation market too. Therefore, the
findings of this study contribute significantly to the body of knowledge since they provide
a method of forecasting ICPT pricing. Electricity consumers can use this information to
make more informed decisions regarding their energy consumption. The findings of the
study may also help empower consumers to become more aware of the volatility of ICPT
costs. These data can assist consumers in making more informed financial decisions about
their energy consumption and operation costs. Thus, this paper aims to establish a baseline
model for the peninsular generation data while comparing the performance through the
mean absolute percentage error (MAPE) of the time series forecasting (moving average),
ARIMA, and Least-Square Support Vector Machine (LSSVM) techniques. Meanwhile, at the
end of the study, the ICPT price prediction for Peninsular Malaysia under the IBR regime is
proposed congruently.

3. Formulation of ICPT

The single-buyer tariff has two components: (1) the Single-Buyer Generation, which
accounts for all generation costs, including fuel, capacity payments, and other expenses
related to the terms and conditions of PPAs, SLAs, and other fuel procurement contracts,
and (2) the SBO component, which accounts for all other operational and capital costs
associated with SB operations and allocates joint costs (if any). The SB will forecast the
generation cost for the generation-specific component using the current gas and coal
prices. The profitability of the generation utility may be impacted by the extremely volatile
nature of fuel prices. Therefore, an adjustment to the fuel price is permitted to protect
the TNB from this inconsistency. The ICPT is made up of two parts: the fuel cost pass-
through (FCPT) accounts for changes in gas and coal costs due to changes in fuel prices,
availability, foreign exchange rates, etc., and the generation-specific cost pass-through
(GSCPT) accounts for changes in other fuels (such as distillate and medium fuel oil (MFO))
and all costs incurred by the single buyer under PPAs and SLAs (incentive or bonus
payments, liquidated damages, savings, etc.). Figure 2 describes the components considered
for the ICPT tariff.
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Every six months, the SB will evaluate the generation-specific component of its actual
revenue against the cost of electricity acquisition. The SB will have to provide a thorough
analysis and supporting evidence to prove the fuel price changes. Customers will be
informed of any over or under abundance of the actual figure within the ensuing six
months by the government through the Energy Commission.

The formulation of the electricity tariff in Malaysia has adopted (IT ) the incentive-
based regulation (IBR), as shown in Equation (1):

IT = Bt + Cx, (1)

where Bt is the base tariff and Cx is the imbalanced cost pass-through (ICPT). Meanwhile,
the ICPT has two components, which are the generation cost adjustment for the six-month
period (cent/kWh) ( Gx) and the fund contribution for the six-month period (cent/kWh)
( FS), as described in Equation (2).

Cx = Gx + FS (2)

For Part 1 of Equation (2), the details of Gx can be expressed by the following equations:

Gx = (A + B)× (1 + IS−1)
7 + (A1 + B1)× (1 + IS−2)

13 (3)

A = IFUCS + AFULP (4)

IFUCS =
(
∑M=−1

m=−4 Cm + ∑M=−5
m=−6 Dm

)
/
(
∑M=−1

m=−4 Fm + ∑M=−5
m=−6 Em

)
(5)

AFULP =

(
∑s

s=1
FFULs(

1 + WACCp
)s

)
/

(
∑T

t=1
FSALt(

1 + WACCp
)t

)
(6)

B = IGSCS − AGSCP (7)

IGSCS =
(
∑M=−1

m=−4 Gm + ∑M=−5
m=−6 Hm

)
/
(
∑M=−1

m=−4 Fm + ∑M=−5
m=−6 Em

)
(8)

AGSCP =

(
∑s

s=1
FGSCs(

1 + WACCp
)s

)
/

(
∑T

t=1
FSALt(

1 + WACCp
)t

)
(9)

A1 =
{[

IFUCS−1 ×
(
∑M=−7

m=−10 Fm + ∑M=−11
m=−12 Em

)]
− ∑M=−7

m=−12 Dm

}
/ES−1 (10)

