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Abstract: Organic solar cells (OSCs) are becoming increasingly popular in the scientific community
because of their many desirable properties. These features include solution processability, low weight,
low cost, and the ability to process on a wide scale using roll-to-roll technology. Enhancing the
efficiency of photovoltaic systems, particularly high-performance OSCs, requires study into not
only material design but also interface engineering. This study demonstrated that two different
types of OSCs based on the PTB7-Th:IEICO-4F and PM6:Y6 active layers use a ZnO bilayer electron
transport layer (ETL). The ZnO bilayer ETL comprises a ZnO nanoparticle (ZnO NP) and a ZnO
layer created from a sol-gel. The effect of incorporating ZnO NPs into the electron transport layer
(ETL) was studied; in particular, the effects on the electrical, optical, and morphological properties
of the initial ZnO ETL were analyzed. The ability of ZnO films to carry charges is improved by the
addition of ZnO nanoparticles (NPs), which increase their conductivity. The bilayer structure had
better crystallinity and a smoother film surface than the single-layer sol-gel ZnO ETL. This led to a
consistent and strong interfacial connection between the photoactive layer and the electron transport
layer (ETL). Therefore, inverted organic solar cells (OSCs) with PTB7-Th:IEICO-4F and PM6:Y6 as
photoactive layers exhibit improved power conversion efficiency and other photovoltaic properties
when using the bilayer technique.
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1. Introduction

Solution-processed photovoltaic systems are characterized by their cost-effectiveness
and suitability for large-scale manufacturing, making them particularly well suited for
novel applications in the area of photovoltaics [1,2]. Consequently, considerable research
efforts have been focused on the study of solution-based systems, both organic and inor-
ganic in composition. The systems under consideration encompass an extensive variety
of materials, including polymers [3–6], small molecules [7–9], quantum dots [10,11], and
perovskite photovoltaics [12–15]. Typically, conventional organic solar cells (OSCs) con-
sist of various fundamental components, including a transparent conductive anode, such
as indium tin oxide (ITO), an anode buffer layer composed of acidic poly(3,4-ethyl ene-
dioxythiophene)/poly(styrenesulfonate) (PEDOT: PSS), a low work function metal cathode,
such as aluminum (Al) or calcium (Ca), and a photoactive layer comprising a blended
bulk heterojunction (BHJ) conjugated polymer and fullerene derivative. The aforemen-
tioned constituents are arranged in a configuration like that of a sandwich, wherein the
photoactive layer is positioned between the anode and cathode electrodes. Nevertheless,
the PEDOT:PSS layer’s high acidity, corrosive properties, and hygroscopic nature pose a
limitation for ITO. In addition, organic solar cells (OSCs) are subject to degradation and
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inadequate stability as a result of the low work function of the metallic cathode, which is
prone to oxidation when exposed to oxygen and water vapor [16,17]. To tackle this issue,
scholars designed inverted device configurations that modify the direction of the hole and
electron transport. The accomplishment of this goal entails the usage of a metal possessing
a high work function as the anode situated on the top portion of the device, while utilizing
indium tin oxide (ITO) as the cathode positioned on the bottom side [18,19].

In order to improve electron extraction, several different metal oxides have been stud-
ied. These include zinc oxide (ZnO) [20–22], titanium oxide (TiOx) [23], cesium carbonate
(Cs2CO3) [24,25], and others. Metal oxide coatings may be used to modify ITO’s work func-
tion. Both thermal evaporation and a solution-based technique are capable of achieving this
goal. For large areas, such as those used in roll-to-roll printing, solution-processed metal
oxides are the material of choice [26]. Zinc oxide (ZnO) garnered a lot of interest due to its
potential use as an electron transport layer (ETL). These features stem from the material’s
exceptional electron mobility, environmental stability, transmittance, and the ease with
which different nanostructures may be generated by means of solution methods. Because of
its low cost and great flexibility, ZnO is often considered an ideal material for the roll-to-roll
manufacturing process, especially when applied on flexible substrates [27,28]. Various
methods such as sol-gel (SG) [21], hydrothermal [29], electrodeposition [30], atomic layer
deposition [28], and so on, have been explored for the preparation of various nanostructures
of ZnO.

