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Abstract: The membrane gas separation process has gained significant attention using the com-
putational fluid dynamics (CFD) technique. This study considered the CFD method to find gas
concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture.
The membrane was considered with a fiber thickness where each component’s mass fluxes could
be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectiv-
ity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating
conditions and results were compared to experimental data. The two different mixtures, CO2/CH4

and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and
O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM
system’s overall performance. These results demonstrate that the increment in feed pressures de-
creased the membrane system’s separation performance. The impact of hollow fiber length indicates
that increasing the active fiber length has a higher effective mass transfer region but dilutes the
permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing
inlet pressure and a higher concentration gradient resulted in higher flux through the membrane.

Keywords: computational fluid dynamics; gas separation; hollow fiber membrane; finite element
method; module design

1. Introduction

Membrane gas separation is a predominant unit operation compared to other gas
separation techniques, such as distillation, adsorption, and absorption [1,2]. The membrane
process is more feasible because of its smooth operation, low cost, reliability, small heat
effects, and higher separation performance [3]. These advantages enhance its utilization
in various industrial gas applications. Numerical methods can be used to simulate the
membrane modules for process optimization [4]. Various gas separation applications deal
with a gaseous mixture, such as methane recovery from carbon dioxide, nitrogen recovery
from air, and helium recovery from methane [5]. The membrane module configuration is
vital for gas separation performance [6]. Gas separation units are primarily applied in off-
shore systems because they take less space for installation [7]. The utilization of membrane
separation processes for gaseous mixtures could be widely increased in 2030 [8,9].

Membrane gas separation can eliminate specific components because it is highly
selective for one component to pass through it, while other components are retained at
the feed side [1,10]. It is a traditional process because of its high membrane selectivity,
low maintenance cost, and simple unit operation [11–13]. Due to high market demand,
the membranes are used for commercial applications to separate gaseous mixtures and
are less economical [14,15]. Membrane gas separation has many applications such as
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hydrogen recovery in refineries, sour gas treatment, hydrogen recovery from ammonia,
air separation for oxygen purification, and carbon dioxide removal from natural for large
scale [16]. In heavy oil and petrochemical industries, membrane systems have integrated
with other industrial units, but the scenarios for different groups are limitless. The growth
of membrane systems for gaseous mixture separation was estimated to increase widely in
2023 [8,17]. Therefore, this technology will reduce the overall process cost for gas separation
and environmental impacts [18].

Numerical approaches can solve gas separation through membrane flow difficulties
to improve the configuration [19]. In addition, numerical methods have predicted values
at various mesh edges for different flow conditions and given more precise results [20].
Mathematical modeling is a time- and cost-saving approach for unnecessary experimental
designs [21]. Therefore, CFD modeling is used for investigating the flow problems across
the membrane surface [22]. CFD techniques are applied to understand the phenomena
inside the membrane and the separation performance of different membrane modules [17].
CFD allows changing the parameters for different gases obtained from the concentration
profiles [23]. The CFD tool is mostly applied to visualize the membrane module’s fluid
hydrodynamics and flow patterns on permeate and retentate streams [9,15]. It is critical
because different hydrodynamic conditions affect the transport mechanism [24]. Membrane
module design is also essential for improving the efficiency of gas permeation performance
through the membrane [25]. The CFD technique has been used for flow behavior in the
rectangular channel with different feed spacers [16,26]. Many researchers have studied the
flow characteristics of membrane modules for gas separation processes.

The properties of membrane materials for designing industrial module and process
design play an essential role in successfully implementing the gas separation system [27].
For industrial applications, the HFM module’s design depends on the module’s cost and
efficiency. Therefore, the HFM module requires a maximum membrane surface area for sep-
aration, which is necessary to determine the concentration profiles and pressure drops along
with the module length [24,28]. In recent studies, the asymmetric hollow fiber membrane
configuration was used for gas separation, demonstrating higher flux [10]. The counter-
current flow pattern investigated the process effect on different design variables [29,30]. A
three-dimensional membrane model was developed considering a non-isothermal model
for evaluating temperature’s effect on membrane permeance [31]. The CFD technique was
used for a perovskite HFM to investigate the oxygen permeation through the membrane.
It showed the effect of pressure on permeate streams in the range of 0.2 to 0.4 kPa, and
different vacuum levels were used to obtain the oxygen concentration profile at the feed
side [32].