B1 =
{[

IGSCS−1 ×
(
∑M=−7

m=−10 Fm + ∑M=−11
m=−12 Em

)]
− ∑M=−7

m=−12 Hm

}
/ES−1 (11)

where A is the first fuel cost pass-through adjustment in the six-month period (cent/kWh).
IFUCs is the interim fuel cost pass-through adjustment for the six-month period (cent/kWh).
AFULP is the average fuel cost for regulatory period ‘P’ (cent/kWh). Meanwhile, m
represents the month in which the ICPT adjustment takes effect; Cm is the estimated total
fuel cost for month ‘m’ (MYR); Dm is the actual total fuel cost for month ‘m’ (MYR); Fm
is the estimated total qualifying sales (kWh); and Em is the audited total qualifying sales
for month ‘m’ (kWh). FFULS is the forecasted fuel cost for the six-month period ‘s’ (MYR);
WACCP is the allowed weighted average cost of the capital of RBE for the regulatory period
‘P’ (%); and FSALt is the forecasted total electricity sales in the year ‘t’ as made at the time
of setting the base average tariff (in kWh).

On the other hand, B is the first other generation cost pass-through adjustment in the
six-month period ‘s’ (cent/kWh). In conjunction with the interim of the other generation
cost past-through adjustment, the symbol IGSCS demonstrates the six-month period ‘s’
(cent/kWh). AGSCP is the average other generation cost for the regulatory period ‘P’
(cent/kWh) that finally contributes to the second fuel cost and other generation costs’
pass-through adjustment in the six-month period (cent/kWh), A1 and B1, congruently.
Meanwhile, Gm and Hm represent the estimated total other generation cost for month m
(MYR) and the actual total other generation cost for month m (MYR), respectively. On the
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other hand, for Part 2 of Equation (2), the details of Fx can be expressed by the following
Equation (12):

Fx = ∑M=5
m=−0(FUNPm − FUNTm)/∑M=5

m=0 Fm (12)

where FUNTm is an approved payment from the Electricity Industry Fund (EIF) to the
single buyer, related to the ICPT adjustment, for month m (MYR), while FUNPm is the
payment by the single buyer into the EIF, related to the ICPT adjustment for month m
(MYR). The calculation result was divided to estimated the total qualifying sales (kWh),
Fm, accordingly. Basically, the value of Fx was considered fixed during the adjustment
but really depends on the banking announcement, especially on the overnight policy rate
(OPR) values.

Since introducing the ICPT mechanism, consumers have received rebates worth MYR
6.3 billion [3]. By successfully implementing sixteen (16) ICPT cycles since 2015, the
government has protected MYR 11.7 billion from the effects of rising fuel prices. This
includes the most recent MYR 5.8 billion in subsidies for the ICPT implementation period
of July to December 2022. In addition, all Peninsular Malaysia consumers received an
MYR 9.35 billion ICPT cost rebate from the government. The average price of coal has
risen dramatically, which has led to this ICPT surcharge. Since coal is used for 59% of
Peninsular Malaysia’s generation, the increase in coal prices between January 2022 and
June 2022 has significantly impacted its overall cost of generation [15]. From 1 July until 31
December 2022, all residential customers received their current rebate of 2.00 cent/kWh.
However, from 1 February 2019 to 30 June 2022, all nondomestic customers were subjected
to an ICPT surcharge of 3.70 cent/kWh. The details of the ICPT tariff are illustrated in
Figure 3 (the green colour indicates a rebate, while the red colour indicates surcharge).
Since July 2023, the surcharge for commercial and industrial consumers has been increased
to 20 cents/kWh.
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Figure 3. Previous ICPT price.

4. Method
4.1. Forecasting Formulation

The formulation of those forecasting methods with the objective function of the MAPE
is presented in the Equations (13)–(19), respectively. However, for the ARIMA model, the
equation contains three terms:

(1) Autoregression (AR): A regression analysis is used to compare the time series to its
prior values, such as y(t − 1), y(t − 2), etc. The letter p stands for the lag order.

(2) Integration (I): Differencing is used to make the time series stationary. The difference’s
order is indicated by the letter d.

(3) Moving average (MA): Regression is performed on the time series using residuals
from previous observations, such as the error ε(t−1), the error ε(t−2), etc. The error
lag order is indicated by the letter q. In the equation above, yˆ′ is the differenced series,
ϕ1 is the first AR term’s coefficient, p is the AR term’s order, θ11 is the first MA term’s
coefficient, q is the MA term’s order, and εt is the error.

