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Abstract: Salinity and metal stress are significant abiotic factors that negatively influence plant growth
and development. These factors lead to diminished agricultural yields on a global scale. Organic
amendments have emerged as a potential solution for mitigating the adverse effects of salinity and
metal stress on plants. When plants experience these stresses, they produce reactive oxygen species,
which can impair protein synthesis and damage cellular membranes. Organic amendments, including
biochar, vermicompost, green manure, and farmyard manure, have been shown to facilitate soil
nitrogen uptake, an essential component for protein synthesis, and enhance various plant processes
such as metabolism, protein accumulation, and antioxidant activities. Researchers have observed that
the application of organic amendments improves plant stress tolerance, plant growth, and yield. They
achieve this by altering the plant’s ionic balance, enhancing the photosynthetic machinery, boosting
antioxidant systems, and reducing oxidative damage. The potential of organic amendments to deal
effectively with high salinity and metal concentrations in the soil is gaining increased attention and is
becoming an increasingly popular practice in the field of agriculture. This review aims to provide
insights into methods for treating soils contaminated with salinity and heavy metals by manipulating
their bioavailability through the use of various soil amendments.
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1. Introduction

Salinity and metal stress are pressing concerns that pose significant threats to soil
microbial communities, soil fertility, food security, biodiversity, and the sustainability of
agriculture [1,2]. Climate change and global warming contribute to rising sea levels, which,
in turn, result in new areas becoming saline and barren each year. In addition, human
activities such as the use of sewage water for irrigation, industrial operations, mining, and
the overuse of pesticides further contribute to the toxicity of soils [3]. These anthropogenic
and geogenic actions are responsible for the accumulation of salts and toxic metals like
arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg), posing risks to both plants
and the environment [4,5]. Although some metals are harmless or even beneficial at low
concentrations, they become toxic as their levels increase [1].

Organic amendments (OAs), such as Sesbania rostrata biomass, vermicompost (VC),
compost, biochar (BC), and poultry and farmyard manures (FYMs), provide an alternative
approach to alleviate these abiotic stresses [6–8]. These high-nitrogen organic amendments
contribute to the improvement of soil quality and promote plant growth by reducing the
bioaccumulation and translocation of metal stress under salinity [9]. Additionally, they
have the added benefit of enhancing soil health by increasing nutrient availability, reducing
the uptake of harmful metals, and strengthening antioxidant defenses in plants. According
to multiple studies, OAs significantly contribute to the improvement of soil health, increase
nutrient uptake, enhance the stability of cellular membranes in plants, and also decrease
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the bioavailability of pollutants [10]. This results in increased biomass production in soils
affected by salinity and metal contamination. Organic amendments act by increasing the
content of soil organic matter, which, in turn, stimulates the activity of soil microorgan-
isms [11,12]. These microorganisms convert nutrients into forms that are readily available
for plant uptake. Moreover, OAs have a positive impact on the physical and chemical
properties of the soil, thereby enhancing soil health, crop yield, and quality [13–16]. Fur-
thermore, phytoextraction of metals by using different plants like Brassica rapa, Cannabinus
sativa, Helianthus annuus and Zea mays is also found effective to remove metal pollution
from soil [17]. Given these benefits, it is crucial for researchers and agriculturalists to adopt
a more comprehensive approach to improve soil fertility and bolster plant defenses against
abiotic stresses. Several studies have already validated that the application of OAs is an
environmentally sound, economically viable, and agronomically effective technique [18].

The objective of this study is to explore the impact of various OAs on mitigating the
detrimental effects of salinity and metal stress in plants. This review will focus specifically
on how the application of OAs can restore plant morphophysiological and biological
parameters that have been compromised by salinity and metal stress.

2. Effects of Salinity and Metal Stress
2.1. Impact of Salinity on Soil Properties

Saline soils are characterized by high concentrations of dissolved salts such as sodium
(Na+), calcium (Ca2+), potassium (K+), magnesium (Mg2+), chloride (Cl−), sulfate (SO4

2−),
carbonate (CO3

2−), and bicarbonate (HCO3
−). These soils have an electrical conductivity

(EC) greater than 4 dS m−1 at 25 ◦C. Excessive Na+ content adversely affects soil quality
by reducing soil permeability, structural stability, and bulk density [19] (Figure 1). It
also decreases the soil’s water-holding capacity and rate of water infiltration. High salt
concentrations inhibit the activity of nitrifying bacteria, leading to reduced nitrification,
which is crucial for nitrogen (N2) release in soil for plant growth [20]. Soil enzyme activities
and respiration are also hindered by salinity. According to Sritongon et al. [21], a negative
correlation exists between electrical conductivity and soil properties such as organic matter
(OM), organic carbon (OC), and soil enzyme activities.
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2.2. Impact of Metal Stress on Soil Properties

Soil is a natural source of heavy metals (HMs), originating from the weathering of
metal-bearing rocks. Human activities (industrial activities, agricultural activities, and
metal-containing wastes) have increased these concentrations, causing environmental dam-
age [22,23]. When contamination reaches certain levels, HMs obstruct phytoremediation
and reduce plant growth and production [24]. Heavy metals negatively impact soil quality,
affecting the structure and abundance of soil microorganisms [25]. Heavy metals reduce
enzymatic activities by decreasing urease and catalase activities, along with the reduced
mineralization of soil organic matter (SOM), and affect their accumulation, resulting in
hampered soil quality. However, Kumar et al. [26] argue that HMs enhance oxidative stress
in plants, damage cell structures, and disrupt ionic homeostasis. The process of photosyn-
thesis, which is essential for plant development and productivity, can be interfered with
by HMs. For instance, photosystem II is inhibited by Hg, which lowers the amount of
chlorophyll (chl) and decreases the effectiveness of light absorption and energy conversion.
Similar to this, lead disrupts photosystem I’s electron transport chain, which hinders the
production of ATP and NADPH needed for carbon absorption.

2.3. Impact of Salinity on Crop Productivity

Salt stress suppresses plant growth and productivity by affecting the availability
of nutrients, which is regulated by rhizosphere microbial activity [27]. Salinity causes
osmotic stress, reduced shoot growth, and stomatal closure owing to the accumulation of
Na+ and Cl− in leaves, where photosynthesis takes place [28,29]. It also accelerates the
senescence of older leaves through chl degradation [30,31]. Higher Na+ accumulation in
the intracellular space (cytosolic apartment) can inhibit enzyme activities and reduce water
relations, photosystem II (PS II), and CO2 assimilation in plants [31]. Salinity stress can
reduce shoot biomass by 24–41% and grain yield by 7–30% in foxtail millet [32]. Excessive
salinity impairs antioxidant activity, causes lipid peroxidation, denatures proteins and
nucleic acids, and increases reactive oxygen species (ROS), causing cellular damage [33,34].