Crystallinity of zinc oxide (ZnO) synthesized via sol-gel processing at low temper-
atures is poor. It has been discovered that the observed decrease in crystallinity leads
to a larger level of trap dispersion inside the ETL, which has a deleterious effect on the
device’s overall performance [20]. On the other hand, research from the past has shown
that prolonged annealing of the ZnO film at high temperatures might increase its porosity.
It is possible, then, that voids will form between the ZnO film and the active layer. It is vital
to realize that these voids contain the ability to detrimentally disrupt the effectiveness of
electron extraction [31]. Therefore, it is crucial to design a systematic method for adjusting
the ETL of ZnO to address the porosity problem while retaining the absorption properties
of the active layer. The interface engineering has been conducted by incorporating addi-
tional layers, including fullerene derivatives, conjugated polyelectrolytes, semiconductor
NPs, and metal oxides, between the ZnO and the active layer [32–34]. Prior research has
indicated that the use of insertion layers, such as water-soluble conjugated polymer PFN-Br
and PEIE, can successfully decrease the surface defect density of the ZnO electron transport
layer (ETL) and enhance the interfacial contact between the active layer and the ZnO NP
ETL. This leads to an enhancement in the mobilities of charge carriers and a decrease in
the leakage current of the devices [35,36]. In their study, Cheng et al. discovered that the
binding energy difference between polymer donors and NFAs was increased by modifying
the surface of zinc oxide with potassium, as compared to untreated zinc oxide. The outcome
was a vertical phase separation that favored the acceptor near the cathode and the donor
near the anode. This led to significantly improved charge extraction efficiency [37]. Sup-
plementary Table S1 presents the photovoltaic parameters of organic solar cells utilizing a
ZnO-based electron transport layer (ETL). According to Supplementary Table S1, using ETL
with modifications results in better performance than using a bare ZnO-based cell in terms
of charge recombination loss reduction, charge collection probability enhancement, and
exciton quenching inhibition in organic solar cells (OSCs). All J-V characteristics of the mod-
ified ETL-based device were considerably greater than those of the control device, leading
to an increase in efficiency along with other photovoltaic measurements [10,32–34,37–42].
In another investigation, Pan et al. were able to achieve a power conversion efficiency (PCE)
of 14.29% for flexible organic solar cells. This was accomplished by employing sol-gel ZnO
and ZnO NP bilayer ETLs. The utilization of the sol–gel ZnO and ZnO NP bilayer electron
transport layer (ETL) has resulted in decreased porosity and enhanced interface charge
collection [43].
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To improve the performance of organic solar cells with the use of a non-fullerene
acceptor, this research modified the ZnO ETL. ZnO nanoparticles (NPs) were integrated
with a sol-gel-generated ZnO layer to create the ETL, and the resulting structure had a
bilayer architecture. The adoption of a bilayer ZnO structure, which modifies the electrical
and optical properties of the material, exemplifies the effectiveness of the method. Moreover,
organic solar cells (OSCs) with two distinct active layers, namely PTB7-Th:IEICO-4F and
PM6:Y6, exhibit remarkable photovoltaic performance. The power conversion efficiency
(PCE) was 10.2% when devices with PTB7-Th:IEICO-4F as the active layer were combined
with a bilayer ZnO NP/ZnO electron transport layer, compared to 9.18% when using a
single layer of ZnO NPs. A comparable efficiency boost, from 13.95% to 14.6%, was seen
using a PM6:Y6 active layer in a ZnO NP/ZnO ETL bilayer arrangement. Significant
improvements in other photovoltaic characteristics may be attributed to the higher PCE
seen in OSCs with an inverted configuration.