The performance evaluation of the MA, ARIMA, and LSSVM models was conducted
using the mean absolute percentage error (MAPE). The MAPE is frequently used to display
the error percentage of a prediction result, as shown in Equation (19).

MA:
smoothing =

1
N ∑N

z=1 Wz (13)

Dt =
Yt

St
(14)
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Yt = St × It × Tt (15)

ARIMA:

y′(t) = c + ϕ1*y′(t − 1) + . . . + ϕp*y′(t − p) + θ1*ε(t − 1) + . . . + θq*ε(t − q) + εt (16)

X(norm) =
x1i −

(
max(x1)+min(xi)

2

)
(

max(x1)−min(xi)
2

) (17)

FS = y(x) = ∑N
k=1 αkK(x, xk) + b (18)

MAPE:

MAPE =
1
N ∑

∣∣∣ya − y f

∣∣∣
|ya|

× 100 (19)

where Wz is a kernal weight, Dt is a seasonal component, Yt is the moving average, St is a
seasonal component, It is an irregular component, and Tt is a trend component. Meanwhile,
FS is the LSSVM output, b is the scalar threshold, N is the number of data points, and
X(norm) is the data normalisation.

4.2. Dataset Collection

The dataset utilised in this study comprises fuel price data for coal, gas, and LNG. The
objective is to employ this dataset to forecast fuel prices for a three-year period. The dataset
utilised for modelling and model validation spans from January 2012 to December 2022.
The data were acquired from the Energy Commission and online sources pertaining to fuel
prices. In this study, the modelling techniques of the MA, the ARIMA, and LSSVMs were
employed to forecast three-year out-of-sample data points for the purpose of calculating the
ICPT price. This section provides a comprehensive overview of the implementation process
for fuel price forecasting. There are many available methods in the relevant literature
for price forecasting. The most common models for this purpose are the autoregressive
integrated moving average (ARIMA) and LSSVM models.

4.3. Implementation of Techniques

The standard procedure for fuel price forecasting using the MA method is illustrated
in Figure 4. The flowchart illustrates the procedure for time series forecasting using the
MA method in Microsoft Excel. The forecasting process commenced by gathering historical
data. The primary data utilised for forecasting fuel prices include coal, LNG, and gas
prices. The data are subsequently visualised during the preprocessing stage. Consequently,
the data appear to be random or irregular in nature. The MA was utilised as a data
preparation technique due to its ability to decrease random variation in observations and
reveal more accurately the structure of the underlying causal processes. The calculation
involves determining the average of the most recent 12 data points. The smoothness of
the trend cycle prediction is determined by the order of the moving average (MA). The
subsequent phase involves identifying the seasonal component. The data are subsequently
subjected to a process of di-seasonalization in order to eliminate irregularities and seasonal
patterns. This is achieved by dividing the actual data by the seasonal value. The application
of simple linear regression is subsequently employed to identify the trend component,
which is then utilised for forecasting the future price of fuel. When evaluating the model
outputs that were acquired, the mean absolute percentage error (MAPE) for the time series
model was employed as an evaluation criterion.

Differently from the MA, the goal of the LSSVM algorithm is to locate the hyperplane
that best separates or fits the data that have been provided for training. To learn the under-
lying patterns and relationships that exist between input variables and output variables
(forecasted), the LSSVM makes use of past data. After that, it builds a model that, based
on the observed patterns in the training data, can be utilised to make accurate predictions
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regarding future values. The process of prediction using the LSSVM approach is illustrated
in Figure 4.
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It is necessary to perform the necessary preprocessing on the historical data pertaining
to fuel prices in order to train the LSSVM model. After they have been collected, the data
must undergo preprocessing, during which any outliers or inconsistencies must be resolved.
In order to guarantee that the data are presented in a format that is suitable for the LSSVM
method, the data must first be normalised. Data normalisation was conducted prior to
training by employing min–max normalisation, a technique that normalises each feature
component to a specific range [26]. This ensures that larger input values do not overpower
or overshadow the smaller ones. Following that step, the dataset was segmented into a
training set and a testing set. The LSSVM model was trained using the training set, and the
testing set was used to evaluate the model’s performance in terms of prediction. The whole
dataset of 132 sample points for coal, gas, and LNG was split into two subsets: (a) the
training dataset, which includes 84 sample points necessary for training the model, and
(b) the testing dataset, which includes 48 sample points to evaluate the performance of
a model. There is a distinction in performance between the LSSVM when being tested
and when being trained. Because of overtraining, an LSSVM typically displays superior
performance during the training phase as compared to the testing phase. Training for
the LSSVM model was carried out with the help of historical data. The LSSVM method
determines which hyperplane is the most accurate prediction based on the training data
and then optimises that hyperplane. The strategy of least squares was used to solve a
constrained optimisation issue, which enables this result to be obtained. After the model
was trained, its performance was evaluated using the MAPE [27]. The LSSVM model that
was trained was given the input variables for the upcoming time periods, and the model
then gave forecasts for the years 2023, 2024, and 2025.

