
Citation: Kato, D.; Ishikawa, H.

Quality Control Methods Using

Quality Characteristics in

Development and Operations. Digital

2024, 4, 232–243. https://doi.org/

10.3390/digital4010012

Academic Editors: Mirjana Ivanović,

Richard Chbeir and Yannis

Manolopoulos

Received: 15 October 2023

Revised: 25 January 2024

Accepted: 2 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Quality Control Methods Using Quality Characteristics in
Development and Operations †

Daiju Kato 1,* and Hiroshi Ishikawa 2

1 Nihon Knowledge Co., Ltd., Tokyo 111-0042, Japan
2 Graduate School of System Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan;

ishikawa-hiroshi@tmu.ac.jp
* Correspondence: d-kato@know-net.co.jp; Tel.: +81-80-4052-2372
† This paper is the conference extension of Proceedings of the 14th International Conference on Management of

Digital EcoSystems, Venice, Italy, 19–21 October 2022.

Abstract: Since the Software Quality Model was defined as an international standard, many quality
assurance teams have used this quality model in a waterfall model for software development and
quality control. As more software is delivered as a cloud service, various methodologies have been
created with an awareness of the link between development productivity and operations, enabling
faster development. However, most development methods are development-oriented with awareness
of development progress, and there has been little consideration of methods that achieve quality
orientation for continuous quality improvement and monitoring. Therefore, we developed a method
to visualize the progress of software quality during development by defining quality goals in the
project charter using the quality model defined in international standards, classifying each test
by quality characteristics, and clarifying the quality ensured by each test. This was achieved by
classifying each test by quality characteristics and clarifying the quality ensured by each test. To use
quality characteristics as KPIs, it is necessary to manage test results for each test type and compare
them with past build results. This paper explains how to visualize the quality to be assured and
the benefits of using quality characteristics as KPIs and proposes a method to achieve rapid and
high-quality product development.

Keywords: DevOps; quality control; quality characteristics; SQuaRE; quality analysis

1. Introduction

In many software development environments, work is often divided between devel-
opment (Dev) teams, which are responsible for developing features, and operations (Ops)
teams, which are responsible for running the service. The Dev team’s primary mission is to
add new features to the software, while the Ops team’s mission is to maintain the current
environment and keep the service stable and continuous. The Dev and Ops teams have
very different missions, and this can lead to team disagreements. However, faster software
development is required to keep up with the rapidly changing business environment. To
this end, teams should avoid becoming exhausted due to internal conflicts, and DevOps [1]
is attracting attention as a way of thinking that “resolves common conflicts between teams
and promotes smooth development through collaboration”.

DevOps has a seven-step lifecycle: Plan, Code, Build, Test, Deploy, Operate, and
Monitor.

• Plan: Defines the task management and development requirements for the entire project;
• Code: Programmers create code according to development requirements;
• Build: The application that will actually run is built from the source code;
• Test: Test the built application for bugs and other defects;
• Deploy: Deploy the application into production;

Digital 2024, 4, 232–243. https://doi.org/10.3390/digital4010012 https://www.mdpi.com/journal/digital

https://doi.org/10.3390/digital4010012
https://doi.org/10.3390/digital4010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/digital
https://www.mdpi.com
https://orcid.org/0000-0001-9904-8554
https://orcid.org/0000-0003-3639-442X
https://doi.org/10.3390/digital4010012
https://www.mdpi.com/journal/digital
https://www.mdpi.com/article/10.3390/digital4010012?type=check_update&version=1

Digital 2024, 4 233

• Operation: Perform maintenance and management tasks to ensure continuous service;
• Monitor: Review information obtained from operations, user assessments, requests, etc.

These steps are performed sequentially and continuously to practice DevOps. The
main benefits of implementing DevOps are achieving smooth development, increasing
productivity, and speeding up releases.

The essence of DevOps, as mentioned above, is to resolve conflicts between Dev and
Ops teams. By eliminating the internal drag-and-tug that has been common in the past, the
goal is to achieve smooth development and operations.

To implement DevOps, it is necessary to implement a variety of supporting tools
at each step of the lifecycle. Typical tools include version control systems that track file
changes under project management and CI/CD tools such as Jenkins [2] that automate tasks
previously performed manually. Effective use of these tools leads to increased productivity.
This increased productivity means that more human resources can be allocated to improving
quality and developing new services, which in turn increases the value of the service.

Automating testing and delivery with tools brings benefits in the form of increased
productivity and faster work. Acceleration is simply the speed at which the DevOps
lifecycle can be executed. In other words, you can increase the number of DevOps lifecycle
cycles in a given period of time. More lifecycle cycles mean faster adoption of market
requirements and feedback, which in turn means greater responsiveness to changing
market needs.

For example, a developer runs unit tests against locally implemented code, and if
the unit tests pass, the developer periodically commits changes to the code to a central
repository as part of the CI process. The process is then delegated to Jenkins, the CI enabler,
to run build, unit test, and build verification tests (BVT). If the BVT passes, the build is
automatically deployed. Automated tests such as functional, performance, security, and
regression tests are then run to ensure that the added code does not degrade the quality of
existing functionality.