2. Experimental Section
2.1. Materials

Chlorobenzene (CB), chloroform (CF), molybdenum oxide (MoO3), 2-methoxyethanol
(CH3OCH2CH2OH, 1-chloronaphthalene (CN), zinc acetate dihydrate (Zn(CH3COO)2·2H2O,
>99.0%), and ethanolamine (NH2CH2CH2OH, >99.5%) were purchased from Sigma-Aldrich
(Darmstadt, Germany). Zinc oxide nanoparticles, and reagent alcohol (anhydrous, <0.003%
water) were purchased from Sigma-Aldrich (Darmstadt, Germany). ITO glass substrates
(12 × 12 mm2) were obtained from Lumtec (New Taipei City, Taiwan). 1-materials (Dor-
val, Quebec, Canada) provided poly [4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo [1,2-b;4,5-
b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno [3,4-b]thiophene-)-2-carboxylate-
2-6-diyl)] (PTB7-Th), 2,2′-[[4,4,9,9-Tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno [1,2-b:5,6-
b′]dithiophene-2,7-diyl]bis[[4-[(2-ethylhexyl)oxy]-5,2-thiophenediyl]methylidyne(5,6-difluoro-
3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[propanedinitrile] (IEICO-4F), poly[(2,6-(4,8-bis(5-
(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-
thienyl-5′,7′-bis(2-ethylhexyl)benzo [1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)] (PM6), and 2,2′-
((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno-
[2′′,3′′:4′,5′]thieno [2′,3′:4,5]pyrrolo [3,2-g]thieno-[2′,3′:4,5]thieno [3,2-b]indole-2,10-diyl)bis
(methanylylidene))-bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitril)
(Y6), which were used as supplied.

2.2. Device Fabrication

The glass substrates coated with ITO underwent a cleaning process including sequen-
tial immersion in soapy water, de-ionized (DI) water, acetone, and isopropanol for a period
of 10 min for each stage. After a drying time of 15 min, a UV ozone system was applied for
an extra duration of 20 min. In the experimental arrangement, 109 mg of zinc(II) acetate
dihydrate and 1 mL of methoxy ethanol were mixed together to make a control device. A
further 32 µL of ethanolamine was added to the combination as well. The mixture was
stirred mechanically for at least 6 h at room temperature in a glovebox containing between
0.5 and 1 ppm of oxygen. Spincoating at 4000 RPM for 1 min was used to deposit the ZnO
sol-gel solution onto the ITO substrate. The coated substrate was then heated on a hot plate
for 45 minutes at a temperature of 170 ◦C [44,45]. To create the ZnO nanoparticle layer, a
solution of 3% ZnO nanoparticles was made. The 50 µL of zinc dispersion and the 1622 µL
of reagent alcohol were mixed to make this solution. After being stirred in a N2 glovebox
overnight, the ZnO nanoparticle solution was spun at 5000 RPM for 1 min to create a
coating. Subsequently, the coated solution was heated up by annealing at a temperature of
145 ◦C for 40 min [46,47]. Following this, PTB7-Th and IEICO-4F were mixed together at
a mass ratio of 1:1.5. The mixture was then added to 1 mL of 25 mg/mL chlorobenzene
(CB). In addition, CN was added at a concentration of 0.5 vol%. The resultant solution was
mechanically stirred in a glovebox at room temperature for 12 h. Spin coating was used to
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apply the PTB7-Th:IEICO-4F solution onto the substrate at 3000 RPM for 60 s. The coated
substrate was then subjected to thermal annealing at 100 ◦C for 10 min [34,48].

To make the PM6 and Y6 solution, 1.46 mL of chloroform (CF) (22 mg/mL) was
combined with a 1:1.2 mass ratio of PM6 and Y6 and 7.3 vol% of CN additive. The solution
was kept in the glovebox and stirred at room temperature for a whole night. For three
hours at 60 ◦C, the PM6:Y6 solution was agitated before being spun into a coating. Spin
coating at 5000 RPM for 60 s (film thickness about 100 nm) and then immediate annealing
at 90 ◦C for 10 min was used to deposit the thermally annealed PM6:Y6 solution [49].

Finally, using a shadow mask and a thermal evaporator system, we deposited a 10
nm thick hole transport layer (MoO3) at 10−5 mbar, and then we thermally evaporated
a 100 nm thick layer of silver to serve as patterned metal contacts. All the cells had an
effective area of 0.045 cm2.