2.4. Impact of Metal Stress on Crops

Pedogenic and anthropogenic activities are the primary sources of soil metal pollution,
which adversely affects plant growth and productivity. Metals like iron (Fe), cobalt (Co),
copper (Cu), manganese (Mn), zinc (Zn), and molybdenum (Mo) serve as micronutrients at
low concentrations but become toxic at higher levels, hampering plant development [35].
For instance, toxic levels of Cu hampered photosynthesis and plant growth. Heavy metal
deposition disrupts various biochemical, physiological, and morphological processes in
plants, thereby reducing agricultural yield [36]. In addition, inhibition of photosynthesis,
chlorosis, low biomass accumulation, altered nutrient absorption, water balance, disturbing
the redox balance, and causing oxidative stress are typical harmful impacts of Cd HM [37]
(Figure 2).
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3. Types and General Role of Organic Amendments

Organic amendments positively amend degraded soil structures and enhance soil pro-
ductivity and quality. Originating from both plants and animals, their types are illustrated
in Figure 3.
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3.1. Biochar

Biochar, a carbon © rich byproduct of biomass pyrolysis, contains various amounts
of C, hydrogen (H), sulfur (S), oxygen (O2), N, and minerals. Although almost 70% of
its composition is C, the rest depends on the feedstock used to make it. It has recently
been recognized for its beneficial economic and environmental impacts on soil and crop
productivity. Biochar amends pH, increases CEC, sequesters C, enhances P availability [38],
improves soil aeration and porosity [39,40], and enhances soil fertility [41–44]. Additionally,
by promoting the rhizosphere’s biological environment with biochar, soil enzyme activity
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and microbial growth are enhanced [45]. It also assists in nutrient retention in soil microp-
ores and supports easy plant nutrient assimilation [46]. Salinity is mitigated by replacing
Na+ from exchangeable soil sites, reducing Na+ adsorption ratios, and alleviating oxidative
stress from NaCl. Researchers have also found that the presence of oxides, hydroxides, and
carbonates in BC improves soil productivity. Furthermore, biochar’s strong adsorption
capacity, particularly in bamboo charcoal, makes it an ideal nutrient preserver and stabilizer
for HMs, notably Pb and Cd in polluted soils [47–50]. Biochar’s effects on degraded soil
and crops are demonstrated in Figure 4.
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3.2. Compost

Compost is rich in OM and essential plant nutrients like N, P, and K, fulfilling de-
ficiencies found in saline-affected soils. It also decreases the sodium absorption ratio by
increasing Ca2+ in the soil solution. Furthermore, compost enhances SOM by binding soil
particles into aggregates, thus improving soil air circulation and infiltration, increasing
the available micronutrients, and promoting plant and microbial growth [51–53]. As com-
post alters soil properties [54], it elevates soil fertility for crop production. Moreover, it
mitigates oxidative stress, boosts chl content and photosynthesis rates, and promotes crop
growth [55,56]. Ahmed et al. [57] advocate for using affordable water hyacinth compost to
amend degraded saline-sodic soils and improve crop yields. Composting livestock dung
can quickly transform it into a biofertilizer, eliminating harmful chemicals, HMs, pathogens,
and antibiotics [58,59].

3.3. Vermicompost

Produced by using earthworms to convert organic waste into nutrient-rich compost,
VC has various plant nutrients. It acts as a biosorbent, reducing the negative impacts
of salinity [60] and harmful ions like Pb, Cd, nickel (Ni), and chromium (Cr) [61]. In
the composting process, earthworms elevate the mineralization and humification rates
in soil, increasing soil pore space, water infiltration rates, and water retention, which
increase microbial populations and organic C content and promote growth, yield, and fruit
quality [62]. Researchers have identified that VC has more nutrients than regular compost,
enhancing soil fertility in multiple ways. It bolsters SOM and exchangeable minerals like
K+, Ca2+, and Mg2+ in soil, reducing EC. Additionally, VC improves plant physiological
factors, reducing harmful effects like oxidative stress and enhancing plant growth [63,64]. It
also immobilizes soil HMs like Cd and diminishes their phytoavailability [65], subsequently
increasing grain yields by supplying essential plant hormones [66]. The effects of VC on
soil and crops are depicted in Figure 5.
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3.4. Green Manure

Various green manuring crops are employed to enhance soil fertility [67] and reclaim
soil salinity [11,68]. Sesbania, a leguminous plant, is effectively utilized as green manure
(GM). It mitigates soil salinity by drawing out excess salt and harnessing it through its
biomass, simultaneously improving soil structure and nutrient availability (Figure 6). This
leads to optimized crop growth. Decomposed GM crops elevate soil CO2 concentration,
aiding CaCO3 dissolution and hastening the removal of exchangeable Na+ ions from saline
soils [69,70]. Sesbania and sunhemp demonstrate significant potential for reducing soil
Na+ and ameliorating soil salinity. Choudhary et al. [71] found that incorporating GM
decreases soil pH in saline-sodic soils due to its acidifying effect, which, in turn, boosts the
available soil and plant minerals. Organic materials not only ameliorate conditions but
also augment the physical attributes of the soil, nutrient availability, and the SOM status in
degraded soils. Sesbania, given its ample biomass and nodulation, is a widely preferred
OA. It enriches the soil with N, P, K, and OAs, enhancing the C:N ratio, Ca2+ status,
and salinity mitigation [72]. Decomposed GM acts as a slow-release fertilizer, benefiting
subsequent crops [73]. Shirale et al. [11] posited GM as a potential gypsum substitute,
attributing to its incremental salinity reclamation capabilities and bolstering of biological
N fixation and C sequestration. Mustard species, utilized as GM, improve soil fertility
due to their rhizosphere activity and phytoremediation potential [74]. Various GM crops,
including mustard, phacelia, and borage, have been reported to boost soil respiration and
diminish bioaccessible metal amounts, thereby reducing ecotoxicity [75]. Bruning et al. [76]
hypothesize that legumes, despite their high salinity levels, can serve as GM due to their
growth and atmospheric N fixation abilities.

