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Abstract: Mexico is surrounded by a highly dynamic tectonic environment, where the area of greatest
influence is in the west, since it is where large earthquakes occur and tectonic blocks are generated due
to the subduction of two oceanic plates in the North American plate. In the present study, the horizontal
velocities of 15 GNSS stations of continuous operation are calculated, over a period of 11 years, which
are located within the Jalisco Block, Mexico with the objective of analyzing the current dynamics of this
tectonic block, which is mainly influenced by the oblique subduction of the Rivera plate.
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1. Introduction

Mexico is one of the countries with the highest tectonic and seismic activity in the
world, mainly due to the interaction of five tectonic plates (Pacific, Cocos, Rivera, Caribbean
and North America), where most of its territory is located on the North American plate. In
the north and southeast region, it borders the Pacific and Caribbean plates (respectively)
through transform boundaries [1,2]. The western region of the country presents the highest
seismicity, as well as the largest magnitude earthquakes, since it is influenced by the
subduction of the Rivera and Cocos plates [3], where, according to [4], earthquakes of a
magnitude greater than Mw > 9.0 could occur.

The study area is located in western Mexico (Figure 1), where the existence of a tectonic
unit called the Jalisco Block (JB) has been proposed [5]; in addition, it is known as one of the
areas with the greatest tectonic and seismic influence in the country [6]. The JB is mainly
influenced by the oblique subduction of the Rivera plate in the western part; likewise, it
is delimited by two continental deformation zones. To the east is the Colima rift (CR),
trending N-S [7], which is a tectonic structure with purely extensional deformation [8] that
has been considered by some as researchers as the eastern limit of the JB [9], whereas in the
north is the Tepic-Zacoalco (TZR) rift [10], which runs NW-SE [11].
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1. Introduction 
Mexico is one of the countries with the highest tectonic and seismic activity in the 

world, mainly due to the interaction of five tectonic plates (Pacific, Cocos, Rivera, Carib‐
bean and North America), where most of its territory is located on the North American 
plate. In the north and southeast region, it borders the Pacific and Caribbean plates (re‐
spectively) through transform boundaries [1,2]. The western region of the country pre‐
sents the highest seismicity, as well as the largest magnitude earthquakes, since it is in‐
fluenced by the subduction of the Rivera and Cocos plates [3], where, according to [4], 
earthquakes of a magnitude greater than Mw > 9.0 could occur. 

The study area is located in western Mexico (Figure 1), where the existence of a tec‐
tonic unit called the Jalisco Block (JB) has been proposed [5]; in addition, it is known as 
one of the areas with the greatest tectonic and seismic influence in the country [6]. The 
JB is mainly influenced by the oblique subduction of the Rivera plate in the western part; 
likewise, it is delimited by two continental deformation zones. To the east is the Colima 
rift (CR), trending N‐S [7], which is a tectonic structure with purely extensional defor‐
mation [8] that has been considered by some as researchers as the eastern limit of the JB 
[9], whereas in the north is the Tepic‐Zacoalco (TZR) rift [10], which runs NW‐SE [11]. 
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Figure 1. Study area map with yellow triangles representing GNSS stations. JB: Jalisco Block. MB:
Michoacan Block. GG: El Gordo Graben. CR: Colima Rift. TZR: Tepic-Zacoalco Rift. ChR: Chapala Rift.
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2. Materials and Methods

The GNSS stations used come from different continuously operating geodetic networks
such as the TLALOCNet (https://www.unavco.org/projects/past-projects/tlalocnet/tlal
ocnet.html, accessed on 10 December 2020), the CORS (https://geodesy.noaa.gov/CORS_
Map/, accessed on 10 December 2020), and the RGNA (https://www.inegi.org.mx/temas
/geodesia_activa/, accessed on 10 December 2020). Quality analysis was carried out on the
GPS observations only for a period of 11 years (2010–2020) through the TEQC program [12],
which focuses on the multipath effect, observation effectiveness, cycle skip count (CSR),
and signal-to-noise ratio (SNR).

