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Abstract: Biogels (hydrogels, oleogels, and bigels) are structured systems used as delivery vehicles for
bioactive substances. The objective of this study was to provide an updated view of green materials
used as biogels, discussing the different aspects related to their formulation. An overview of the
application possibilities of these gels in different areas, such as food, cosmetics, pharmaceuticals, and
medicine, is reported. Furthermore, an evaluation of the profile of studies using biogels was carried
out in the last decades (1980–2023), showing the advances in knowledge about these materials in
different application domains. Additionally, a consideration of future demands regarding studies
involving biogels from a technological and process engineering point of view is highlighted.
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1. Introduction

In recent years, the interest in environmentally compatible processes and the use of
green products have increased the demand for research in the academic and industrial
sectors. In regard to the world’s biodiversity, the need to preserve natural resources has
driven society and governments to change their way of thinking. Today, biodiversity is no
longer a “heritage of humanity” but a “concern of humanity” [1,2]. The sustainable use
of biodiversity and awareness of its preservation is fundamental in industrial operations
and in the preparation of new products today. The current scenario seeks the smart and
sustainable use of products and processes from renewable sources (Figure 1), reducing the
environmental impact while helping the global economy.
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Figure 1. Representation of green logistics.
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In this context, green materials have been seen as a viable alternative for many diverse
applications in the chemical, food, cosmetic, and pharmaceutical industries. In this class
are biogels, which are materials constituted of bioactive compounds derived from food
with great health benefits, such as antioxidant, anti-inflammatory, antifungal, antimicrobial,
and anticancer properties, among others.

Gels are semi-solid systems consisting of a liquid (nonpolar or polar solvent) and
a gelling agent (defined as gelator or organogelator). They have a three-dimensional
network of gelator molecules, which allows for the entrapment of the liquid phase, resulting
in a viscoelastic gel [3,4]. They are two-phase systems formed by means of covalent
crosslinks of network constituents (chemical gels) or by means of non-covalent interactions,
amongst them hydrogen bonds, hydrophobic interactions, and ionic interactions of network
constituents (physical gels) [5–7]. According to IUPAC [8], a gel is a “non-fluid colloidal
network or polymer network that is expanded throughout its whole volume by a fluid”.

In rheological terms, a gel is a material that does not flow and presents elastic attributes
of solid and viscous attributes of a liquid. The gel point occurs in the so-called equilibrium
modulus. The determination of this point is made through monitoring over time of the
properties that characterize the elasticity of the material, called storage modulus-G′ (which
represents the stored energy), and the property that characterizes the viscosity of the
material, called loss modulus-G′′ (which represents the strain energy). Generally, before
gelation, G′′ is greater than G′. The gelation point occurs when the values of G′ and G′′

become equal. After a certain induction time, the value of G′′ becomes negligible, and
G′ increases rapidly until reaching a steady state level, with its value much larger than
G′′, indicating a more elastic response. The value of the G′′/G′ ratio tends to be <0.1. The
higher the value obtained for the G′ modulus, the stronger the gel formed [7].