In addition to testing for quality, quality control is performed using various metrics
and cascading models such as the V-model. Typically, the pass rate, defect rate, and
test coverage of each test type (Table 1) are used to monitor project quality. However,
these quality indicators are often difficult to use to assess the quality of software under
development. Even if the coding rules and test design and implementation rules are clearly
defined, it is difficult to objectively judge whether the quality is good or bad unless it is a
derivative development project.

Table 1. Famous quality metrics for quality control.

Metrics Types Metrics

Defect density
Ratio per page of design documents
Ratio per line or step of codes
Ratio per test cases

Defect removal rates
Removal rate per phases
Removal rate per components
Removal rate per test cases

Pass rates
Pass rates per test sets
Pass rates per test cases
Pass rates per function points

Coverages
Documents review coverage
Test coverage per line of codes
Test coverage per test cases

When considering software quality, the quality model [3] defined in the ISO 25000
series (SQuaRE) [4] can be used to classify the quality required of the software under
development in terms of the quality characteristics provided by this quality model, shown

Digital 2024, 4 234

in Figure 1, and to judge from test results whether each characteristic has been assured.
SQuaRE also defines the metrics for each quality attribute, which can be used to determine
whether quality has been assured.

Ito et al. [5] proposed a framework that allows the creation of a strategic test plan
to achieve incremental quality building in agile development projects. The framework
provides a state in which quality can be explained by releasing the product in a ratable
manner and comprehensive quality assurance by incrementally building product quality.

To use quality characteristics effectively, we recommend that project managers classify
the quality of software goals by quality characteristics and, if possible, also define the
quality to be achieved at each milestone by quality characteristics.

Digital 2024, 4, FOR PEER REVIEW 3

Table 1. Famous quality metrics for quality control.

Metrics Types Metrics

Defect density
Ratio per page of design documents
Ratio per line or step of codes
Ratio per test cases

Defect removal rates
Removal rate per phases
Removal rate per components
Removal rate per test cases

Pass rates
Pass rates per test sets
Pass rates per test cases
Pass rates per function points

Coverages
Documents review coverage
Test coverage per line of codes
Test coverage per test cases

Figure 1. ISO/IEC 25010 quality model for system/software product quality.

Therefore, we have studied how to effectively use quality characteristics and existing
quality data in development projects using the V-model. We have studied the interna-
tional standard, which is also used in countries such as Germany and South Korea. In the
JIS (Japanese Industry Standard) standard certification for software [6], we have studied
the development process with an awareness of compliance with this standard and have
applied it to several projects. With the expansion of the recurring business, several projects
are adapting the agile process, so we decided to further expand the development process
for the use of quality features and improve it so that it can also be used in projects that use
the agile process.

2. Considerations for Using Quality Model in Agile Development Processes
The combination of continuous integration (CI) and continuous deployment (CD)

processes as a software engineering practice for rapidly developing and deploying soft-
ware applications into production is called the CI/CD pipeline. The pipeline is a collection
of tools developers, test engineers, and IT operations staff use throughout the continuous
software development, delivery, and deployment lifecycle.

The test pyramid, as shown in Figure 2, is a useful technique that allows us to con-
ceptualize how to prioritize the tests in a CI/CD pipeline in terms of their relative number
and order of execution. This technique was defined by Mike Cohn [7], with unit tests at
the bottom, service tests in the middle, and UI tests at the top. By prioritizing with a test
pyramid, you can build a strong foundation of automated unit tests that are quick and
easy to execute, then move on to more complex tests that are more complex to write and
take longer to execute, and finally, the least complex tests that are fewer in number. The
pipeline provides more prioritized feedback.

Figure 1. ISO/IEC 25010 quality model for system/software product quality.

Therefore, we have studied how to effectively use quality characteristics and existing
quality data in development projects using the V-model. We have studied the international
standard, which is also used in countries such as Germany and South Korea. In the JIS
(Japanese Industry Standard) standard certification for software [6], we have studied the
development process with an awareness of compliance with this standard and have applied
it to several projects. With the expansion of the recurring business, several projects are
adapting the agile process, so we decided to further expand the development process for
the use of quality features and improve it so that it can also be used in projects that use the
agile process.

2. Considerations for Using Quality Model in Agile Development Processes

The combination of continuous integration (CI) and continuous deployment (CD)
processes as a software engineering practice for rapidly developing and deploying software
applications into production is called the CI/CD pipeline. The pipeline is a collection of
tools developers, test engineers, and IT operations staff use throughout the continuous
software development, delivery, and deployment lifecycle.

The test pyramid, as shown in Figure 2, is a useful technique that allows us to con-
ceptualize how to prioritize the tests in a CI/CD pipeline in terms of their relative number
and order of execution. This technique was defined by Mike Cohn [7], with unit tests at
the bottom, service tests in the middle, and UI tests at the top. By prioritizing with a test
pyramid, you can build a strong foundation of automated unit tests that are quick and easy
to execute, then move on to more complex tests that are more complex to write and take
longer to execute, and finally, the least complex tests that are fewer in number. The pipeline
provides more prioritized feedback.