Subsequently, the processing of the observations was carried out through the GAMIT/
GLOB-K software version 10.71, the software has been developed by MIT, Scripps Insti-
tution of Oceanography and Harvard University with support from the National Science
Foundation, by T. A. Herring, M. A. Floyd, R. W. King, S. C. McClusky, United States of
America [13] in order to obtain the time series that describes the rate of speed and direction
of JB stations. For this, various parameters such as precise ephemeris (SP3), orientation
parameters of the earth, ocean charge model, among others, were used. Likewise, the
North American plate was used as a reference since according to [14], the movements
of the GPS sites in Jalisco are better described in relation to this plate than with a global
reference frame, since the speeds of the reference site are minimized [15]; thus, the dis-
placements are obtained purely from the phenomenon in question. The Tsview tool, by
Thomas Herring, United States of America, complemented the GAMIT/GLOB-K software
for GPS time series analysis [16]. It filtered out atypical data and outliers using the 3-sigma
criterion [17–19]. Corrections were made for hardware/firmware changes and earthquake-
induced landslides. The “Real Sigma” algorithm provided precise noise properties and
realistic uncertainty estimation.

3. Results and Discussion

The stations used for our study presented effectiveness values greater than 95% in
their entirety, likewise, the SNR values turned out to be greater than 30 dBHz for all the
stations, which reflects the quality of the signal (according with IGS recommendations
(https://igs.org/station-resources/#site-guidelines, accessed on 25 October 2020) and [15]).
However, most of the stations present an average multipath value of 0.5 m in MP1 and
0.4 m in MP2 (with values close to those recommended) (Table 1).

Table 1. Quality analysis of GPS observations.

Station
Effectiveness MP1 MP2 SNR1 SNR2 CSR

% (m) (m) (dBHz) (dBHz) (1000/(o/slps))

A 98.1 0.9 0.9 46.6 42.5 0.1
B 98.5 0.5 0.4 45.2 33.3 0.8
C 99.7 0.4 0.3 45 33.6 0.1
D 98.9 0.7 0.5 44.7 30.7 0.5
E 99.6 0.4 0.3 44.5 30 0.1
F 99.7 0.4 0.3 45.1 33.4 0.2
G 99.1 0.5 0.4 44.0 30.0 0.6
H 99.4 0.5 0.3 44.0 30.0 0.1
I 99.4 0.4 0.3 44.7 33.3 0.2
J 77.7 0.9 0.5 44.7 34.3 3.3
K 99.5 0.4 0.3 44.7 30.7 0.5
L 99.5 0.4 0.3 44.7 30.7 0.5
M 90.4 0.6 0.7 44.4 30.4 4.9
N 97.8 0.6 0.4 44.4 30.7 0.6
O 99.2 0.1 0.3 39.2 41.7 4.5

The velocity vectors obtained through the analysis carried out in Tsview show prefer-
ential directions in a north-northwest direction in most of the stations, which is consistent
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with the direction and geometry of subduction of the Rivera plate. Likewise, the stations
located in the south-southeast zone and in the coastal zone present the highest veloci-
ties, with values ranging from 6.29 to 10.81 mm/year, while the stations located to the
north-northwest, near the Tepic-Zacoalco rift present values of approximately 3.0 mm/year
(Figure 2). On the other hand, in the central zone of the Jalisco Block, a decrease in velocity
was observed at station G, which could be related to a blockage of the Rivera plate at the
subduction interface proposed by Cosenza-Muralles et al. [20] in this zone.
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Figure 2. Velocity map. Blue arrows: Velocities of GNSS stations. Magenta: Velocities of Rivera and
Cocos plate.

The velocities obtained in our study suggest a counterclockwise rotation of the JB,
with a preferential direction towards north-northwest in most stations, which agrees with
the subduction direction estimated by the Rivera plate movement model proposed by
DeMets et al. [21]. The above shows the influence of the movement of the Rivera plate on
the movement of the Jalisco Block.

Considering the information presented above, the ground velocity shortening ob-
served near station G could be related to the blocking zone observed at the subduction
interface in this same region [20], which would indicate that it is observing a deformation
within the JB due to the coupling between the Rivera plates and said block.

4. Conclusions

The velocity gradient observed in the JB reveals the influence of the oblique subduction
of the Rivera plate, as well as its influence on the generation of earthquakes in this area.
On the other hand, the decrease in velocity observed in the central zone is associated with
the possible accumulation of tension with the potential to generate an earthquake greater
than Mw > 7.0. Future studies intend to estimate the b-value in the JB area using freely
accessible seismic catalogs to verify if tension is actually being generated in this area and
correlate it with the results.
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