2.3. Characterization Techniques

Within two days of fabrication, the organic solar cells (OSCs) were kept in a nitrogen
(N2) glovebox and then tested in room air. This approach was used in order to limit the
effect of device deterioration on the attained results. Newport Corporation (Stratford, CT,
USA) supplied the I-V testing equipment for the solar cells, which included a Keithley
2400 source meter, which was used to take the J-V readings. In order to obtain accurate
readings, we used the AM 1.5G solar simulator, which has a light output of 100 mW/cm2.
The brightness of the solar simulator was adjusted by comparison with a silicon solar cell.
A metal shadow mask was used to keep the device area consistent across all device types
with varying electron transport layers (ETLs) to prevent an overestimation of short-circuit
current density (Jsc) values due to lateral charge transfer. All devices were tested at room
temperature for the measurements. In order to perform the optical characterization, a
UV-Vis-NIR spectrometer, namely a Perkin Elmer-Lambda 950 (Seer Green, Beaconsfield,
UK), was used. The surface morphology of the film was analyzed using atomic force
microscopy (AFM) in conjunction with a scanning probe microscope (SPM) from the
company Bruker (Billerica, MA, USA). An FEI Nova Nano SEM 230 (Cramlington, UK),
a scanning electron microscope (SEM) with a field emission electron source, was used
to obtain the surface topography picture. The X-ray diffraction (XRD) analysis included
taking readings from a range of 20◦ to 60◦ by using Cu K radiation and collecting data from
X’Pert Data Collector (v2.2d), purchased from PANalytical B. V. (Almelo, The Netherlands).
The study was performed utilizing step-scanning methods, with a step size of 0.02◦. The
EQE tests were performed using PV measurements’ QEX10 spectral response apparatus
(Boulder, CO, USA). An Autolab PGSTAT-30 (Utrecht, The Netherlands) outfitted with a
frequency analyzer module measured electrochemical impedance spectroscopy (EIS) across
the range of 106 Hz to 100 Hz. The X-ray photoelectron spectroscopy (XPS) experiment was
conducted in an ultra-high-vacuum environment using a device called an ESCALAB 250Xi
from the British firm Thermo Scientific (Cramlington, UK). The Al K radiation source was
used to conduct the X-ray photoelectron spectroscopy (XPS) research, with the photons it
released having an energy of 1486.68 eV. This investigation made use of Thermo ScientificTM

Avantage Software (v5.9925).

3. Results and Discussion
3.1. Structural Properties

Figure 1 depicts the X-ray diffraction (XRD) patterns of ZnO, ZnO nanoparticles
(NPs), and ZnO NP/ZnO on an ITO glass substrate. Zinc oxide (ZnO) ETLs produce
X-ray diffraction (XRD) patterns with distinct peaks that are characteristic peaks of the
hexagonal wurtzite phase of ZnO [40,50]. The XRD parameters extracted from Figure 1
for all the mentioned ETL films are displayed in Table S2. Broad, dispersed peaks are
observed for the sol-gel ZnO film, which is indicative of its amorphous nature. Many
studies have confirmed an expansion of the trap dispersion inside low-crystalline ZnO
charge transport layers. The aforementioned phenomena may impede charge transmission,
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which can have a negative impact on device functioning [51]. While sol-gel ZnO showed
weaker peaks, ZnO-NPs and bilayer electron transport layers (ETLs) showed stronger
peaks, indicating greater crystallinity. However, because the ETLs require substantially
lower temperature processing at 145 ◦C, this approach is essential. The bilayer ZnO layer
was shown to have improved photovoltaic properties compared to those of the ZnO NPs.
There are two primary aspects that can boost organic solar cell (OSC) efficiency. These
two main factors contribute to the enhancement of the performance of organic solar cell
(OSC) devices [52,53]. The use of a two-step annealing technique offers a viable strategy to
enhance the intended growth in the z-axis direction [54]. The heterogeneous nucleation
effect is another interesting phenomenon. A higher intensity of the favored (002) peak
may be indicative of better crystal quality, which in turn would contribute to better charge
transfer [55].
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3.2. Optical Properties