On the other hand, the ARIMA model took the historical data and divided it into
three components: autoregression (AR), which shows a changing variable regress on its
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own lag; integration (I), which represents linear or polynomial trends; and the moving
average (MA), which represents the dependency between the observation and residual
error. As a result, the model has three model parameters: AR(p), I(d), and MA(q), which
are all combined to form the ARIMA (p, d, q) model parameters, AR(p), I(d), and MA(q),
where p is the autocorrelation order (lag), d is the differencing order, and q is the moving
average order.

The ARIMA model attempts to ensure that the future values of time series data have a
practical connection to the current and historical values. ARIMA model building consists
of four major steps, which are identification, estimation, diagnostics, and forecasting [28].
With the help of these four steps, the tentative model parameters are first identified using
graphs of the autocorrelation function (ACF) and partial autocorrelation function (PACF),
after which the coefficient is calculated and the likelihood model is determined. The model
must then be validated, and to assess the forecast’s veracity and monitor the model’s
performance, simple statistics were applied. The time series must be stationary before
using the ARIMA or any of its extensions. If a time series possesses all three of the
following characteristics, which are a constant mean, variance, and covariance, it is said to
be stationary. There are two methods to check for stationarity, which are (i) autocorrelation
to check the stationary criteria and (ii) autocorrelation to check the stationarity criteria.

Based on the analysis of Figures 5–7, it can be observed that the autocorrelation func-
tion (ACF) for coal, gas, and LNG exhibits a positive value with a consistent and gradual
decrease over time. The lagging issues extend beyond the designated blue-highlighted area.
This suggests that there is a lack of zero correlation between observations at different lags
for all fuel types. The presence of additional spikes beyond the blue range indicates that
the series does not exhibit characteristics of ‘White Noise’. An illustration of a stationary
time series is the phenomenon known as ‘White Noise’. Based on the analysis, it can be
inferred that the time series data for coal, LNG, and regulated gas exhibit nonstationarity.
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Another method for assessing stationarity is the augmented Dickey–Fuller test (ADF
test). This statistical test belongs to the subcategory of unit root tests. This analysis aims
to determine the presence of nonstationarity and the existence of a unit root in the time
series. The assumptions are as follows: (a) the null hypothesis, Ho, is that the time series
is nonstationary and has a unit root, and (b) the alternate hypothesis, H1, is that the time
series is stationary and has no unit root.

The ADF assessment was carried out using the original dataset. The p-value from the
ADF test is 0.951480 for coal and 0.267107 for gas, both of which are greater than 0.05. At 5%
significance, the null hypothesis cannot be rejected. As a result, the test does not reject the
null hypothesis. According to the ADF test, the series has a unit root and is nonstationary.
The p-value for LNG is 0.012868, which is less than 0.05. As a result, the null hypothesis was
rejected, and the series was determined to be stationary. The differential test was carried
out on nonstationary data, and the smoothness of the data was then assessed using the
ADF test. The d-value in the ARIMA (p, d, q) model was chosen after passing the stationary
test [29]. The next step was to identify a suitable model. The p and q values of the ARIMA
model must be determined. Using the auto-ARIMA function to examine the range of the
best model, the values of p and q were obtained by observing the sample’s autocorrelation
function (ACF) and partial autocorrelation function (PACF). For coal, LNG, and gas, the
selected ARIMA models were (1,1,1), (1,0,1), and (2,0,1). An autoregressive order of one for
coal and LNG and an autoregressive order of two for gas were used to specify the value
of the series one and two time periods in the past to be used to predict the current value.
Predictions were made and compared with the testing dataset to validate the model after
fitting the input data with a suitable ARIMA model.