3.5. Duckweed and Water Hyacinth

Over recent decades, phytotechnologies, which utilize plants for pollutant removal,
have gained prominence. Both terrestrial and aquatic plants possess remarkable metal-
sorption capabilities [77]. Duckweed (DW, Lemna), an aquatic member of the Lemnaceae
family, is enriched with trace minerals, K, and P, and vital sources of vitamins A and B,
proteins, fats, amino acids, and starch. Infusing soil with duckweed biomass increases the
uptake of nutrients like N, K, Ca, Mg, Fe, and Zn, subsequently boosting crop production.
Duckweed extracts have been employed as biostimulants for olive plant growth [78].
Notably, duckweed can withstand pollutants such as ammonia and HMs, marking its
potential as a purifier for agricultural and industrial wastewater [79]. However, some
research indicates that DW efficacy in HM (Ni, Cd) pollutant removal diminishes under



Stresses 2024, 4 191

salt stress [80]. Contrarily, others have demonstrated DW’s capability to accumulate
boron in environments with salinity under 100 mM, significantly improving osmotic stress
resistance [66]. Water hyacinth, a rapidly proliferating aquatic plant, owes its growth to
nutrient content. Activated C derived from water hyacinth has applications in salinity
reduction through mineral absorption [81]. Both Eichhornia crassipes and Lemna minor
effectively remove HM ions, such as As, from water [82].
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3.6. Poultry Manure

Poultry manure serves as an organic material for enhancing soil fertility because it is
rich in both macro- and micronutrients. Organic N-rich poultry manure (PM) is commonly
utilized to amend and enhance fertility in saline soil. As found by numerous researchers,
such as Leithy et al. [13], PM ameliorates the physical, chemical, and biological properties
of soils and mitigates the toxic impacts of salinity across various plant species. Additionally,
PM has been shown to decrease certain trace metal concentrations in soil.

3.7. Farmyard Manure

Farmyard manure (FYM) is a composted blend of cow dung, cow urine, litter, and
other dairy byproducts. It is a reservoir of nutrients, including N, P, and trace elements, all
of which enhance soil fertility and soil quality, along with the stable humic substance [83].
As an integral source of soil C, it bolsters the activities of soil flora and fauna and effectively
reduces EC and pH in saline-sodic soils. Singh and Agrawal [84] emphasize that FYM is
invaluable for elevating soil fertility and diminishing soil metal contamination. Its solo use
or in conjunction with N, P, and K (inorganic fertilizers) can mitigate the phytoavailability
of HMs in the soil. This results in maintaining plant vitality and bolstering growth and
yield, especially at contaminated agricultural sites. Chicken and cow manures, when added
to polluted soil, drastically cut down the phytoavailability of Cd while amplifying the
growth and yield of sweet basil [9]. Rani et al. [85] underscored that FYM, in combination
with cow dung and pig manure, can alleviate soil metal stress and markedly reduce Ni
by forming resilient metal complexes with organic manure. Among the modifications to
reduce chromium toxicity, FYM has been the most effective.

3.8. Press Mud

Press mud, a byproduct of the sugar industry, is esteemed for augmenting SOM,
cultivating a conducive environment for microbial communities, and, ultimately, boosting
soil fertility and crop yield [86–88]. Beyond being a vital nutrient source, press mud also
magnifies plant nutrient uptake through roots, fortifies membrane integrity, and enhances
osmoprotectant processes [89]. Additionally, press mud is rich in hydroxyl ions, pivotal for
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metal adsorption and the diminishment of toxic metal bioavailability [88,90]. The manifold
benefits of press mud on soil and crops, especially under salinity conditions, are illustrated
in Figure 7.
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[83]. As an integral source of soil C, it bolsters the activities of soil flora and fauna and 
effectively reduces EC and pH in saline-sodic soils. Singh and Agrawal [84] emphasize 
that FYM is invaluable for elevating soil fertility and diminishing soil metal contamina-
tion. Its solo use or in conjunction with N, P, and K (inorganic fertilizers) can mitigate the 
phytoavailability of HMs in the soil. This results in maintaining plant vitality and bolster-
ing growth and yield, especially at contaminated agricultural sites. Chicken and cow ma-
nures, when added to polluted soil, drastically cut down the phytoavailability of Cd while 
amplifying the growth and yield of sweet basil [9]. Rani et al. [85] underscored that FYM, 
in combination with cow dung and pig manure, can alleviate soil metal stress and mark-
edly reduce Ni by forming resilient metal complexes with organic manure. Among the 
modifications to reduce chromium toxicity, FYM has been the most effective. 

3.8. Press Mud 
Press mud, a byproduct of the sugar industry, is esteemed for augmenting SOM, cul-

tivating a conducive environment for microbial communities, and, ultimately, boosting 
soil fertility and crop yield [86–88]. Beyond being a vital nutrient source, press mud also 
magnifies plant nutrient uptake through roots, fortifies membrane integrity, and enhances 
osmoprotectant processes [89]. Additionally, press mud is rich in hydroxyl ions, pivotal 
for metal adsorption and the diminishment of toxic metal bioavailability [88,90]. The man-
ifold benefits of press mud on soil and crops, especially under salinity conditions, are il-
lustrated in Figure 7. 
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3.9. Others

The lion’s share of humic compounds, notably humic acid, represent the most bio-
logically vivacious components of soil and compost [91]. Incorporating humic substances
leads to an elevation in soil pH, cation exchange capacity, and OC content, released P,
controlled N loss, reduced metal mobility, and improved crop growth [92]. Sewage sludge
is embraced as an OA due to its ample concentrations of N, P, and K. Typically, urban
sludge is benign relative to its industrial counterpart. Steel slag, an industrial residue rich
in Ca, Si, Fe, and P [93], holds promise for remediating HM pollution. Historically, steel
slag, along with BC application, significantly improved growth performances, reduced the
oxidative stresses of okra, and mitigated the adverse effects of As stress [94]. Its inclusion
diminished the accessible amount of Cd in tainted soils [95], consequently cutting down
soil Cd concentration from root to shoot and enhancing rice growth and the soluble protein
concentration of black gram [61,86].

4. Biochemical and Physiological Adaptations to Stresses in Crops and Soil through
Different Organic Amendments

In recent decades, integrating organic resources into salt-affected soils has become
a common practice. Before applying to the soil, OAs should be processed to mitigate
potential risks to plants and achieve the desired transformation and stabilization of complex
molecules into OM. Decomposed organic residues often result in more stable organic matter
compared to fresh materials. These decomposed residues mineralize more slowly and
benefit the soil over longer periods, especially in soils with low OM content [26]. The
introduction of OAs improves the physicochemical and biological properties of soils,
consequently enhancing plant growth.