Figure 2 shows the quantitative results of an analysis of the transmission and ab-
sorption spectra of the electron transport layers (ETLs). All the films have approximately
82% transparency within the visible spectrum. When comparing single-layer ZnO with
a bilayer electron transport layer (ETL), there is no significant difference in transmission
quality. Tauc plot analysis, as shown in Figure S1, was used to calculate the bandgap of
the ETLs. The presence of the ITO-coated glass substrate may be ascribed to the decrease
in absorption at 450 nm in the transmission spectra [56]. The absorbance spectra of the
films also demonstrated that the peak absorption occurred within the visual range. The
thickness of the bilayer ZnO NP/ZnO is substantially greater than that of the monolayer.
However, it is possible that the absorption characteristics of the photovoltaic layer are not
significantly affected by these phenomena. As a result, the ETLs allow a significant amount
of visible light to reach the active layer.
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3.3. Morphological Properties

Figures 3 and 4 show the results of atomic force microscopy (AFM) and scanning
electron microscopy (SEM) analyses of the surface morphologies of sol-gel ZnO, ZnO
NP, and bilayer ZnO films on ITO substrates. Table 1 displays the results of atomic force
microscopy (AFM) characterization of the root mean square roughness (Rrms). The sol-gel
ZnO layer displays a surface that is particularly smooth, as evidenced by a root mean square
roughness (Rrms) value of 5.8 nm (Figure 3a). The Rrms value of 9.25 nm indicates that the
surface roughness of a single layer of ZnO nanoparticles significantly increased. Similar
findings were reported by Fan et al. [57] in their investigation of a ZnO NP ETL on an ITO
glass substrate. The morphology of ZnO nanoparticles (ZnO-NPs) is defined by a rough
particle structure that is characterized by the existence of voids. Surface imperfections, as
stated above, might enhance the likelihood of exciton entrapment and recombination [58].
Figure 3b shows the ZnO film NPs, and Figure 3c shows the bilayer ZnO film. The highly
crystalline ZnO NPs have a smoother surface after the integration of the sol-gel ZnO film.
The pinholes of the ZnO nanoparticles were significantly reduced in size and number when
an additional layer with amorphous properties was included in the structure. The interfacial
characteristics of the bilayer ZnO surface are predicted to improve as a consequence of
these phenomena [59].
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Figure 4. Scanning electron microscopy (SEM) images of ETL films on top of ITO glass substrate:
(a) ZnO, (b) ZnO NP, (c) ZnO NP/ZnO, and (d) cross-section of bilayer ZnO NP/ZnO.

Table 1. Morphological parameters of different ETLs.

Electron Transport Layer Rrms (nm) Average (nm)

ITO/ZnO 5.8 18.96

ITO/ZnO NP 9.25 43.51

ITO/ZnO NP/ZnO 4.77 19.49

ITO/ZnO
NP/ZnO/PTB7-Th:IEICO-4F 1.78 6.37

ITO/ ZnO NP/ZnO/PM6:Y6 2.35 7.06

The absence of crystallinity in the sol-gel ZnO film was further confirmed by scanning
electron microscopy (SEM) as previously mentioned, as shown in Figure 4a. Incorporating
a sol-gel ZnO film results in the production of a more refined surface for widely crystalline
ZnO NPs, as shown by a comparison between the ZnO NP film displayed in Figure 4b and
the bilayer ZnO film depicted in Figure 4c. The pinholes of the ZnO nanoparticles were
significantly reduced in size when an additional layer with amorphous properties was
introduced between the aggregated nanoparticles. Figure 4d represents the cross-section
view of the bilayer ZnO NP/ZnO ETL, confirming good contact with the ITO substrate.
The indicated effect of this study is the enhancement of interfacial characteristics with
regard to the bilayer ZnO surface.