Thus, the imbalance cost pass-through (ICPT) is a mechanism employed to transfer the
expenses associated with fuel and other generation-related costs to consumers of electricity.
The ICPT, or the imbalance cost pass-through, is assessed biannually to determine whether
a rebate or a surcharge is applicable. This determination is based on a comparison between
the actual fuel costs and the scheduled fuel costs. The ICPT is typically calculated on a semi-
annual basis. The adjustment for each type of cost is divided into two components. The
initial segment utilises the current data for the two most recent months that are available,
along with estimated data for the subsequent four months. The second part corrects for
differences between actual outcomes and the estimated data used to calculate the first
adjustment. The process for calculating the ICPT for commercial customers involves the
following steps:

(1) The initial step in calculating the ICPT involves determining the interim fuel cost pass
through adjusting for a six-month period (IFUCS) using Equation (6). The estimated
and actual total fuel costs (Cm, Dm) were derived from the projected fuel cost using
the ARIMA and LSSVM models. The data for Dm were not accessible due to limited
resources. As a result, forecasted data were utilised instead. The estimated total
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qualifying sales (Fm) were acquired from the websites of single buyers (SBs). The
audited total qualifying sales, to which the ICPT adjustment was applied, were
obtained from the Grid System Operator (GSO) website. By using Equation (5), the
average fuel cost was calculated. The total forecasted fuel cost (FFULs) for six months
was derived from the previously forecasted fuel cost. The weighted average cost
of capital for Regulatory Period 3 (RP3) was set by the government at 7.3%. The
forecasted total electricity sales in the year 2021 as made at the time of setting the base
average tariff were obtained from the SBs.

(2) Then, using Equation (6), the first fuel cost pass-through adjustment (As) was determined.
(3) Next, Equation (7) was used to determine the interim of the other generation cost

pass-through adjustment (IGSCs). System marginal pricing (SMP) on SB websites was
used to determine the estimated and actual total other generation costs (Gm, Hm).

(4) To determine the average other generation cost (AGSCs) using Equation (8), the
forecasted other generation cost was obtained by subtracting the generation margin
(Gm) from the forecasted fuel and fuel-related costs (FFULs).

(5) Equation (7) is then used to compute the first other generation cost pass-through
adjustment (Bs) in the six-month period.

(6) The next part involves calculating the secondary fuel and additional generation cost
pass-through adjustment within the designated six-month timeframe. This can be
achieved by utilising Equations (10) and (11).

(7) The remuneration rates for the ICPT adjustment, specifically IARRs-1 and IARRs-2,
are constantly set at 2.8738 and 2.86, respectively.

(8) The six-month generation cost adjustment was determined using Equation (3).
(9) Equation (12) was used to compute the fund contribution (FUNDs). The approved

payment (FUNPm) from the Electricity Industry Fund (EIF) and the payment by the
single buyer (FUNTm) into the EIF are fixed at MYR 1.6 billion and MYR 1.3 billion,
respectively.

(10) The ICPT price was then determined using Equation (2).

Even though the ICPT is a controversial mechanism, it is still an important part of the
electricity market. The ICPT helps to ensure that consumers pay the true cost of electricity,
and it can help to protect consumers from large fluctuations in fuel prices. Thus, the
summary of the method process flow for finding the forecasted ICPT is demonstrated in
Figure 8 congruently.
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5. Results and Discussion

This section presents an analysis of different fuel price forecasting methods, specifi-
cally the implementation of the MA, ARIMA, and LSSVM models. Meanwhile, in Figure 9,
a correlation heatmap using Pearson correlation is presented to show the significant rela-
tionship between the three variable prices of fuel types compared to the ICPT price. It is
observed that even though the correlation coal price is moderate compared to the ICPT
price, the value of the regression still significantly reflects the standard Pearson range, as
shown in Table 1.
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Table 1. Descriptive conditions based on Pearson’s correlation method.