The HFM module separates binary gas using this research work’s finite element
method (COMSOL Multiphysics simulation software). Three-dimensional geometry was
developed for the separation of the binary gas mixture. The CFD tool was applied to study
the flow profiles of gases in the HFM membrane module. Two binary mixture systems,
N2/O2 and CO2/CH4, were investigated. In this study, different membrane module
parameters, fiber length (L), inlet pressure (pf), inlet concentration (xf), fiber bundle radius
(Ro), and module outer diameter (Do), were optimized. Lastly, gas separation through
membrane modules was studied with different module parametric effects.

2. Materials and Methods

CFD deals with partial differential equations based on mass, momentum, and heat
transport. The CFD technique is used for simulating different integrated parts of industrial
HFM units. Therefore, the HFM membrane module is used to understand gas separation
phenomena. Table 1 shows the parameters used for simulations. A numerical simulation
was carried out using the COMSOL Multiphysics® package. The 3-Dimensional geometries
of the HFM module were developed in axisymmetric model. The transport of diluted
species with Fick’s Law model was considered for transport through the membrane. The
following assumptions was required for this model.
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Table 1. Properties for HFM module.

Parameters Symbols Hollow Fiber Membrane Module
[33–37] Units

Inlet pressure p f 790.8 6895 Pa
Permeate
pressure ph 101.3 138 Pa

Inlet gas C0 0.205 O2 0.5 CO2 Mole fraction
Permeance P 30.78 × 10−10 33 × 10−10 mol/m2. s.pa

Module
diameter Do 9.5 × 10−3 20 × 10−3 m

Module length L 0.25 0.1 m
Membrane
thickness δ 0.08 0.0004 mm

2.1. Assumptions

The following assumptions were used for the modeling of the HFM membrane mod-
ule: [38,39]

a. Steady-state condition is applied.
b. Laminar flow is considered with constant physical properties.
c. Ideal gas law is used.
d. Without axial mixing of gaseous molecules.
e. Fiber diameter in the module is uniform.
f. Fiber deformation with high inlet pressure is neglected.
g. Solution-diffusion mechanism is used for membrane gas separation.

2.2. Mass Transport Mathematical Modeling

In the mass transport phenomena, chemical species are transferred through the mem-
brane from the shell to the permeate. The mass transport of components has occurred due
to the concentration difference from the feed side to permeate side through the membrane
using diffusion and the molecular sieving mechanism shown in the Figure 1. In this model,
the convective mass transport occurs with a different concentration gradient from the feed
side. The mass transport phenomena occur with convection with a velocity of average
molecules, and diffusion occurs due to concentration differences in a fluid.
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2.2.1. Convection and Diffusion Models

The mass transport equation contains both the convection and diffusion models. The
mass transport equation is as follows:

∂Ca

∂t
+ vx

∂Ca

∂x
+ vy

∂Ca

∂y
+ vz

∂Ca

∂z
= DAB

[
∂2Ca

∂x
+

∂2Ca

∂y
+

∂2Ca

∂z

]
+ Ra (1)

The bulk velocity v (x, y, and z) is used for convective transport, and velocity is
measured by combining two equations, mass balance and momentum equation. The
mass balance equation represents a diffusion mechanism that deals with the diluted and
solvent species on the feed side of the membrane. Operators show three directions of space
variables in the x-, y-, and z-direction. Finally, the source term is on the right side of the
equation, showing a chemical reaction that occurred in a process. The term “a” is defined
as the concentration of gas on the feed side.

2.2.2. Diffusion

The transport of diluted species provides an environment for modeling mass transport
in a chemical species. Here, the diluted species interface model is applied, showing all
species in a diluted form. When a dilution model is applied, it shows that the properties of
the solute are the same as a present solvent. Fick’s Law also defines solution diffusion in a
mixture. The transport of dilute species provides both convection and diffusion models for
simulation in all dimensions.

Na= −DAB

[
∂2Ca

∂x
+

∂2Ca

∂y
+

∂2Ca

∂z

]
(2)

where diffusion is represented as DAB.

2.2.3. Membrane Model

Diffusion is an essential mechanism occurring in mass transfer problems. It mainly
focuses on the diffusion through membranes for certain chemical species. The system is
considered to check the permeability of gases, where the feed side of gas in the fiber-bore
side and permeate is passed through a membrane collected on the shell side. The unit of
the membrane module demonstrates the membrane model.