3.4. Elemental States

The X-ray photoelectron spectroscopy (XPS) technique was employed to better un-
derstand the elemental composition and electrical characteristics [60]. X-ray photoelectron
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spectroscopy (XPS) was used to analyze the chemical compositions of distinct layers in the
ZnO, ZnO-NP, and bilayer films produced on an indium tin oxide (ITO) glass substrate. To
analyze the spectral data, the Shirley background method was used inside the Avantage
program [61]. The spectra from the XPS survey are shown in Figure S2. High-resolution
O1s X-ray photoelectron spectroscopy (XPS) images were taken of the ETL films, and the
envelope curve and deconvoluted Gaussian sub-peaks are shown in Figure 5. The peak
binding energies, peak full width at half maximum (FWHM), and percentages of atomic
elements are shown in Table S3. Figure 5 shows the existence of three Gaussian subpeaks,
labeled O1s A, O1s B, and O1s C, in each of the three ETL films. The O1s A, O1s B, and
O1s C subpeaks of ZnO films are often related to chemical reactions between nearby zinc
and oxygen atoms. ZnO bonds are responsible for the occurrence of lattice oxygen (OL),
with oxygen ions found in oxygen-deficient areas having a binding energy somewhere
in the middle. The existence of oxygen vacancies (VO) often accompanies these oxygen
deficiency states. Conversely, the higher binding energy may be attributed to the presence
of nonlattice oxygen (OC), signaling the presence of chemisorbed or dissociated oxygen
and hydroxyl groups (-OH) [62–64]. Only the O1s A and O1s B peaks may be found in the
spectra of the ZnO and bilayer films. An additional O1s C peak is observed for the ZnO-NP
film, suggesting a greater number of oxygen-poor areas. Such regions in ZnO-NPs may
serve as recombination centers for photogenerated holes and electrons, leading to a lower
fill factor (FF) and power conversion efficiency (PCE) [65]. Zinc oxide (ZnO) deposited
on top of ZnO nanoparticles reduced oxygen deficit, leading to increased photovoltaic
performance in bilayer organic solar cell (OSC) devices.
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core label XPS spectra of ZnO, ZnO NP, and bilayer ZnO NP/ZnO ETL.

3.5. Photovoltaic Performances

The primary objective of the present study was to examine the production of or-
ganic solar cells using two specific conjugated polymer materials, namely PTB7-Th and
PM6, as donor materials. Additionally, two non-fullerene materials, IEICO-4F and Y6,
were used as acceptor materials in this analysis. The organic solar cells (OSCs) shown in
Figure 6a were produced using an inverted architecture that included the following layers:
ITO/ZnO/PTB7-Th:IEICO-4F/MoO3/Ag and ITO/ZnO/PM6:Y6/MoO3/Ag. Figure 6b
shows the molecular structure of the donor and acceptor materials, while Figure 6c,d dis-
play the energy band diagrams and absorption spectra of the donor and acceptor materials,
respectively. The aim of this work was to apply a bilayer ZnO NP/ZnO electron transport
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layer (ETL) to two distinct systems to examine the impact of interface engineering on the
active layers of these materials.
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The findings of the electrical performance investigation performed on the constructed
PTB7-Th:IEICO-4F and PM6:Y6 active layers-based organic solar cell (OSC) devices using
different electron transport layers (ETLs) are shown in Figure 7a,d. The photovoltaic
performance metrics, including open-circuit voltage (Voc), current density (Jsc), fill factor
(FF), and power conversion efficiency (PCE), are shown in Table 2. The PCE of 9.18% for the
control device is consistent with the results published in earlier academic publications. A Jsc
value of 22.08 mW/cm2, a Voc value of 0.735 V, and an FF value of 56.29% were obtained by
the control device. By incorporating ZnO NPs between the ITO and ZnO layers, the device’s
PCE improved from 9.18% to 10.2%. It is obvious that the parameters Voc, Jsc, and FF also
increased in the ZnO NP/ZnO bilayer devices. The device based on PM6:Y6 exhibited
similar characteristics to the device based on PTB7-Th:IEICO-4F, as shown in Figure 7c,f.
The highest efficiency attained for devices based on PM6:Y6 was 14.6%. The statistical
distribution of others photovoltaic parameters Voc, Jsc, and FF are shown in Figure S3.
The bilayer devices exhibit a concurrent improvement in all photovoltaic parameters as
compared to the ZnO control device. Table 2 presents the photovoltaic properties of devices
based on PTB7-Th:IEICO-4F and PM6:Y6, including the power conversion efficiency (PCE),
open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), shunt resistance
(Rsh), and series resistance (Rs).
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Table 2. Photovoltaic parameters for PTB7-Th:IEICO-4F and PM6:Y6 devices with ZnO and ZnO
NP/ZnO ETL.