4.1. Organic Amendments and Improved Soil Quality under Salinity

L’opez-Valdez et al. [96] found that OAs ameliorate soil properties by leaching Na+

and other salts and by reducing the exchangeable sodium percentage. Additionally, these
amendments stimulate the biological and enzymatic activities in the soil, increasing the
population of beneficial organisms and thereby enhancing soil fertility. In saline soils, both
VC and compost additions have been shown to boost soil cation exchange capacity by
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20–70% [57,84,97]. These amendments also enhance microbial biomass and soil respiration
compared to unamended soils [55] and increase the salinity tolerance of rice, sugarcane,
and fennel by increasing K+/Na+ and Ca2+/Na+ [66,84,98,99] (Table 1). They also improve
the availability of soil P, which had previously been tightly bound due to soil pH. This
results in effective mitigation of salt stress in plants, like tomatoes [56].

Table 1. Application of compost and vermicomposting for soil and crop salinity reclamation.

Plant Species Salinity Level Types and Doses
Effect of Amendments

Reference
On Soil On Crop

Rice (Oryza sativa) Salinity, 2.9 dS m−1 VC with rice husk ash
(1000 kg Rai−1)

Increased exchangeable
K+, Ca2+, and Mg2+ in

soil, decreased EC.

Increased plant growth and
grain yield. [99]

Lettuce (Lactuca
sativa) Salinity, 8.32 dS m−1 VC 50% and

eggshell 12.5% Reduced soil salinity
Increased germination,

growth of seedlings, and
yield.

[100]

Rice–wheat Salinity, 5.02 dS m−1
Hyacinth compost, 10

and 15 t ha−1 with
gypsum, 50%

Increased
water-holding capacity,

soil aggregation, and
soil CEC.

Rice and wheat yield
increased. [57]

Sugarcane
(S. officinarum L.)

Salinity,
4.12 dS m−1

VC, 10, 20 t ha−1 and N
fertilizer, 50, 75, and

100 kg ha−1

Reduced soil EC and
Na+/K+ ratio and
reduced salinity

mitigation.

Increased sugarcane
growth and production. [101]

Bean (Phaseolus
vulgaris L.)

NaCl (20, 40, 60, and
80 mM)

VC and sand mixture
(0:100; 10:90; 25:75;
50:50, and 75:25)

Not observed

Increased photosynthetic
rate, concentration of K+

and Ca2+ in leaves, and
growth of bean improved.

[102]

Potato (Solanum
tuberosum L.)

NaCl (15, 20, and
25 mM)

VC, 300, 580, and
860 g plant−1 Not observed

Increased plant height and
stem diameter; potato

production.
[103]

Tomato (S.
lycopersicum L.) NaCl (150 mM) VC extract, 6 mL L−1

Increased nutrient
availability and

reduced soil salinity.

Increased accumulation of
proline, total sugars leaf
water content, reduced

osmotic stress.

[104]

Mustard–pearl millet
cropping system Salinity, 7.2 ds m−1 Rice straw compost 3 to

5 t ha−1

Reduced soil salinity
and increased microbial

activity

Increased plant growth,
grain, and straw yield. [105]

Rice (O. sativa) EC (7.5 dS m−1)
Compost

(15 t ha−1)

Improved soil nutrient
availability and

ameliorated salinity.

Increased essential
micronutrients in rice grain,

increased crop yield.
[106]

Tomato (S.
lycopersicon) NaCl (40 and 80 mM) Compost (25 t ha−1)

Increased macro- and
micronutrients and

reduced salinity

Increased accumulation of
osmoprotectants, such as
soluble sugars and amino

acids. Increased crop yield.

[56]

Fennel (Foeniculum
vulgare)

NaCl (40, 80, and
120 mM) VC extract (10%)

Increased Ca2+ content,
alleviated salinity stress

of plants.

Increased root Ca2+ content,
reduced Na content,

enhanced germination and
growth of fennel.

[107]

Maize (Zea mays) Salinity (10.6 dS m−1) VC (72 g pot−1) + cow
dung (33 g pot−1)

Soil physical and
chemical properties

improved

Increased germination
percentage, plant height,

root length, and crop yield.
[54]

Tomato (S.
lycopersicon) 50 (100 mM of NaCl) Compost (55 g kg−1) -

Increased enzymatic
activities, reduced oxidative

stress, promoted plant
growth and productivity.

[108]

The combined application of compost with BC in saline soil provides both micro-
and macronutrients to the rhizosphere, boosting soluble sugars and amino acid levels.
This enhances nutrient (N, P, and K) assimilation in the soil [46,51]. Incorporating VC
with eggshells and rice husk improves nutrient availability, particularly Ca2+ and K+,
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by fostering a more diverse soil microbial community in rice and wheat crops under
salinity [98,99].

Using legume green manuring, especially Sesbania, raises SOC, improves nutrient
availability, and enhances the soil’s physical, chemical, and biological characteristics. It
also bolsters the yield of crops like rice and wheat [109–112] (Table 2). Sunnhemp green ma-
nuring has shown promise in saline soils by improving soil fertility and nutrient status [72].
Once decomposed, GM crops release organic acids, fostering a favorable environment for
soil microbes. This promotes the release of various nutrients, thus improving soil quality.

Table 2. Application of green manuring crops and duckweed for salinity reclamation of crops and soil.

GM Crops as OA Crop Salinity
Effect of Amendments

Reference
On Soil On Crops

Green manure + FYM
(1:1 w/w) at
12.5 kg m−2

Oryza sativa 1–2% salt
Soil fertility improved

and alleviated the
problem of salinity.

Increased total chl,
photosynthesis

abilities, crop growth,
and grain yield.

[109]

Sesbania + Compost+
FYM, 5% volume

O. sativa and T.
aestivum

Total soluble
salts = 25.3 mg L−1 Increased soil fertility.

Increased rice–wheat
production in

saline-affected area.
[110]

(Sesbania + Gypsum),
12.5 to 20 Mg ha−1

Rice–Wheat (T.
aestivum)

Salinity
(2.7–4.5 dS m−1) Alleviated soil salinity

Increased crop growth
and grain (rice and

wheat) yield.
[111]

Water hyacinth (E.
crassipes) and

Duckweed (Lemna
minor)

Industrial
wastewater 45 mM NaCl

Decrease in pH, EC,
oxidation redox

potential (ORP), and
salinity.

- [112]

Furthermore, BC possesses a high adsorption capacity, aiding in the retention of
negative ions and enhancing cation exchange capacity by introducing Ca2+ into the soil
solution [98] (Table 3). This replaces and releases essential mineral nutrients to the soil
and boosts its OM content [113,114]. Biochar applications also mitigate soil compaction,
encourage evaporation, and reduce salinization, making it a potent remedy for reducing
soil ESP [114]. The addition of cow dung, PM, also reduced soil ESP and EC and notably
increased soil Ca2+ status and improved soil salinity [115,116] (Table 4). Again, press mud
application in soil improved soil OM and nutrient availability and reduced salinity.