As in the development process established for the V-model, quality requirements in
agile projects are classified and normally described in the project plan. An international
standard for quality requirements [8] has already been established, and functional and
non-functional requirements can be classified using quality characteristics according to
the methodology described in this standard. This method makes it possible to clarify the
quality requirements for each actor. The initial quality control is carried out through the
various activities of the development process and the rules defined in the project charter.

Digital 2024, 4 235

The project charter is a short, formal document that summarizes the entire project and
describes the project objectives, how it will be executed, and who will be involved. It is
used throughout the project lifecycle and is an important factor in project planning. These
projects can use quality characteristics for key quality management indicators, as shown in
Table 2.

Digital 2024, 4, FOR PEER REVIEW 4

Figure 2. Test pyramid.

As in the development process established for the V-model, quality requirements in
agile projects are classified and normally described in the project plan. An international
standard for quality requirements [8] has already been established, and functional and
non-functional requirements can be classified using quality characteristics according to
the methodology described in this standard. This method makes it possible to clarify the
quality requirements for each actor. The initial quality control is carried out through the
various activities of the development process and the rules defined in the project charter.
The project charter is a short, formal document that summarizes the entire project and
describes the project objectives, how it will be executed, and who will be involved. It is
used throughout the project lifecycle and is an important factor in project planning. These
projects can use quality characteristics for key quality management indicators, as shown
in Table 2.

By including all the practices related to testing in the Agile process pipeline and the
review activities necessary to build quality, such as design reviews, it is possible to organ-
ize which quality-enhancing activities are included in each practice.

Build, static analysis, unit testing, front-end and back-end integration testing, and the
E2E test pipeline can be used to identify common implementation errors and increase
software maturity. It is also possible to measure individual execution times within the CI
process to immediately detect degradation due to code additions. For example, if the ex-
ecution time of a test increases compared to the previous test, it is likely that some perfor-
mance degradation is occurring, and the impact of the added code should be suspected.

Deploying builds in a continuous delivery (CD) process allows portability properties
to be checked during the installation process.

Implementing a general CI/CD process and managing the results will help ensure
that quality is continuously improved. In addition, by automating and integrating more
testing activities, more quality characteristics can be covered in addition to functional con-
formance. By defining criteria for testing activities, each quality attribute can be used as a
quality KPI on an ongoing basis.

In many development projects, GitHub [9] and Atlassian tools [10] can be used as
project management tools, task ticket activities can be visualized as kanban boards, and
development and bug-fixing activities can be effective for source code control. Project
management tools are effective for managing project progress, but they cannot manage
quality progress. Test management tools, on the other hand, can manage test cases and
test progress and can play a role in quality management, but it is often difficult to use test
results in history management.

Shimizu et.al [11] proposed a test result management tool to analyze and extend the
coverage of automated tests and our team enhanced the test result management tool. The
tool is written in C# and stores test results in SQL Server; for unit tests with API calls, we
decided to implement and integrate a report class that can capture CPU load, memory
consumption, I/O load, and network load along with functional tests and output this qual-
ity data along with the test results. The purpose of the report class is to provide a

Figure 2. Test pyramid.

By including all the practices related to testing in the Agile process pipeline and the
review activities necessary to build quality, such as design reviews, it is possible to organize
which quality-enhancing activities are included in each practice.

Build, static analysis, unit testing, front-end and back-end integration testing, and
the E2E test pipeline can be used to identify common implementation errors and increase
software maturity. It is also possible to measure individual execution times within the CI
process to immediately detect degradation due to code additions. For example, if the execu-
tion time of a test increases compared to the previous test, it is likely that some performance
degradation is occurring, and the impact of the added code should be suspected.

Deploying builds in a continuous delivery (CD) process allows portability properties
to be checked during the installation process.

Implementing a general CI/CD process and managing the results will help ensure that
quality is continuously improved. In addition, by automating and integrating more testing
activities, more quality characteristics can be covered in addition to functional conformance.
By defining criteria for testing activities, each quality attribute can be used as a quality KPI
on an ongoing basis.

In many development projects, GitHub [9] and Atlassian tools [10] can be used as
project management tools, task ticket activities can be visualized as kanban boards, and
development and bug-fixing activities can be effective for source code control. Project
management tools are effective for managing project progress, but they cannot manage
quality progress. Test management tools, on the other hand, can manage test cases and
test progress and can play a role in quality management, but it is often difficult to use test
results in history management.

Shimizu et.al [11] proposed a test result management tool to analyze and extend the
coverage of automated tests and our team enhanced the test result management tool. The
tool is written in C# and stores test results in SQL Server; for unit tests with API calls, we
decided to implement and integrate a report class that can capture CPU load, memory
consumption, I/O load, and network load along with functional tests and output this
quality data along with the test results. The purpose of the report class is to provide a
performance efficiency assessment. The purpose of the report class is to extend the coverage
of unit testing by providing a performance efficiency evaluation.

The report class we built called MSTest [12], an extension of NUnit [13], a unit testing
framework, with an extension method to obtain quality data necessary for evaluating
performance efficiency and to generate test results in XML format along with functional
test results (Figure 3).

Digital 2024, 4 236

Table 2. Famous quality metrics for quality control.