Condition Description

r = +1 linear and perfect positive correlation
0.8 < r < 1.0 very strong linear correlation
0.6 < r < 0.8 strong linear correlation
0.4 < r < 0.6 moderate linear correlation
0.2 < r < 0.4 weak linear correlation
r = 0 no correlation exists between the two variables

This section also covers an analysis of the MAPE for the different forecasting methods
and the implementation of the ARIMA and LSSVM models in estimating the ICPT price for
commercial customers.

5.1. Moving Average (MA) Forecasting Profile

One approach to predicting fuel prices is through the implementation of the moving
average method. The data are smoothed by calculating the average of 12 data points, as
depicted in Figure 10a–c. The moving average method for predicting fuel prices has proven
to be unreliable. For coal, the actual price in January 2012 was MYR 9.18/mmBtu, nearly
double the predicted MYR 4.50/mmBtu. This trend of significant differences continued
until December 2022. For gas, the predicted price in January 2012 was MYR 8.65/mmBtu,
slightly higher than the actual MYR 7.78/mmBtu. The largest discrepancy was in August
2022, with the actual price being MYR 40.71/mmBtu, more than double the predicted
MYR 17.74/mmBtu. For LNG, the predicted price in January 2012 was MYR 37.05/mmBtu,
slightly higher than the actual MYR 35.9/mmBtu. The largest difference was in November
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2015, with the actual price being MYR 69.89/mmBtu, more than double the predicted MYR
30.95/mmBtu.
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5.2. LSSVM Forecasting Profile

The LSSVM forecasting method, as depicted in Figure 11a–c, shows significant dis-
parities between the predicted and actual prices. In the coal market (Figure 11a), the
January 2022 prediction of MYR 13.55/mmBtu was notably lower than the actual MYR
25.53/mmBtu, with this trend persisting until December 2022. The actual coal price reached
MYR 44.62/mmBtu, whereas the prediction was only RM 16.26/mmBtu, resulting in a
substantial MYR 28.36 difference. These findings cast doubt on the reliability of the LSSVM
model for coal price forecasting. Figure 11b presents gas price variations, mirroring the
coal market’s discrepancy. In January 2022, the actual gas price was MYR 20.71/mmBtu,
contrasting with the predicted MYR 10.76/mmBtu, a 9.95/mmBtu difference. May 2022
saw a substantial gap, with the actual price at MYR 36.05/mmBtu and the predicted price
at MYR 10.8/mmBtu. Figure 11c illustrates the LNG prices, with the January 2022 predic-
tions surpassing the actual prices by MYR 0.88/mmBtu. The actual prices then surged,
reaching MYR 36.42 in February 2022, while the predictions stood at MYR 22.23/mmBtu.
October 2022 saw a significant spike to MYR 65.47/mmBtu, far exceeding the predicted



Electricity 2024, 5 308

MYR 25.50/mmBtu, resulting in a MYR 39.97 difference. By December 2022, the predicted
price was MYR 43.09, but the actual price was MYR 54.23.
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5.3. ARIMA Forecasting Profile

The second method of forecasting involves the implementation of the ARIMA model.
According to Figure 12a–c, the forecasted fuel prices are closely aligned with the actual
trend. The coal price predictions closely matched the actual prices, with minor deviations
starting in February 2012. For example, in December 2012, the forecasted gas price was
MYR 7.18/mmBtu, nearly matching the actual price of MYR 7.21/mmBtu. However, in
March 2019, a slight overestimation occurred, with a predicted price of MYR 21.13/mmBtu
compared to an actual price of MYR 20.99/mmBtu. The forecast for December 2022
closely aligned with the actual MYR 44.62/mmBtu. Gas prices showed discrepancies
between the predictions and the actual outcomes. From January 2012 to November 2013,
the predicted prices consistently exceeded the actual values. Notably, in January 2012,
the actual gas price was MYR 7.78/mmBtu, while the prediction for November 2013
reached MYR 12.64/mmBtu. The highest recorded gas price in August 2022 was MYR
40.71/mmBtu, whereas the prediction was MYR 37.66/mmBtu. The LNG price predictions
exhibited disparities, with occasional overestimations and underestimations compared
to actual prices. In January 2022, the actual price stood at MYR 35.9/mmBtu, slightly
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higher than the predicted MYR 35.24/mmBtu. Predictions began at MYR 28.67/mmBtu in
May 2015, peaking at MYR 35.68/mmBtu in November 2021. However, the predictions
fell below the actual prices afterwards. December 2022 presents an actual price of MYR
54.23/mmBtu, while the expected price settled at MYR 50.87/mmBtu.
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5.4. Analysis of the MAPE