Table 3. Application of biochar for soil and crop salinity reclamation.

Plant Species Salinity Level Type and Dose of
Amendment

Effect of Amendments
Reference

On Soil On Crops

Rice (Oryza sativa)

50 mM and 75 mM of
NaCl

BC + Trico compost +
Phospogypsum

Increased soil N, P, K+/Na+,
Ca2+/Mg2+, enhanced

SO4
2−, NO3

−, Mn4+, Fe
content in rice rhizosphere,
and reduced CH4 emission.

Increased plant height,
shoot biomass, and crop

yield.
[98]

Salinity, 1 and 3 dS m−1 Rice straw BC (0.3%)

Reduced Na+ and
Cl− contents of soil and

improved physiochemical
properties of soil.

Granum lamellae in
mesophyll cells’ structure

is improved, improved
rice productivity.

[117]

Salinity (2, 4, 6, and
8 dS m−1) BC (2 kg m−2)

Increased soil moisture
content and

physicochemical properties

Increased chl content,
relative water content,
stomatal conductance,

reduced proline content,
increased plant growth

and productivity.

[118]
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Table 3. Cont.

Plant Species Salinity Level Type and Dose of
Amendment

Effect of Amendments
Reference

On Soil On Crops

Wheat (Triticum
aestivum L.)

NaCl, 3000 ppm
Soybean straw

BC (5%) (w/v) +
selenium (0.15%)

Not observed

Increased biomass
assimilation, mineral
uptake, chl synthesis,
photosynthesis rate.

Reduced EL, improved
salinity tolerance.

[119]

Saline water irrigation
(10 dS m−1)

Wheat straw BC (10
and 20 t ha−1)

Reduced soil bulk density,
increased permeability and

nutrient status of soil

Improved growth,
photosynthesis and

reduced aging of leaves.
[120]

150 mM NaCl BC (5%) and jasmonic
acid (5 µM)

Reduced accumulation of
Na+

Reduced oxidative stress
and boosted antioxidant

activity.
[121]

EC = 7.17 dS m−1 BC (2% w/w) + Lysin
(1.0 and 2.0 mM)

Reduced soil salinity and
increased nutrient

availability.

Increased chl a, chl b,
total chl, and carotenoid,
photosynthesis, reduced

MDA, H2O2, and EC,
increased growth,

biomass, and grain yield.

[122]

Maize (Zea mays)

100 mM NaCl
Wheat straw BC

+ Arbuscular
mycorrhizal fungi

Soil nutrient status
improved, and mitigated

salinity.

Improved photosynthetic
performance, reduced

oxidative damage,
enhancement maize

production.

[123]

EC = 0.01955 dS cm−1

Mixture of cotton straw,
peanut shell, and
sawdust (90:5:5,

w/w/w) 30, 50 and
75 t ha−1

Increased soil bulk density,
soil pore space,

macroaggregates, CEC,
total carbon, N, P, K and
decreased exchangeable

Na+ and decreased salinity.

Reduced oxidative stress.
improved palmitoleic
acid, oleic acid, and

linolenic acid contents,
increased crop yield.

[124]

Soyabean (Glycine
max)

Salinity (5 and
10 dSm−1)

BC (50 and 100 g kg−1

soil)

Enhanced nutrient
availability and lower Na+

content.

Improved leaf chl (a, b, c)
content [113]

Mungbean (Vigna
radiata L.)

Salinity, 5 and
10 dS m−1 BC (50 and 100 g kg−1)

SOM status improved and
salinity stress mitigated.

Improved xylem
structure, decreased ABA

and ACC, increased
root/shoot ratio, total
root area, and plant

growth.

[125]

Sorghum (Sorghum
bicolor L.)

Salinity, 0.8, 4.1, and
7.7 dS m−1

BC, 2.5, 5, and 10%
(w/w)

Decreased soil degradation
and reduced salinity.

Increased plant height,
DM RWC, crop yield, and

mineral availability,
decreased osmotic stress.

[114]

Quinoa
(Chenopodium

quinoa
L.)

Saline water irrigation
(400 mM) BC, 5% (w/w)

Increased soil water
content, nutrient

availability and reduced
Na+

Increased plant height,
shoot biomass, and grain

yield, increased leaf
photosynthetic rate and
stomatal conductance,

maintained ionic balance.

[126]

Salinity (20 dS m−1)
BC (1%) w/w

and Endophytic
bacteria

Reduced soil salinity and
increased nutrient

availability

Reduced antioxidant
activities, increased plant
growth, grain yield and
grain nutrient content.

[127]

Salinity, 11.5 dS m−1 Cotton shell BC 1 and
2% (w/w) Reduced soil salinity.

Reduced Na+ induced
phytotoxicity and

increased yield. Increased
plant growth, water
contents, stomatal

conductance, and chl
contents.

[128]



Stresses 2024, 4 196

Table 3. Cont.

Plant Species Salinity Level Type and Dose of
Amendment

Effect of Amendments
Reference

On Soil On Crops

Potato (S.
tuberosum) 25 and 50 mM of NaCl BC, 5% (w/w) Reduced soil salinity.

Increased photosynthetic
rate, stomatal

conductance, relative
water content, increased

shoot biomass, root
length, and tuber yield.

[129]

Tomato (Solanum
lycopersicum)

Salinity level 0.3% and
0.6% of soil dry weight

salts

BC, 1% of soil dry
weight Not observed

Increased total soluble
solids and vitamin C in

tomato.
[130]

Salinity (1, 3 dS m−1) BC (2, 4, 8%)

Released mineral ion K+,
Ca2+, and Mg2+ in soil

solution, increased organic
matter.

Increased vegetative
growth and production. [131]

Cabbage (Brassica
oleracea var.

Capitata)
150 mM NaCl

BC doses (weighed at
the rate of 2.5%, and 5%

by soil weight)
Reduced salinity stress.

Reduced oxidative stress,
ABA content, Na+

content and increased
growth of cabbage

seedling.

[132]

Jute (Corchorus
capsularis)

50, 100, and 150 mM
NaCl

BC (2.0 g kg−1 soil) +
Chitosan (100 mg L−1)

-

Improved enzymatic and
non-enzymatic

antioxidant systems,
enhanced glyoxalase

enzyme activities,
increased Na+/K+ ratio,
reduced oxidative stress,
plant growth improved.