Activities Quality Characteristics Quality Sub-Characteristics

Activities in the Whole Development Process

Coding Rules

Security Confidentiality
Integrity

Maintainability Modularity
Reusability
Modifiability
Testability

Design Review

Functional Suitability
Function completeness

Function correctness

Reliability

Maturity
Availability
Fault tolerance
Recoverability

Maintainability Testability

Inspection Review Reliability Maturity

Activities in CI process

Static Analysis

Reliability Maturity

Security Integrity

Maintainability Analysability

Unit test
Integration test
Regression test

Functional Suitability
Function completeness
Function correctness
Function appropriateness

Reliability Maturity

E2E test

Functional Suitability
Function completeness
Function correctness
Function appropriateness

Usability
Operability

User error protection

Reliability Maturity

Trough out the CI process

Measurement of
processing time

Performance Efficiency
Time behavior

Resource utilization

Maintainability Analysability

Activity in CD operations

install test Portability Installability
Digital 2024, 4, FOR PEER REVIEW 6

Figure 3. Created report class (upper is process and lower is operation. Square frame is developed
area).

The generated XML file can be used with the command line generator tool to generate
a test result report in HTML format. The class also reads the .trx file of MSTest results
generated by Visual Studio and generates a list of API methods called in HTML format to
help understand test coverage.

Although it is possible to open a .trx file in Visual Studio and check the test results,
there are problems in analyzing the results as it is difficult to see the cause of the failure.
We developed this time to not only generate the results of functional and performance
tests by outputting reports that automatically describe the pass/fail list, the logs during
the tests, and the performance measurement results but also to convert this result infor-
mation into HTML files to visualize the test result information, Figure 4.

Figure 4. Easy visualization of test results.

Also, for the API tests created in JMeter, we decided to obtain performance data from
the API test execution as well as the unit tests and evaluate whether the updated build has
any performance degradation.

Both unit and integration tests were able to produce the following benefits while add-
ing performance efficiency assessments.
• Increased development productivity by being able to find features and performance

and load degrades in the build pipeline;
• Increased testing efficiency through automation;
• Increased coverage of automated tests to capture more quality data.

As an example of this project, we are using Ranorex [14] as an E2E testing tool to
automate scenario testing. The scenarios include use cases that involve more standard op-
erating procedures called golden routes, use cases that check screen transitions when
functions are invoked, and use cases that result in errors due to operational errors, so they
are considered to include usability evaluations.

In this way, classifying automated tests using quality characteristics not only allows
the quality improvement situation to take test coverage into account but also increases
development productivity.

Figure 3. Created report class (upper is process and lower is operation. Square frame is devel-
oped area).

Digital 2024, 4 237

The generated XML file can be used with the command line generator tool to generate
a test result report in HTML format. The class also reads the .trx file of MSTest results
generated by Visual Studio and generates a list of API methods called in HTML format to
help understand test coverage.

Although it is possible to open a .trx file in Visual Studio and check the test results,
there are problems in analyzing the results as it is difficult to see the cause of the failure.
We developed this time to not only generate the results of functional and performance tests
by outputting reports that automatically describe the pass/fail list, the logs during the tests,
and the performance measurement results but also to convert this result information into
HTML files to visualize the test result information, Figure 4.

Digital 2024, 4, FOR PEER REVIEW 6

Figure 3. Created report class (upper is process and lower is operation. Square frame is developed
area).

The generated XML file can be used with the command line generator tool to generate
a test result report in HTML format. The class also reads the .trx file of MSTest results
generated by Visual Studio and generates a list of API methods called in HTML format to
help understand test coverage.

Although it is possible to open a .trx file in Visual Studio and check the test results,
there are problems in analyzing the results as it is difficult to see the cause of the failure.
We developed this time to not only generate the results of functional and performance
tests by outputting reports that automatically describe the pass/fail list, the logs during
the tests, and the performance measurement results but also to convert this result infor-
mation into HTML files to visualize the test result information, Figure 4.

Figure 4. Easy visualization of test results.

Also, for the API tests created in JMeter, we decided to obtain performance data from
the API test execution as well as the unit tests and evaluate whether the updated build has
any performance degradation.

Both unit and integration tests were able to produce the following benefits while add-
ing performance efficiency assessments.
• Increased development productivity by being able to find features and performance

and load degrades in the build pipeline;
• Increased testing efficiency through automation;
• Increased coverage of automated tests to capture more quality data.

As an example of this project, we are using Ranorex [14] as an E2E testing tool to
automate scenario testing. The scenarios include use cases that involve more standard op-
erating procedures called golden routes, use cases that check screen transitions when
functions are invoked, and use cases that result in errors due to operational errors, so they
are considered to include usability evaluations.

In this way, classifying automated tests using quality characteristics not only allows
the quality improvement situation to take test coverage into account but also increases
development productivity.

Figure 4. Easy visualization of test results.

Also, for the API tests created in JMeter, we decided to obtain performance data from
the API test execution as well as the unit tests and evaluate whether the updated build has
any performance degradation.

Both unit and integration tests were able to produce the following benefits while
adding performance efficiency assessments.

• Increased development productivity by being able to find features and performance
and load degrades in the build pipeline;

• Increased testing efficiency through automation;
• Increased coverage of automated tests to capture more quality data.