The model equation for steady-state mass transfer is as follows:

DAB

[
∂2Ca

∂x
+

∂2Ca

∂y
+

∂2Ca

∂z

]
= 0 (3)

The scalar product of concentration gradient Ca (mole/m3) and DAB diffusion coef-
ficient of the diffusing species (m2/s) shows a steady-state mass transfer equation. All
boundaries considered isolating conditions.

DAB

[
∂Ca

∂x
+

∂Ca

∂y
+

∂a
∂z

]
= 0 (4)

The boundary condition is considered as the fiber-bore side applied as an inlet that
shows a concentration of component C0 and the shell side considered as the reject side C0,1.

Boundary conditions 1 and 2 are represented as

C1= C0; C2= C0,1 (5)
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2.2.4. Flow through Membrane in HFM Module

The membrane flux is investigated through the membrane in terms of diffusion D
with solubility S with inlet concentration C0 and outlet concentration C0,1.

Na =
D· S

δ
(C0 − C0,1) (6)

Term D
δ is determined as a barrier with corresponding thickness.

The concentration is defined in terms of partial pressure pa and solubility sa for
component a through the membrane. The term a is defined as any gas component.

C = pa × sa (7)

The flux through the membrane is presented in terms of permeability and partial
pressure:

Na =
P
S
δ
(p f × sa − ph× sa) (8)

The pressure difference between both sides is used as a gradient for inlet pressure p f
and permeate pressure ph. The ratio of their differences is called solubility for the binary
mixture. This membrane model was applied to HFM membrane modules to find the flow
profiles and flux of gases. The symbols of the equation were mentioned in the Appendix A.

2.3. Flowchart of Post-Processing Scheme

The numerical simulation schemes chart is represented in Figure 2.
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Figure 2. Post-processing flow diagram for CFD simulations.

2.4. Geometry

The sketches of geometries for HFM modules are shown in Figure 3.
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2.5. Meshing

The finite element method was used in the HFM module to solve the mass transport
problem and meshing of the membrane module in COMSOL Multiphysics. The HFM
complete mesh consisted of 13,191,478 domain elements, 2,281,754 boundary elements,
and 223,387 edge elements, and degrees of freedom were solved at 1,364,033 (plus 864,222
internal DOFs). Solution time (Study 1): 230 s. (3 min, 50 s). In addition, one fiber
tube consisting of 3,813,513 domain elements, 318,624 boundary elements, and 8988 edge
elements and degrees of freedom was solved for 723,639 (plus 328,506 internal DOFs). The
mesh for the membrane was generated using a triangular mesh structure. The results
obtained from boundary layer mesh analysis are shown in Table 2. The resulting mesh is
shown in Figure 4e. The analysis of the module mesh was observed, and the inlet region
shows a higher density segment. Furthermore, membrane meshing is more critical in the
CFD simulations because the inner membrane wall formed the concentration boundary
layer. Therefore, membrane refinement along with membrane thickness are essential.

Table 2. Boundary layer mesh analysis.

Parameters Total Elements

Solution time (Study 1) 625 s
Number of edge elements 33,311

Number of boundary elements 779,926
Number of elements 6,376,565

Minimum element quality 7.11 × 10−5

For the boundary layer in the membrane, selecting wall thickness of the fiber as a
porous surface is necessary. The representative mesh for the membrane was generated
using a triangular mesh structure. The mesh analysis observes a higher density of elements
in the feed region and near the interface region between the fluid and the porous medium.
This refinement is based on the numerical study which considered inner wall thickness.
The formation of the concentration boundary layer occurs with low thickness, confirming
the significant concern with the mesh in this region.
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3. Results

This work was carried out using COMSOL Multiphysics software 5.2 version for the
HFM module design using CFD. Furthermore, the effects of module length on the diffusive
flux, total flux, and concentration variations were determined using CFD.
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3.1. Air Separation