The performance of the MA, LSSVM, and ARIMA models in prediction is presented
in Table 2. The ARIMA model demonstrated superior performance compared to the MA
and LSSVM models. As the forecast horizon extends, the predictive accuracy of both the
MA and ARIMA models diminishes. The findings suggest a decrease in error (MAPE)
and an improvement in prediction accuracy when utilising the ARIMA model. The mean
absolute percentage error (MAPE) value obtained from the ARIMA model for coal is 1.63%.
This is in contrast to the MA value of 29.79% and the LSSVM value of 26.28%. The MAPE
values for the gas dataset are 32.94%, 5.47%, and 34.46% for the MA, ARIMA, and LSSVM
models, respectively. The ARIMA model demonstrates the lowest error percentage at 5.09%
in comparison to the MA model with an error percentage of 39.78% and the LSSVM model
with an error of 36.9%.
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Table 2. Comparison of the MAPE for price forecasting methods.

Year Fuel Type
MAPE (%)

MA ARIMA LSSVM

2022 Coal 29.79 1.63 26.28

2022 Gas 32.94 5.47 34.46

2022 LNG 39.78 5.09 36.90

Based on the observed trend, it can be concluded that the ARIMA model outperforms
both the MA and LSSVM models in the current case. This conclusion is drawn from the
fact that the relative error of the model prediction increases as the forecast period extends.
The ARIMA model demonstrated superior performance compared to the LSSVM model,
potentially attributed to the limited amount of data available to train the LSSVM model.
The limitations of the ARIMA model lie in its ability to predict fuel prices solely based on
its own time series data. Consequently, the model’s validity is contingent upon the absence
of significant changes in the external factors that influence fuel prices. The analysis and
forecasting of fuel pricing, specifically coal, gas, and LNG, are influenced by a range of
factors [30]. These factors include supply and demand dynamics, currency exchange rates,
regulatory frameworks, and international political situations. Furthermore, these factors
exhibit interdependencies and exert a substantial influence on fuel expenditure.

5.5. Discussion of the Forecast ICPT

The prices of the ICPT were measured using the ARIMA and LSSVM forecasting
models because these two models have minimal MAPE values. A smaller MAPE value
indicates a more accurate model. The ARIMA model is slightly more accurate than the
LSSVM model in the present case. The ICPT pricing for commercial customers in Malaysia
is displayed in Figure 13 for the period spanning July–December 2022 through January–
June 2024, as predicted by the ARIMA and LSSVM models. Both the ARIMA and LSSVM
models predict that the ICPT price will decline in 2024. From July 2022 to June 2023,
according to the ARIMA forecast, the ICPT tariff for commercial customers is anticipated
to remain unchanged at MYR 0.21/kWh. This price is roughly the same as the price
determined by the Energy Commission at MYR 0.20/kWh. The ICPT price is anticipated to
increase to MYR 0.23/kWh in July–December 2023. According to the LSSVM forecast, the
ICPT price will increase from MYR 0.18/kWh in July–December 2022 to MYR 0.21/kWh in
July–December 2023.

Electricity 2024, 5, FOR PEER REVIEW 18 
 

 

 

Figure 13. ICPT price for commercial customer. 

6. Conclusions 

In conclusion, this study introduces imbalance cost pass-through (ICPT) price fore-

casting as a critical tool within Malaysia’s incentive-based regulation (IBR) framework, 

allowing power producers to adapt tariffs to variable fuel prices, thus enhancing economic 

resilience in electricity generation. Emphasising the influence of commodity prices, such 

as coal, gas, and LNG, on generation costs, this study highlights the need for proactive 

forecasting to aid large consumers, eliminating dependency on semi-annual ICPT price 

releases. By employing the ARIMA, moving average (MA), and LSSVM methods, the 

study found that the ARIMA model outperforms the others in fuel price forecasting, with 

minimal differences from the LSSVM for ICPT prices. Notably, the ARIMA and LSSVM 

models closely align with actual ICPT tariffs for specific periods, predicting a decrease in 

ICPT prices for January–June 2024, offering valuable insights for budgeting and planning. 