As an example of this project, we are using Ranorex [14] as an E2E testing tool to
automate scenario testing. The scenarios include use cases that involve more standard
operating procedures called golden routes, use cases that check screen transitions when
functions are invoked, and use cases that result in errors due to operational errors, so they
are considered to include usability evaluations.

In this way, classifying automated tests using quality characteristics not only allows
the quality improvement situation to take test coverage into account but also increases
development productivity.

3. Enhance of Management of Test Results for Agile Projects

In software package development and service development, DevOps makes it possible
to increase development productivity and increase the frequency of product releases. To
ensure stable product releases, it is important to maintain the quality of the product and
the test results within the project must be well managed. Since the DevOps project has
achieved test automation with CI tools, we will also consider using a pipeline for test
result management.

Engineers can quickly detect quality degradation if the test management tool can save
the test results of unit tests, integration tests, and E2E tests as Jenkins jobs to be developed
and easily report comparisons with multiple past versions. The comparison with the
previous build is done in the build pipeline, and the comparison with past versions is easily
performed in the tool.

Digital 2024, 4 238

When importing the test results, it compares the test results with the specified multiple
past versions, compares the pass rate of the functional tests and the performance data, and
generates a simple report with the judgment of whether or not the performance is within
the registered threshold range. The URL of the generated result will be notified to you via
Teams or e-mail. If you want to check the results of past versions in detail, you can use the
comparison function of the tool to generate a detailed report.

The image of the job to process the import of test results from Jenkins is shown in
Figure 5.

Digital 2024, 4, FOR PEER REVIEW 7

3. Enhance of Management of Test Results for Agile Projects
In software package development and service development, DevOps makes it possi-

ble to increase development productivity and increase the frequency of product releases.
To ensure stable product releases, it is important to maintain the quality of the product
and the test results within the project must be well managed. Since the DevOps project
has achieved test automation with CI tools, we will also consider using a pipeline for test
result management.

Engineers can quickly detect quality degradation if the test management tool can
save the test results of unit tests, integration tests, and E2E tests as Jenkins jobs to be de-
veloped and easily report comparisons with multiple past versions. The comparison with
the previous build is done in the build pipeline, and the comparison with past versions is
easily performed in the tool.

When importing the test results, it compares the test results with the specified multi-
ple past versions, compares the pass rate of the functional tests and the performance data,
and generates a simple report with the judgment of whether or not the performance is
within the registered threshold range. The URL of the generated result will be notified to
you via Teams or e-mail. If you want to check the results of past versions in detail, you
can use the comparison function of the tool to generate a detailed report.

The image of the job to process the import of test results from Jenkins is shown in
Figure 5.

By running it as a Jenkins job, you can automate the process of importing the results
of each test performed in the build pipeline and generating a test report.

The ability to manage test results and compare them with past versions makes it eas-
ier to ensure maturity and allows for the immediate detection of quality degradation,
whether functional or performance.

The quality guaranteed by the expanded coverage of test automation in the CI pro-
cess, the comparison process in the test result management tool, the distribution in the CD
process, and the development rules in the development project are shown in Table 3.

Our projects are able to automate more quality-related tasks, such as static analysis,
known as SAST, and dynamic analysis, known as DAST, than typical DevOps, although
it requires some time and effort to integrate it into both the CI process and the CD process.
Therefore, by preparing multiple test environments, resilience testing is able to perform
security-related testing for automated testing.

Also, the use of test result management tools makes it possible to monitor quality
progress from test results obtained in the CI process.

Figure 5. Architecture of test results management (The red part is the process flow and the blue
part is the test result management process).

Figure 5. Architecture of test results management (The red part is the process flow and the blue part
is the test result management process).

By running it as a Jenkins job, you can automate the process of importing the results
of each test performed in the build pipeline and generating a test report.

The ability to manage test results and compare them with past versions makes it easier
to ensure maturity and allows for the immediate detection of quality degradation, whether
functional or performance.

The quality guaranteed by the expanded coverage of test automation in the CI process,
the comparison process in the test result management tool, the distribution in the CD
process, and the development rules in the development project are shown in Table 3.

Our projects are able to automate more quality-related tasks, such as static analysis,
known as SAST, and dynamic analysis, known as DAST, than typical DevOps, although it
requires some time and effort to integrate it into both the CI process and the CD process.
Therefore, by preparing multiple test environments, resilience testing is able to perform
security-related testing for automated testing.

Also, the use of test result management tools makes it possible to monitor quality
progress from test results obtained in the CI process.

Table 3. Quality covered by CI/CD pipeline process.

Quality Characteristics Quality Sub Characteristics Evaluation by

Function Suitability

Functional Completeness

■ Unit test
■ Static analysis (SAST)
■ Integration test
■ Dynamic analysis (DAST)
■ Performance test
■ Regression test
■ E2E test

Functional Correctness

Functional Appropriateness

Performance Efficiency

Time Behaviour

Resource Utilization

Capacity

Compatibility
Co-existence

Interoperability -

Digital 2024, 4 239

Table 3. Cont.