The HFM module simulations were performed for oxygen separation from air. The
flow variations were obtained from O2 gas on the shell side of the HFM module. The inlet
gas enters the membrane module from the lumen side, and thus, a crossflow model is
considered as the boundary condition. The boundary condition was applied for a high
inlet concentration on the lumen side, C0, and a low inlet concentration on the shell side,
C0. Figure 5a shows that the feed gas, O2, permeates through membrane fibers, and a
maximum purity of the N2 was obtained on the shell side. The concentration between
the fibers was changed due to high flux on the inlet side and increased gas purity in the
permeate stream. Based on these results, it was concluded that permeation of O2 occurred
through the fiber. Figure 5b indicates that the concentration variation between two fibers
is more important. The two-dimensional results verified that O2 gas diffused through the
membrane due to the concentration gradient, and a variation in gas was obtained in the
membrane module’s center. In addition, the difference between the fibers was negligible
due to the compactness of the fibers, but the permeate shell showed maximum gas diffusion
from the high inlet side to the outlet side.
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The concentration gradient displayed in Figure 5c shows that the gas diffusion varied
at different mesh points from the inlet to the permeate side. The red mesh points on the
shell side show the maximum purity of O2 gas on the permeate side. The different mesh
points in the center show the different gas concentrations of O2 purity. It was confirmed
that the concentration gradient was present in the HFM module due to the partial pressure
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of gases, and gas transported through the membrane with specific permeability. Figure 5d
shows the diffusive flux magnitude variations in the HFM module for binary gas separation.
Contours display a high flux variation on the shell side due to gas diffused from the inlet
side to the permeate side. The results showed no pressure drop on the retentate side, and
fluxes remained unchanged in the membrane center due to the diffusion of O2 from the
fiber side to the shell side.

3.2. Carbon Dioxide Separation

The HFM module geometry consists of a bundle of fibers in a single shell compacted
together to form a large surface area, but in this case, the single fiber was used for gas
separation. Figure 6a shows that the concentration of the inlet gas CO2 changed on
the feed side and permeate side. The gas entered from the lumen, and the crossflow
model was considered for flow conditions. The fiber-bore side was considered as the inlet
side boundary condition C0 at one end, and another was considered the outlet boundary
condition with the low concentration C0,1. The thickness of the fiber shows as the membrane,
which is a thin diffusion barrier. It was concluded that the contour expressing the CO2 gas
concentration variation always occurred from the feed side to permeate side.
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Figure 6b shows the concentration of CO2 in the two-dimensional model. From
Figure 6b, the inlet gas variations from the inlet channel to the permeate collector can be
observed. The maximum gas concentration at the fiber surface was higher because of the
higher gas concentration transported through the membrane from the retentate. The results
showed that gas diffused through the membrane at a higher permeation rate.
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A concentration gradient was observed in the HFM module for CO2. The different
mesh points show that the inlet gas passes through the fiber side to the permeate side of
the module, and the gradient below the fiber is higher due to the maximum gas diffusion
through the membrane. The results showed that the gradient was present, and gas was
diffused through the membrane. Figure 6d demonstrates the diffusive flux from the
gradient applied from the lumen to the shell side. The flux was calculated with the given
parameters of the membrane module. The flux magnitude variations describe binary gas
separation in the HFM membrane module. Contours display a high flux variation on the
shell side due to gas diffused from the inlet side to the permeate side. The results showed
the zero pressure drop on the lumen side as the feed on the membrane, and fluxes remained
unaffected.

4. Discussion

The HFM module performance was investigated using different parameters, such as
fiber length (L), inlet pressure (pf), inlet concentration (xf), fiber bundle radius (Ro), and
outer module diameter (Do).

Figure 7a shows the simulation of O2/N2 separation through the membrane. The
results obtained from simulations show that the increment in the length of the fiber from
5 to 25 cm reduced the purity of O2 from 15 to 10%, while the concentration of N2 in the
retentate stream was enhanced by 10%. The fiber length produced a large membrane area
used for separation. The higher stage cut also caused more gas to permeate through the
membrane because the extension in length gradually diluted the permeate stream with N2;
thus, O2 possessed a lower quantity while the permeate possessed a higher quantity of N2.
Therefore, the purity of the permeate side was decreased. The oxygen depletion from the
feed side to the permeate stream was less enriched, while a higher stage cut was achieved.

The concentration effect was investigated by changing the values of O2 concentration
in the feed while keeping other parameters constant. The feed concentration analysis
shown in Figure 7b demonstrated that the concentrations of O2 and N2 were varied in
the permeate and reject side, respectively. The results showed that the increment in the
concentration of O2 on the feed side provides a higher permeate rate in the stream. A
further increment in O2 concentration in the feed stream produced a higher concentration
gradient, while the N2 gradient was reduced. For the long fiber, lower O2 and higher N2
purities were obtained at all specified feed concentrations. O2 purity in the permeate and
N2 in the retentate stream as a function of the mole fraction of O2 in the feed are presented
in Figure 7b.