[133]

Table 4. Salinity reclamation through PM, press mud, sewage sludge, cow dung, and FYM.

Plant Species Stress Level
OA Doses and

Application Method
Effect of Amendments

Reference
On Soil On Crops

Rice (Oryza sativa) Salinity, 6.4 dS m−1
FYM (5 to10 t ha−1) +

PM (4 to 8 t ha−1 +
proline

Reduced soil salinity.

Increased nutrient uptake,
plant height, panicle length,

grain yield, and straw yield of
rice, decreased K+/Na+ in

both grain and straw.

[134]

Wheat-Maize Salinity, 5.4 dS m−1 PM + FYM + GM
(12 t ha−1)

Increased CEC, total N, soil
carbon, reduced soil EC,
pH, and SAR, improved

soil structure.

Increased crop growth,
biomass, and grain yield. [135]

Rice–wheat Salinity, 3.6 dS m−1 Sugarcane press mud
(10 t ha−1)

Reductions in soil pH, ESP,
reduced soil salinity.

Enhanced leaf water
potential, membrane, reduced

membrane injury stability,
Na+/K+ accumulation,

increased photosynthetic
efficiency, plant growth, and

yield.

[136]

Wheat (Triticum
aestivum)

Salinity,
11.72 dS m−1

Sugarcane press mud
10–15 g kg−1

Increased SOM, improved
microbial activity, enhanced

nutrient availability,
reduced soil salinity.

Increased nutrient availability
in rhizosphere, fertile tiller,
plant biomass production,

and plant growth, grain yield.

[137]

Wheat (T. aestivum) Salinity (6,
12 dS m−1)

Sugarcane press mud
(3, 6, and 9%)

Improved soil properties,
increased Ca2+ and K+ in

soil, leaching of Na+,
improved salt induced toxic

effect.

Increased chl content (a, b,
and total chl), soluble sugar,
proteins, free amino acids,
leaf water content, proline,

K+, and activity of
antioxidant enzymes; APX),
CAT, and POD, rice growth
and yield reduced EL, H2O2,

MDA.

[138]
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Table 4. Cont.

Plant Species Stress Level
OA Doses and

Application Method
Effect of Amendments

Reference
On Soil On Crops

Pepper (Capsicum
annuum) Salinity (6 dS m−1)

PM (10% and 30%) with
exogenous gibberellins

(0, 250 mg L−1)

Decreased EC and osmotic
stress in soil solution,

increased nutrient
availability.

Increased photo synthetic
rates, stomatal conductance,

total chl, total biomass, leaf N,
P, and K, reduced proline and

Na content, increased fruit
set.

[139]

Potato (S.
tuberosum)

Salinity, 0.9 to
5.9 dS m−1

PM (20, 30, 40, 50, 60
mt ha−1)

Decreased nutrient losses
and soil salinity.

Increased K, N in leaves and
roots, growth, yield, and

nutritional status of tuber.
[140]

CherryTomato
(Lycopersicon
esculentum)

Salinity,
0.44 mS cm−1

Poultry manure (0. 25,
31, 38, and 44%)

Improved soil properties,
soil available nutrients and

reduced salinity.

Increased plant height, root
length, fresh and dry weight,
number of flowers and shoot

K concentration.

[116]

Saline soil Salinity, 4 dS m−1 Cow dung (2%)
Improved soil aggregation,
Ca2+, reduced ESP and EC,

soil pH, Na+
Not observed [115]

In conclusion, organic additions can significantly improve the mineral nutrient status
and growth of plants in saline soils, mainly through the reduced translocation of harmful
salts [116].

4.2. Organic Amendments Improve Crop Growth under Salinity

Salinity impedes nutrient availability due to osmotic stress. Organic amendments
directly contribute by adding C, promoting microbial cells that counteract osmotic stress
through osmoprotectants under various stresses [141,142] (Figure 8). A high Na+ buildup
inhibits N absorption, thereby reducing protein levels in grains [143]. Organic amendments,
on the other hand, enhance SOM content. They provide a substrate for decomposing
organisms, resulting in better nutrient assimilation and, consequently, higher grain yields
in rice and lettuce [100–102,104,106]. The negative effects of salinity were mitigated, and
rice root and shoot growth was amplified by the FYM + PM treatment [89].
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According to Ahmed et al. [57], incorporating FYM into the soil boosted its OM content
and decreased SAR. This replaced Na+ in the soil with Ca2+, promoting growth, increasing
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biomass output, and reducing the negative impacts of salt stress on crop growth. The
combined application of FYM and PM augmented maize growth [7], while combining
FYM with GM crops increased essential soil nutrients, thus improving soil quality and crop
yield [135].

Biochar application in saline soil creates a conducive environment for rice seedlings
by augmenting nutrient availability and enhancing soil physical properties [117] while also
maintaining leaf water potential [125]. Additionally, BC has been shown to boost the shoot
biomass of mung bean [125], quinoa [126], and tuber yield of potatoes, as well as elevate
total soluble solids and vitamin C in tomato plants in saline soil [3,130]. Again, VC addition
in soil increased the growth of sugarcane, bean, potato, fennel, and tomato [101–104,107].

4.3. Organic Amendments Enhance Relative Water Content, Photosynthetic Pigments, and Reduce
EL under Salinity

Salinity markedly decreases crop photosynthesis by increasing the activity of the
enzyme chlorophyllase, which breaks down chl. Moreover, chl synthesis in plants is
suppressed due to the accumulation of MDA and hydrogen peroxide (H2O2), resulting
in diminished Mg uptake under salinity stress. However, the use of OAs reduces the
accumulation of MDA and H2O2 in plants, thereby increasing Mg uptake and, consequently,
chl levels [127,143].

Organic amendments enhance SOM content, fostering a favorable soil environment
that notably increases relative water content and reduces EL in plants, bolstering their
growth [106,136,144]. Press mud, for instance, plays a crucial role in minimizing EL by
reducing reactive oxygen species production [89]. Furthermore, a combined application of
FYM and PM resulted in increased concentrations of chl a and b, total chl, and carotenoids,
higher relative water content, and decreased EL compared to controls.

The introduction of BC to soil has been observed to amplify photosynthetic rates, en-
hance chl synthesis, and reduce EL in crops like wheat, maize, tomato, and
soybean [113,118,122–131]. Alharbi and Alaklabi [121] have pointed out that wheat benefits
from the combined use of BC and jasmonic acid in terms of growth, photosynthesis, and
salt stress tolerance. As per Cha-um and Kirdmanee [109], applying GM in conjunction
with FYM to RD6 rice grown in saline soil leads to an increase in chl a concentration, overall
chl pigments, and photosynthetic capabilities.