Devices PCE (%) Voc (V) Jsc (mA/cm2) FF (%) Rsh (Ωcm−2) Rs (Ωcm−2)

ZnO/PTB7-Th:IEICO-4F 9.18 0.73 22.08 56.29 356.85 6.345

ZnO NP/ZnO/PTB7-Th:IEICO-4F 10.2 0.74 23.55 58.29 380.25 5.22

ZnO/PM6:Y6 13.95 0.80 24.92 69.33 966 34.69

ZnO NP/ZnO/PM6:Y6 14.6 0.80 25.97 69.63 1045.8 31.75

The external quantum efficiency (EQE) spectra of devices using different ETLs were
examined, and the results are compared in Figure 7b,e providing a more in-depth examina-
tion of the considerable improvement in Jsc. There is a great degree of consistency between
the EQE and ETLs. In contrast to devices that use sol-gel ZnO ETLs, devices that use bilayer
ZnO ETLs provide an improvement in the EQE of 350–700 nm.

Both the ITO/ZnO/PTB7-Th:IEICO-4F/MoO3/Ag and ITO/ZnO/PM6:Y6/MoO3/Ag
OSC devices displayed a maximum EQE of approximately 85% when optimized with a
bilayer ZnO electron transport layer (ETL). These results provide conclusive evidence
supporting the reported increase in photocurrent for the bilayer ZnO configuration.

The dark J-V curves for each device employing different combinations of ETLs in the
PM6:Y6- and PTB7-Th:IEICO-4F-based devices are shown in Figure 8. The existence of
leakage current in the device is shown by the intersection of the J-V curve with the y-axis
under reverse bias [62,66]. Among the devices investigated, the PTB7-Th:IEICO-4F and
PM6:Y6 devices with bilayer ETLs were found to have the lowest leakage current. A low
leakage current results in a high shunt resistance (Rsh) for organic solar cells. This property
is indicative of high charge transport efficiency and little charge recombination [67].
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Figure 8. Dark current–voltage characteristics for (a) PTB7-Th:IEICO-4F (black line shows dark JV
with ZnO ETL and red line shows dark JV with ZnO NP/ZnO)- and (b) PM6:Y6-based devices (black
line shows dark JV with ZnO ETL and blue line shows dark JV with ZnO NP/ZnO).

The bilayer ZnO NP/ZnO device’s stated decrease in leakage current is responsible
for the observed increase in the fill factor (FF) and short-circuit current (Jsc). The interfacial
charge transfer properties are responsible for the considerable variation in reverse bias
leakage conditions observed in this research. It is essential to acknowledge that the enquiry
conducted in this work centered only on the manufacturing process of ZnO [68]. Compared
to sol-gel ZnO ETL devices, bilayer ZnO ETL devices have a higher short-circuit current
density (Jsc). The decrease in leakage current reported in the bilayer ZnO device may be due
to the better interfacial morphology and increased crystallinity. The short-circuit current
density (Jsc) and fill factor (FF) are both enhanced as a consequence of the aforementioned
changes [69,70].

To assess how a device responds to an alternating current (AC) input, electrochemical
impedance spectroscopy (EIS) is often used. The applied voltage chosen for both types
of devices was 0.6 V, which was slightly lower than the open-circuit voltage (Voc). When
exposed to a low voltage bias, the traps existing in the active layer can react to the modified
signal. On the other hand, when exposed to a higher voltage bias, the trap state has the
capacity to hinder the response [62,71,72]. The Nyquist plots produced from electrochemical
impedance spectroscopy (EIS) studies are shown in Figure 9.
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Figure 9. Nyquist plots at a bias of 600 mV under the dark condition for PTB7-Th:IEICO-4F- and
PM6:Y6-based devices.