Quality Characteristics Quality Sub Characteristics Evaluation by

Usability

Appropriateness Recognizability -

Learnability -

Operability
■ Unit test
■ E2E testUser Error Protection

User Interface Aesthetics

Accessibility -

Reliability

Maturity ■ Unit test
■ Static analysis (SAST)
■ Integration test
■ Dynamic analysis (DAST)
■ Performance test
■ Regression test
■ E2E test
■ Test results management

Availability

Fault Tolerance

Recoverability -

Security

Confidentiality ■ Static analysis (SAST)
■ Dynamic analysis (DAST)
■ Regression testIntegrity

Non-repudiation -

Authenticity -

Accountability -

Maintainability

Modularity

■ Covered by the development process and
project charter

Reusability

Analysability

Modifiability

Testability

Portability

Adaptability -

Installability ■ CD process

Replaceability -

4. Using Quality Characteristics for KPI under Agile Development Projects

We have always used quality characteristics as KPIs for project quality in waterfall
software development and have made quality progress visible [15]. In addition, this
quality management approach is aware of the international standards [16] used in software
certification and the international standards for software testing [17]. Therefore, the use of
quality characteristics as KPIs to understand the quality build has also been considered
for agile software development projects [18]. In the waterfall model, acceptance testing
is planned as a condition for starting testing as the entry criteria for each test level, and
acceptance testing is performed by extracting test cases from the test types to be performed
at that test level using a stratified method. Since it is impossible to perform acceptance
testing in every sprint of the agile process due to time constraints, we decided to investigate
the need for acceptance testing and the relationship between the tasks performed in each
sprint and quality characteristics through experiments.

We conducted two types of experiments on the impact on quality by conducting
software development in an agile process with the following measures to make more
effective use of quality characteristics in the agile process.

Digital 2024, 4 240

In the first team, the project manager chose the method of adding quality attributes
to the task ticket items so that quality attributes were set when each task was raised, and
sub-quality attributes were set for all test cases in the sprint. Second, many rules are defined
in the project charter for using quality characteristics for KPIs.

The project manager in the second team adds the definition for the analyzed functional
requirements and introduces a process for creating quality requirements at the time of the
requirements review, and the following activities are introduced:

• Designing quality requirements created at the time of the business requirements review
and quality requirements for the design and development of the software. Ensure
traceability of each issue so that the quality requirements created in the business
requirements review can be checked for validity in design and evaluation;

• Add quality attribute items to Jira and create a Kanban that quality attributes can
reference;

• Before starting a sprint, we created a sprint backlog by selecting tickets to be worked
on by the sprint from the product backlog containing the business requirements and
mapped the quality characteristics required by the business requirements.

In addition, the following practices are carried out for each sprint;

• Define the quality requirements for each functional requirement and set the criteria by
considering the metrics to be used;

• Evaluate the design and implementation checkpoints of the functional elements for
each quality attribute;

• Establish evaluation criteria for each quality characteristic and map them to the quality
characteristics to be ensured for each test activity;

• Visualize the progress of the established criteria by assessing the conformance of the
quality characteristics at each sprint.

Before starting the first sprint, the project prepared a mapping of activities and quality
characteristics, as shown in Figure 6.

Also, the project begins with the following quality objectives:

• Projected development scale: 2.6 KL;
• Review density: 20 man-hours/KL;
• Density of test items: 150 items/KL;
• Number of bugs: 10/KL.

Digital 2024, 4, FOR PEER REVIEW 10

Figure 6. Mapping quality characteristics to activities.

5. Results of Two Practices
The first project did not establish rules for using quality features in the project and

left it up to the developers, which resulted in many tasks being delayed due to the over-
head of using quality features. In addition, most tasks were biased toward functional con-
formance. This result is likely to occur in the waterfall model as well, and without consid-
ering the balance of each quality characteristic, the result will be biased toward functional
conformance, so efforts are being made to reduce quality characteristics to 70% or less. It
was found that simply using quality characteristics would only complicate the work and
would not be beneficial.

On the other hand, in the second project, where the use of quality characteristics was
specified in the project charter, and the method of using quality characteristics was de-
fined, it became possible to break down the quality status and monitor progress. As a
result, smooth project management was realized without disturbing the balance of QCD,
and very good results were achieved. In the case of this project, the use of quality charac-
teristics increased the testing density by 144% compared to the case where quality charac-
teristics were not used, resulting in an increase in testing man-hours, but the number of
defects detected decreased to 32% of the predicted value. This was a result of the quality
characteristics of KPI and the implementation of quality-driven development. In addition,
the tasks to be implemented were able to proceed as planned. In other words, using qual-
ity characteristics as KPIs makes it possible to proceed with quality-conscious develop-
ment while being aware of the QCD balance.

Although this experiment was conducted on a small scale of 3.7 KL, similar results
can be obtained by determining the quality characteristics to focus on for each sprint and
proceeding with development with an awareness of the quality priority order. It was also
suggested that the same effect could be achieved by being aware of quality prioritization,
such as determining the quality characteristics to focus on in each sprint.