4.4. Organic Amendments Improve Antioxidant Activities

Salt stress triggers an excessive generation of ROS, which negatively impacts pro-
teins, lipids, and carbohydrates [145]. Organic amendments help manage these issues by
maintaining reduced Na+ concentrations and lowering MDA and H2O2 accumulations.
Applying VC, either through foliar or edaphic methods, bolsters the activity of antioxidant
enzymes, namely SOD, POD, and CAT [108]. This leads to a decrease in EL and oxidative
stress and benefits maize seedling growth [146]. Furthermore, applications of FYM + PM
under salinity stress notably enhance antioxidant activities, elevating CAT and APX levels
by 59.9% and 68.8%, respectively. This also boosts grain protein and Fe and Zn contents in
rice [89]. Separate studies showed that PM can decrease CAT activity while augmenting
nutrient availability in saline soils [139]. Lastly, BC has proven beneficial for plant growth
under salinity. It achieves this by diminishing oxidative stress, moderating phytohormone
production, enhancing stomatal attributes, and promoting seed germination. It also bolsters
microbial activities, which, in turn, boosts maize growth [124].

4.5. Organic Amendments Maintain Ionic Homeostasis under Salinity

Research indicates a pronounced accumulation of Na+ and a reduction in K+ around
plant roots under salinity stress. This elevates the osmotic pressure in the soil solution.
However, using OA facilitates a higher K+ buildup and curtails Na+ accumulation in rice
plants. This notably decreases the Na+/K+ ratio; Ca2+ plays a vital role in enhancing
membrane integrity [147]. The application of press mud has been found beneficial in im-
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proving Ca2+ accumulation, reducing Na+ accumulation, and mitigating salinity stress [89].
Vermicompost and regular compost applications aid in nutrient assimilation and ion bal-
ance [108]. This offers relief to plants from the severe damage inflicted by salinity. In
BC-treated soils, there is a notable improvement in the K+/Na+ ratio, a reduction in Na+

and Cl− contents, and an augmentation of abscisic acid and plant nutrient contents, as
observed in cabbage seedlings [132].

4.6. Organic Amendments Increased the Yield under Salinity

Organic amendments boost crop yields by an average of 27% compared to mineral
fertilization [148]. Biochar, due to its high adsorption potential, can mitigate EL, even
in situations with high salt concentrations. This is achieved by decreasing Na+ absorp-
tion [113,118,120,122–131]. This results in increased plant height, total biomass, and overall
productivity of sorghum, rice, and wheat [98,114,117–120]. According to She et al. [131],
BC, through its adsorption of Na+ ions, releases other essential minerals like K, Ca, and
Mg into the soil solution. This helps reduce salt stress and augment tomato production.
Hafez et al. [118] observed that BC treatments markedly reduced Cd and Na+ uptake
in plants, subsequently enhancing the growth and photosynthesis of rice. Moreover, a
combination of BC and selenium–chitosan nanoparticles have shown promise in protecting
wheat plants from salt damage and increasing plant growth and production by restoring
nutrient balance, ionic homeostasis, and C assimilation [119].

Naveed et al. [127] found that the combined application of BC with endophytic bacte-
ria significantly boosted the grain yield and grain quality of quinoa. On the other hand,
when used on its own, BC improved Na+-induced oxidative stress and increased quinoa’s
grain yield [128]. Using FYM alongside PM application noticeably improved the yield
traits of the rice crop by 9.83% and 15.58% [89,134]. Moreover, PM application was found
to enhance wheat production and P absorption [135]. The highest concentration of vital
macronutrients in rice grain, wheat, and pearl grain was consistently associated with com-
post treatment [105,106]. Olive yield, when considering pomological character, also saw an
uptick with compost application [56,149]. Savy et al. [56] reported that applying compost
effectively countered salt stress in tomato plants, favoring metabolite accumulation com-
pared to mineral fertilization. In addition, the introduction of Sesbania GM and sunhemp
notably elevated cotton production in salt-affected soils [72]. Ghafoor et al. [111] opined
that Sesbania green manuring yielded better results for wheat compared to rice under saline
conditions. Sesbania GM notably enhanced the dry matter in aerial parts and the grain yield
of wheat in saline soils [20]. The combined application of PM with BC lowered salinity and
increased the total dry matter and yield of pulse crops [89]. In contrast, applying only PM
boosted rice and tuber growth and yield in semi-arid regions [134,140]. Furthermore, the
application of gibberellic acid (GA) combined with PM invigorated growth and increased
pepper’s resilience against salinity stress [139]. An emerging and promising aquatic extract,
DW, functions as a biostimulant. This extract has been found to augment leaf chl content,
enhance the essential nutrient composition of olive plants [78], and decrease salinity in
industrial wastewater [112]. Another substance, water hyacinth, is showing potential for
the desalinization of seawater [81].

4.7. Alleviating Metal Stress through OA

Organic amendments contain humic acid, which binds metal particles, including
Cd, Cr, Cu, and Pb, rendering them immobile [9]. According to Ho et al. [150], carboxyl
and oxygen groups are responsible for lessening HMs through the ion exchange process.
Consequently, these HMs transition from being highly accessible to being less bioavailable
through organic OA (Figure 9). These amendments, such as compost, BC, cow and pig dung,
and FYM, reduce the mobility and uptake of HMs in soils. This has resulted in significant
reductions in metals like Pb, Co, and Cr, which subsequently benefitted the growth of
cabbage, bean, wheat, Spinacia oleracea, Brassica, and lettuce [79,86,141,151–154] (Table 5).
Compost application not only elevated soil pH but also bound metal particles with SOM
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and caused them to co-precipitate with soil P [155]. Additionally, compost application cut
down Cd accumulation by 97.8% in wheat grain and up to 50% in Brassica fields [155,156]
and promoted the growth and quality of Brassica napus, simultaneously reducing the stress
ability of MDA and antioxidant enzymes to HMs [157]. Ahmed et al. [3] found that compost
and biogas slurry could neutralize and stabilize Cd, thus mitigating its adverse effects
on the growth and dry biomass production of wheat and maize. Furthermore, amended
compost applications have been observed to bolster the growth of rye grass by removing
metals like Cd and Pb from its stem [154].
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Table 5. Metal mobility on soil through different organic amendments.

Crops Heavy Metal Organic Amendment
Used Effect on Soil and Crops Reference

Rice (Oryza sativa) Cd (5 mg kg−1) Steel slag (3 gm kg−1)

Increased soil pH, Si, Ca
concentration I roots, decreased

Cd content, improved crop
growth and grain yield.