Furthermore, the effect of pressure on the HFM was also investigated by changing
the feed pressure from 5 to 25 bar. Interestingly, the increment in feed pressure provides
different behavior for O2 at the permeate stream and N2 at the retentate stream. Figure 7c
describes the effect of feed pressure on the concentration of O2 and N2 in the permeate
and retentate streams. It was found that the increment in feed pressure provides a higher
permeate concentration of O2, while a further increment in feed pressure reduced the O2
in the permeate. Increases in the feed pressure also produced an excessive mass transfer
gradient for N2, which transported through membrane and thus reduced the concentration
of O2 in the permeate stream. Furthermore, it was also observed that the maximum purity
was achieved for a long fiber length with low feed pressure, mainly because of the larger
membrane surface available in permeation.
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of O2/N2 with fiber length in permeate and reject sides in HFM module (Reprinted with permission
from Ref. [36]. 2016, Seyed Saeid) [36]; (c) feed mole fraction of the O2/N2 in permeate and reject
sides in HFM module (Reprinted with permission from Ref. [36]. 2016, Seyed Saeid) [36].

The increase in fiber length gives more losses of CH4 because the increment in fiber
length provides a higher surface area of the membrane. Therefore, higher permeation
resulted in significant methane loss, as shown in Figure 8a. The CO2 in the feed is a more
permeable component with a more significant effect of a mole fraction of CO2 on the
permeate side. On the other hand, the negative quadratic impact of the CO2 mole fraction
significantly affects the feed side. Higher fiber length directly affects the purity of CO2 and
higher methane loss on the retentate side because of its lower concentration. The maximum
purity of the CO2 of 80% was obtained when the fiber length was short. From Figure 8b,
results show that increasing the fiber length is not always favorable in that increased length
caused a less driving force for overcoming resistance. For instance, the mole fraction of
the more permeable component in the permeate stream decreased from 2% to 0.6% by
increasing the length of fibers from 5 to 25 cm. The same trends were obtained to increase
the fiber bundle radius, which showed more methane loss on the reject side. This decrease
may be explained by the fact that maximum CO2 purity was obtained when the fiber length
was small or the number of fibers was at the minimum.
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5. Conclusions

The gas separation performance of an HFM unit was studied using the COMSOL Mul-
tiphysics Software. A CFD analysis for N2/O2 and CO2/CH4 separation was performed
considering different parameters, such as fiber length (L), feed pressure (pf), feed concen-
tration (xf), fiber bundle radius (Ro), and outer module diameter (Do). Three-dimensional
geometry was developed by using COMSOL geometry, and meshing was performed using
triangular mesh. It was observed that an increment in fiber length reduced the oxygen
purity because of the diluted permeate stream. The increment in feed concentration re-
sulted in increasing the purity of the permeate. The HFM unit observed that increased
feed pressure results in an increased pressure gradient, higher flux, more permeability,
and higher permeate purity. Similarly, an increment in feed concentration increased the
permeate mole fraction, facilitating the permeate stream and producing higher purities of
O2 (20% to 75%) and CO2 (65% to 85%).
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Appendix A

List of symbols
Acronyms
CFD Computational fluid dynamics
HFM Hollow fiber membrane
N2 Nitrogen
O2 Oxygen
CO2 Carbon dioxide
CH4 Methane
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Greek Symbols
x x Co-ordinate
y y Co-ordinate
z z Co-ordinate
Vx Velocity in x-direction
Vy Velocity in y-direction
Vz Velocity in z-direction
“∇” Nabla operator
Latin symbols t time (s)
Ra. Rate of reaction (mol/m3.s)
N Molar flux (mol/.m2. s)
D Diffusion coefficient (m2/s)
S Solubility (mol/m3.pa)
P Permeance (mol/m2.s.pa)
C Concentration of component (mol/m3)
P Partial pressure
L Module length (m)
Do Module diameter (m)
Ro Fiber bundle radius (m)
δ Membrane thickness (m)
C Gas species concentration (mol/m3)
D_AB Diffusivity coefficient (m2/s)
C_0 Concentration of inlet (mol/m3)
C_0,1 Concentration of outlet (mol/m3)
P Permeability of the gas (mol/m2.s.pa)
S Membrane solubility (mol/m3.pa)
pf Pressure of the inlet side (Pa)
ph Pressure of the permeate side (Pa)
δ Membrane thickness (m)
∆C Concentration gradient (mol/m3)
∆p Gradient of the partial pressure of gases (Pa/m)
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