The benefits of using quality characteristics from the experiment are as follows:
• When using quality characteristics in the agile process, it is assumed that if they are

applied to a project for which a project plan has already been drawn up, the overhead
of using quality characteristics is large and is likely to significantly affect the sprint’s
activities;

• If the use of quality features is considered from the project planning stage, the fol-
lowing actions can be taken to provide evidence of quality assurance to project man-
agement;

• Declaring the use of quality features in the project charter;
• Assigning quality characteristics to different activities;

Quality
characteristics

Activities

Functional
suitability

Perform
ance

efficiency

Com
patibility

Usability
Reliability
Security

M
aintain-

ability

Portability

Each sprint
Spec analysis ○ ○ ○ ○ ○ ○ ○ ○
Design ○ ○ ○ ○ ○ ○ ○ ○
Coding ○ ○ ○ ○ ○ ○ ○ ○
Static analysis ○ ○
Unit test ○ ○ ○ ○
Integration test ○ ○ ○ ○
Security test ○
Performance test ○
E2E test ○ ○ ○

Only final sprint
Regression test ○ ○
Release test ○ ○ ○ ○ ○ ○ ○ ○

Figure 6. Mapping quality characteristics to activities.

5. Results of Two Practices

The first project did not establish rules for using quality features in the project and left
it up to the developers, which resulted in many tasks being delayed due to the overhead of

Digital 2024, 4 241

using quality features. In addition, most tasks were biased toward functional conformance.
This result is likely to occur in the waterfall model as well, and without considering
the balance of each quality characteristic, the result will be biased toward functional
conformance, so efforts are being made to reduce quality characteristics to 70% or less. It
was found that simply using quality characteristics would only complicate the work and
would not be beneficial.

On the other hand, in the second project, where the use of quality characteristics
was specified in the project charter, and the method of using quality characteristics was
defined, it became possible to break down the quality status and monitor progress. As
a result, smooth project management was realized without disturbing the balance of
QCD, and very good results were achieved. In the case of this project, the use of quality
characteristics increased the testing density by 144% compared to the case where quality
characteristics were not used, resulting in an increase in testing man-hours, but the number
of defects detected decreased to 32% of the predicted value. This was a result of the quality
characteristics of KPI and the implementation of quality-driven development. In addition,
the tasks to be implemented were able to proceed as planned. In other words, using quality
characteristics as KPIs makes it possible to proceed with quality-conscious development
while being aware of the QCD balance.

Although this experiment was conducted on a small scale of 3.7 KL, similar results
can be obtained by determining the quality characteristics to focus on for each sprint and
proceeding with development with an awareness of the quality priority order. It was also
suggested that the same effect could be achieved by being aware of quality prioritization,
such as determining the quality characteristics to focus on in each sprint.

The benefits of using quality characteristics from the experiment are as follows:

• When using quality characteristics in the agile process, it is assumed that if they
are applied to a project for which a project plan has already been drawn up, the
overhead of using quality characteristics is large and is likely to significantly affect the
sprint’s activities;

• If the use of quality features is considered from the project planning stage, the following
actions can be taken to provide evidence of quality assurance to project management;

• Declaring the use of quality features in the project charter;
• Assigning quality characteristics to different activities;
• The overhead of using quality characteristics should be included in the rough estimate

before the project starts.

Finally, an example of a qualitative analysis of a product by quality characteristic in
the project is given in Table 4.

Table 4. Example of quality analysis classified by quality characteristics.

Quality Characteristics Quality Analysis

Function
suitability

Functional suitability is ensured because the functional requirements that satisfy the functional
requirements are considered in the design document, implemented, and confirmed to work properly
through various tests.

Performance
efficiency

Compared to the operation before the enhancement, the performance of the functions implemented
in the previous version has not deteriorated, and the import of new reports, a new function, is
comparable to the import speed of the report functions implemented in the previous version, thus
meeting the performance requirements. As load and capacity requirements have not been verified for
this project, it can be concluded that ensuring only performance efficiency is not a problem.

Compatibility
There are no problems with interfacing with other systems, such as EXCEL output and ZIP
compression, and compatibility is ensured because there are no problems with co-existence with
other systems in the same environment and no code-level implementation that would affect others.

Usability The enhancement does not create new screens but enhances existing screens and identifies no new
usability issues, ensuring usability.

Digital 2024, 4 242

Table 4. Cont.

Quality Characteristics Quality Analysis

Reliability

Reliability is ensured because functional requirements are met throughout the process:
requirements->specification->design->implementation->testing
The quality of the requirements developed during the requirements review is ensured by the
associated activities, and any bugs found during the various reviews and tests are fixed.

Security The same level of security as the previous version has been confirmed by testing. The same level of
security as the previous version is guaranteed.

Maintainability
Maintainability is ensured because it is based on coding conventions, various documents are written
in the same format as the previous version, and the level of description is written at the same or
higher granularity than the previous version.

Portability The installation procedure is the same as the previous version. Portability is, therefore, guaranteed.

6. Conclusions

Regardless of whether the development process used in a project is the cascade model
method or the agile method, quality-oriented development can be achieved by using
quality characteristics.

In the case of agile processes, it is possible to confirm that quality is continuously im-
proving by defining the metrics to be achieved in each pipeline in the CI/CD pipeline. From
the test engineer’s perspective, more time can be spent on test design and automated script-
ing, leaving more time for exploratory testing. In addition, the results of automated tests
become the criteria for initiating manual tests, allowing them to efficiently focus on more
complex manual tests. This allows them to efficiently focus on further improving quality.