[61]

Black gram
(Vigna mungo)

Cd contaminated soil (10
and 20 mg kg−1)

Cow manure (5%),
sugarcane press mud

(5%), and (cow dung +
PM)

Improved photosynthetic
pigments, leaf water status,
reduced hydrogen peroxide

production, EL, MDA
accumulation, and increased

accumulation of soluble protein
and free amino acids

[86]

Cd (0.2 mg kg−1) and Cr
(2.75 mg kg−1)

BC, 1.5% (w/w)

Reduced soil Cr, Cd
concentration, increased

available carbon, microbial
activity, plant growth.

[151]

Maize (Zea may) Cd (2.5, 5) mg kg−1 Compost with BC (0.50,
0.75, and 1.00%)

Improvement in soil organic
matter, plant height, root length,
number of leaves, leaf fresh and
dry weight, plant fresh and dry

weight, chlorophyll a, b, and
total, and carotenoids.

[53]
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Table 5. Cont.

Crops Heavy Metal Organic Amendment
Used Effect on Soil and Crops Reference

Rice (O. sativa) and
Wheat

(T. aestivum)

Pb (54.39 mg kg−1)
Cd (0.83 mg kg−1)

BC and green stabilizing
agent Poultry manure

(34% and 25%)

Reduced Pb concentration
accumulation in wheat and rice

roots, shoots, and leaves.
Increased biomass and yield.

[152]

Cacao (Theobroma cacao
L.) beans Cd (5 mg kg−1)

Compost + zeolite (0.5, or
2%)

Increased soil pH and reduced
soil Cd concentration. [65]

Brassica chinensis Cd (1 mg kg−1)
Cow dung + cow dung

derived Biochar (3.0 and
6.0% w/w)

Decreased cd availability,
increased trace elements and

biomass production
[141]

Mustard (B. juncea)

Cd, Cu, and Pb (5, 160,
and 1000 mg kg−1) Wood BC (1%) Reduced toxicity of metals and

increased nutrient availability. [158]

Ni (50 mg kg−1 and 100
mg kg−1)

BC with muscle cell (1 g
250 mL−1 volumetric

glass)

Reduced Ni bioavailability,
increased plant biomass, chl

content.
[49]

Cd (1 mg kg−1),
Pb (74.4 mg ha−1)

Rice husk BC (0.5, 1, and
2% w/w) Reduced phytoability of metals. [159]

Wheat and Maize
T. aestivum

Z. mays

Cd (5, 20, 50 mg kg−1

soil)
Compost and Biogas

slurry, 15 t ha−1
Total dry biomass increased; Cd

concentration reduced. [3]

Pakchoi (Brassica
chinensis L.) Cd (50 mg kg−1 soil)

Poultry manure compost
(120 g kg−1)

Increased soil pH, reduced Cd
concentration in soil, favored

antioxidant capacity dissolved
OM.

[156]

Duckweed
Extract

Cr (1.2 µg L−1)
Ni (0.9 µg L−1),

and Co (0.5 µg L−1)
concentrations

Lemna gibba and L. minor Cr, Co, and Ni concentration
reduced. [160]

Mining soils laden with a plethora of HMs adversely impact radish growth and yield.
However, organic fertilizers, including VC and C, by forming stable metal complexes,
not only enhance radish growth but also minimize risks to human health [48]. Biochar
applications form stable metal complexes, drastically cutting down Cd concentrations in
various crops such as rice, wheat, maize, and Brassica [58,140,159,161].

Biochar has been found to augment plant biomass production and diminish the
concentration of HMs in plant tissues. Additionally, it reduces copper uptake in soils
polluted by Cu mines [162]. The use of soybean and rice straw BC significantly decreased
Cd content in various parts of the rice plant, including the roots, shoots, husks, and
grains [163]. The combined application of BC and compost considerably enhanced SOM as
well as the content of leaf chl a and b and carotenoids [153]. Conversely, pairing BC with
chicken manure boosted the height, biomass, and enzyme activity (SOD, POD, and CAT)
of maize plants while reducing MDA content [153]. Sewage sludge, due to its OM, acted as
a metal chelator, lowered metal concentrations in the Sorghum bicolor crop, and significantly
promoted crop growth and soil quality [164].

Cow manure has proven effective in cutting down on metal concentrations, elevating
soil pH, and boosting soil nutrients [116]. As per the researcher, FYM substantially curtails
Cd and Pb contents in both the shoots and roots of amaranth cultivated in sandy soil. Green
manure crops also reduced Cd content in the aerial parts and Cu concentrations in the roots
of Indian mustard [165].

Certain aquatic plants have shown a significant ability to decrease metal concentra-
tions [160]. Water hyacinth (Eichhornia crassipes), DW (Lemna minor, Spirodela intermedia),
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and water lettuce (Pistia stratoites) are used for the phytoremidation of HMs (As, Ca, Pb,
and Hg) from wastewater through their extensive root systems [166]. Again, industrial
hemp (Cannabis sativa L.) can accumulate soil metal and metaloid in its shoot through the
root system and form a stable complex, thus reducing soil metal pollution [167]. Due to
their influence on adsorption, complexation, reduction, and volatilization processes, these
OAs can serve as a means to reduce the bioavailability of metal(loid)s in polluted soils and
sediments [158]. The ways in which OAs improve metal-contaminated soils are illustrated
in Figure 9.

5. Conclusions

The significance of OAs in reducing the bioavailability of HMs and alleviating salinity
stress in soils, along with their impact on soil quality, is highlighted in this review. Salinity
and HM contamination are primary abiotic stresses that diminish crop productivity and
can render soil infertile for extended periods. Such conditions adversely affect the overall
GDP. Organic amendments are rich in OM, which is readily soluble and available for soil
microbial activity. Increased microbial activity results in the production of more carbon
dioxide, which can displace sodium ions from the soil solution, thus aiding in saline soil
reclamation and diminishing metal stress. The application of VC, BC, and FYM has been
observed to mitigate the detrimental effects of salinity and metal concentrations. This
review reveals that VC, BC, and FYM boost antioxidant enzyme activities, stabilize ionic
balance, alleviate osmotic and oxidative stresses, and modulate gene expression, collectively
supporting enhanced plant growth and productivity. In summary, the incorporation of the
aforementioned OAs is a promising strategy to bolster soil fertility and productivity for
field crops cultivated in salt-affected terrains. Agriculturists and farmers in regions with
salt-impacted soils can adopt this method to increase crop yield and decrease crop failure
due to soil salinity and metal contamination.
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