As shown in Figure 9, the plots were evaluated by fitting them with an equivalent
electrical circuit. The electrical circuit was composed of a solitary resistance circuit and
two parallel connections consisting of resistance and capacitance (RC). The analogous
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circuit model elucidates the relationship between the series resistance (Rs) and the sheet
resistance of the electrodes and electrical contacts. Both the resistance at the interface
between the electrode and the bulk heterojunction (BHJ) layer and the resistance inside
the active layer are related to the resistance of charge transport (Rt) [73,74]. The carrier
recombination resistance (Rrec) is a parameter that provides insight into the nonradiative
recombination processes occurring within a device. The dielectric capacitance of the device
is denoted as Cg, whereas the dispersed chemical capacitance is represented as Cµ [75,76]
Table S4 presents a concise overview of the estimated parameters of the analogous circuit.
The observed reduction in transport resistance indicates that the incorporation of a ZnO
NP/ZnO bilayer electron transport layer (ETL) in organic solar cells (OSCs) leads to a
decrease in contact resistance, possibly enhancing the efficiency of charge extraction. As
previously mentioned, the findings of this study provide additional support for the theory
that the integration of ZnO nanoparticles (NPs) between a ZnO layer and an ITO-coated
glass substrate results in advantageous outcomes for the effective operation of inverted
photovoltaic systems.

3.6. Stability Measurement

Stability of OSCs represents a crucial factor for commercialization. Therefore, it is
necessary to clarify the factors affecting photovoltaic performance and device lifetime [77,78].
Hereupon, the efficiency is attenuated with ZnO and ZnO NP/ZnO ELTs for both (PTB7-
Th:IEICO-4F and PM6:Y6) types of devices. All the devices were stored for aging over
10 days and then tested, as shown in Figure 10. Figure 10a,b show the normalized PCEs
of both types of devices and Figure 10c,d show SEM images of bilayers for both fresh
and aged devices and Figure S4 shows cross-sectional SEM images for fresh bilayer ZnO
NP/ZnO and aged samples on ITO substrate. From SEM, it can be seen that there are some
tiny pinholes on the aged sample surface, which may cause slightly lower performance
of the aged bilayer device compared to the fresh bilayer device. The efficiency of the
sol-gel ZnO NP/ZnO bilayer ETL OSCs remained above 90% even after a period of 10 days,
demonstrating their better stability compared to the control devices. The control devices’
performance degradation primarily resulted from a decrease in FF, suggesting that the
long-term stability was impacted by interface degradation. The rapid deterioration of
the ZnO device performance is mainly attributed to the presence of excess -OH groups,
which enhance the photocatalytic effect of ZnO and consequently expedite the device
degradation [45,79,80]. The inclusion of ZnO nanoparticles between the ZnO and active
layer has been found to significantly decrease surface defects and recombination at the
interface. This reduction is the primary factor contributing to the enhanced stability
observed in ZnO NP/ZnO electron transport layer (ETL) devices.
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face with the photoactive layer. It was also shown that the ZnO NP/ZnO interlayer exhib-
ited higher interlayer conductivity than the pure ZnO interlayer. The strong effect of the 
remarkable properties of the ZnO NP/ZnO bilayer on the processes of charge extraction, 
transport, and recombination in organic solar cell (OSC) devices is highly relevant. This 
work focused on the use of a bilayer consisting of ZnO nanoparticles (NPs) and ZnO for 
modifying the interface of ZnO. The main aim is to improve the efficiency of organic solar 
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NP/ZnO interlayer exhibited higher interlayer conductivity than the pure ZnO interlayer.
The strong effect of the remarkable properties of the ZnO NP/ZnO bilayer on the processes
of charge extraction, transport, and recombination in organic solar cell (OSC) devices is
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(NPs) and ZnO for modifying the interface of ZnO. The main aim is to improve the efficiency
of organic solar cells (OSCs) by boosting their photovoltaic performance.
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