In an agile process, it is important to design and execute testing activities efficiently in
the CI/CD pipeline and to clarify in the sprint plan the quality characteristics that should be
prioritized in each sprint. By clarifying the quality characteristics that should be prioritized
in each sprint in the sprint plan and by developing a method to use SQuaRE [19] in the
agile process, it can be recommended to build quality more efficiently.

In order to use quality characteristics as a KPI in large-scale agile development, it is
necessary to prepare a KANBAN for this KPI and check the quality status of each team
in a centralized manner. It will be necessary to educate all project members about quality
characteristics, specify the purpose and means of using quality KPIs in the project charter,
and ensure that project members understand and follow this project charter.

Author Contributions: Conceptualization, methodology, validation, formal analysis, investigation,
resources, data curation, writing—review and editing, D.K.; supervision, H.I. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Daiju Kato was employed by the company Nihon Knowledge Co., Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. DevOps, 10+ Deploys Per Day: Dev and Ops Cooperation at Flickr. 2009. Available online: https://www.slideshare.net/jallspaw/

10-deploys-per-day-dev-and-ops-cooperation-at-flickr (accessed on 15 January 2022).
2. Jenkins. Available online: https://www.jenkins.io/ (accessed on 1 February 2020).
3. ISO/IEC 25010; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—

System and software quality models. ISO: Geneva, Switzerland, 2011.
4. ISO/IEC 25000; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—

Guide to SQuaRE. ISO: Geneva, Switzerland, 2014.

https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://www.jenkins.io/

Digital 2024, 4 243

5. Ito, J.; Yamaguchi, S.; Okazaki, K.; Yokosuka, S.; Kimoto, K.; Yamanaka, M.; Nagata, A.; Yamaguchi, T.; Hosoya, S. Quality
Assurance by Quality Stepwise Refinement in Agile Development. Report on the Results of the Subcommittee Meeting of the
Software Quality Control Research Group. 2018, pp. 137–144. Available online: https://www.juse.or.jp/sqip/workshop/report/
at-tachs/2018/4_aqa_ronbun.pdf (accessed on 15 January 2022). (In Japanese).

6. JIS X 25051; Software Engineering-Systems and Software Quality Requirements and Evaluation (SQuaRE)-Requirements for
Quality of Ready to Use Software Product (RUSP) and Instructions for Testing. JISC: Tokyo, Japan, 2016.

7. Cohn, M. The Forgotten Layer of the Test Automation Pyramid. Available online: https://www.mountaingoatsoftware.com/
blog/the-forgotten-layer-of-the-test-automation-pyramid/ (accessed on 1 February 2022).

8. ISO/IEC 25030; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—
Quality Requirements Framework. ISO: Geneva, Switzerland, 2019.

9. GitHub. Available online: https://github.com/ (accessed on 1 February 2022).
10. Atlassian. Available online: https://www.atlassian.com/ (accessed on 1 February 2020).
11. Kato, D.; Shimizu, A.; Ishikawa, H. Quality classification for testing work in DevOps. In Proceedings of the 14th International

Conference on Management of Digital EcoSystems (ACM MEDES 2022), Venice, Italy, 19–21 October 2022.
12. MSTest. Available online: https://github.com/Microsoft/testfx-docs/ (accessed on 1 February 2021).
13. NUnuit. Available online: https://nunit.org/ (accessed on 1 February 2021).
14. Ranorex. Available online: https://ranorex.com/ (accessed on 1 February 2020).
15. Kato, D.; Ishikawa, H. Develop quality characteristics based quality evaluation process for ready to use software projects.

Com-put. Sci. Inf. Technol. 2016, 6, 9–21. [CrossRef]
16. ISO/IEC 25051; Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—Requirements

for Quality of Ready to Use Software Product (RUSP) and Instructions for Testing. ISO: Geneva, Switzerland, 2014.
17. ISO/IEC/IEEE 29119-3; Software and Systems Engineering—Software Testing—Part 3: Test Documentation. ISO: Geneva,

Switzerland, 2021.
18. Kato, D.; Okuyama, A.; Ishikawa, H. Introduction of test management based on quality characteristics. In Proceedings of the

1st Inter-national Workshop on Experience with SQuaRE Series & Their Future Direction IWESQ 2019), Putrajaya, Malaysia, 2
December 2019.

19. Shang, W. Bridging the divide between software developers and operators using logs. In Proceedings of the 34th International
Conference on Software Engineering (ICSE‘12), Zurich, Switzerland, 2–9 June 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.juse.or.jp/sqip/workshop/report/at-tachs/2018/4_aqa_ronbun.pdf
https://www.juse.or.jp/sqip/workshop/report/at-tachs/2018/4_aqa_ronbun.pdf
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid/
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid/
https://github.com/
https://www.atlassian.com/
https://github.com/Microsoft/testfx-docs/
https://nunit.org/
https://ranorex.com/
https://doi.org/10.5121/csit.2016.60302

	Introduction
	Considerations for Using Quality Model in Agile Development Processes
	Enhance of Management of Test Results for Agile Projects
	Using Quality Characteristics for KPI under Agile Development Projects
	Results of Two Practices
	Conclusions
	References