This study suggests an extension for future research, particularly in refining the forecast-

ing methods. These will ultimately benefit consumers through more predictable and sta-

ble electricity prices, fostering economic growth, and enhancing energy security in the 

region. Future research can also explore the latest powerful forecasting method that is 

appropriate for application. Meanwhile, the improvement in the ARIMA’s performance 

also needs to be considered throughout enhancing some multivariate measures for the p-

dimension distribution, such as skewness and kurtosis characteristics [31,32], and other 

appropriate extension methods. 

Author Contributions: F.K.K.: methodology, writing–original draft preparation, software. M.F.S.: 

supervision, writing, visualization. F.A.Z.: software, methodology, validation. M.S.A.H.: writing re-

view and editing. N.H.S.: results validation, investigation. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author due to restrictions privacy. 

Acknowledgments: The authors would like to thank Universiti Teknikal Malaysia Melaka (UTeM) 

and International Islamic University Malaysia for all the support given. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Chen, Y.; Li, M.; Yang, Y.; Li, C.; Li, Y.; Li, L. A hybrid model for electricity price forecasting based on least square support vector 

machines with combined kernel. J. Renew. Sustain. Energy 2018, 10, 055502. https://doi.org/10.1063/1.5045172. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Jul−Dec Jan−Jun Jul−Dec Jan−Jun

2022 2023 2023 2024

P
ri

ce
 (

R
M

/k
W

h
)

Year

ICPT (RM/kWh) ARIMA ICPT (RM/kWh) LSSVM

Poly. (ICPT (RM/kWh) ARIMA)

Figure 13. ICPT price for commercial customer.



Electricity 2024, 5 311

The anticipated ICPT for July–December 2023, however, is not close to the government-
set ICPT price of MYR 0.17/kWh. This is partly due to the limited number of resources used
in determining the ICPT price. According to the ARIMA and LSSVM forecasts, the ICPT
price is expected to decline in 2024. In January–June 2024, the ARIMA forecast predicts the
ICPT surcharge price will decrease to MYR 0.07/kWh, while the LSSVM forecast predicts
the ICPT surcharge price will decrease to MYR 0.06/kWh. A number of factors, which
include the continuous decline in fuel prices and the government’s efforts to reduce the
cost of energy for consumers, are predicted to contribute to the ICPT price decline in 2024.
In the upcoming years, the ICPT price for commercial customers is anticipated to fluctuate.
As the government continues to intervene in the energy market and implement policies to
reduce fuel prices, the long-term trend is anticipated to be downward.

6. Conclusions

In conclusion, this study introduces imbalance cost pass-through (ICPT) price fore-
casting as a critical tool within Malaysia’s incentive-based regulation (IBR) framework,
allowing power producers to adapt tariffs to variable fuel prices, thus enhancing economic
resilience in electricity generation. Emphasising the influence of commodity prices, such
as coal, gas, and LNG, on generation costs, this study highlights the need for proactive
forecasting to aid large consumers, eliminating dependency on semi-annual ICPT price
releases. By employing the ARIMA, moving average (MA), and LSSVM methods, the
study found that the ARIMA model outperforms the others in fuel price forecasting, with
minimal differences from the LSSVM for ICPT prices. Notably, the ARIMA and LSSVM
models closely align with actual ICPT tariffs for specific periods, predicting a decrease in
ICPT prices for January–June 2024, offering valuable insights for budgeting and planning.
This study suggests an extension for future research, particularly in refining the forecasting
methods. These will ultimately benefit consumers through more predictable and stable
electricity prices, fostering economic growth, and enhancing energy security in the region.
Future research can also explore the latest powerful forecasting method that is appropriate
for application. Meanwhile, the improvement in the ARIMA’s performance also needs
to be considered throughout enhancing some multivariate measures for the p-dimension
distribution, such as skewness and kurtosis characteristics [31,32], and other appropriate
extension methods.
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