A gel is called a hydrogel when the liquid constituent is a polar solvent (water), and it
is called an organogel when the liquid constituent is an organic solvent, which includes
alcohols or hexane and also oils. In this last case, the system formed is defined as an oleogel.
Likewise, a subdivision can be made with organogelators, which may be high molecu-
lar weight (HMW) or low molecular weight (LMW) gelling agents (Figure 2). Polymers
are the traditionally more common class of gelators. In this group, proteins, polysaccha-
rides, carrageenan, alginate, and starches can also be cited as widely studied gelators.
Moreover, among the biopolymers considered GRAS (generally regarded as safe) solvents,
there are propylene glycol, pectin, ethyl cellulose, and hydroxypropylmethyl cellulose
(HPMC), among others. In parallel, among LWN gelators, special attention has been given
to triacylglycerols (TAG), monoacylglycerol (MAG), and fatty acids due to their bioactive
characteristics [4,9]. In addition to the bioactive, biofunctional, and bionutritive charac-
teristics, fatty acids are considered renewable sources of chemical products since several
products can be obtained from reactions and formulations using these compounds [10–12].
Furthermore, expanding the list of possibilities, there are also the bigels, which are a class
formulated from the junction of hydrogel and organogel, presenting particular characteris-
tics compared to individual gel systems. The type of interaction between the constituents of
the gel acts directly on the formation of the matrix of the gel obtained and, therefore, on the
appearance and structure of the gel formed. According to the constituents present in the
system, the formed gels will present specific and distinct viscoelastic and thermodynamic
characteristics due to the three-dimensional structures resulting from each mixture [9]. Gels
obtained through chemical interactions are generally resistant, as they are mainly formed
by covalent bonds (primary forces), while gels resulting from physical interactions are less
resistant, as they are maintained through different secondary forces, such as hydrogen
bonds, hydrophobic interactions, or van der Waals forces. On the other hand, physical gels
tend to be thermally reversible, a behavior not observed in chemical gels [13]. Although
it is well accepted that physical and chemical forces act and control the structuring of the
gel network, a precise description of the mechanism that permeates gel formation, as well
as the influence of solvent-gelling agent interactions on gel formation and gel behavior
remain poorly understood [14–16]. In the case of hydrogels, different mechanisms aris-
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ing from stimuli-sensitive (physical, chemical, and biological/biochemical) to hydrogels
can explain the formation of the gel [17]. However, in the case of organogels: (i) the full
understanding of the organogelation mechanism; (ii) the knowledge of the behavior and
interactions between the gelator and different solvents; (iii) the relationship between the
chemical structure of the gelator and the gelation process; and (iv) the effect of process
conditions on the physical behavior of the resulting gels are still unknown [14–20].
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Regarding the physical–chemical aspects, the synergy between the gel components is
an essential factor since the formation of these systems strictly depends on the particular
condition that exists between the solubility vs. insolubility of the gelling molecule within
the solvent and the resulting molecular interactions. Without this condition, there is no
gel formation. In other words, this particular condition exists because of the possibility of
two opposite situations occurring: (i) systems where there is high solubility between the
constituents, with high interaction of the solvent with the gelator, resulting in the formation
of a solution, instead of a desired gel system, and (ii) systems with low solubility between
the constituents where there will be the formation of precipitates [21,22].

Extensive reviews have discussed the formulation of hydrogels/organogels and
their applications. They are well reasoned and present relevant information for the
sector [2,23–27]. Their contributions are mainly focused on the formulation of gels for
drug delivery and specific active ingredients. On the other hand, the comprehensive review
of biogels and notable advances for different application sectors from the perspective of
green chemistry are still absent. When it comes to green chemistry, green materials are
defined as materials derived from renewable sources or from the processing of agricultural
crops, non-toxic, which degrade into harmless products, whose processing reduces or
eliminates the use and production of hazardous substances [28–30]. In this sense, gels
(whether hydrogels, organogels, or bigels) formed from biocompounds of natural or re-
newable origin, which are non-toxic and have a reduced impact on human health and the
environment, can be considered green gels. In this scenario, there are biogels with effective
bioactivity and biofunctionality.

When it comes to the industrial production of materials from the perspective of green
chemistry, the environmental issue goes beyond reducing toxic waste. In this regard, keep-
ing in mind the environmental impacts of the processes that involve the formulation of new
materials and at the same time having the purpose of composing this extremely ordered and
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well-defined gel structure, the choice of the ideal gelator, in physical–chemical/rheological
terms, which is sustainable and economical, thus becomes an item of fundamental impor-
tance. Sagiri and Rao [31] indicate six features that should be considered when choosing an
ideal oleogelator (indicated schematically in Figure 3).
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Although, up to now, little has been explored from this point of view, green gels have
great applicability and a range of possibilities that go beyond the mixture of biocompounds.
Investigations have been carried out to evaluate biocompatible and efficient materials
capable of acting in specific circumstances. Studies have also revealed that biogels, whether
originating from bio-sourced materials or renewable products, have great applicability
at an industrial level. Being the object of study by several researchers, the formulation
and discovery of new biogels have grown in recent years, presenting promising results in
several areas of activity. In this sense, this review presents a comprehensive description of
different classes of gels, their main applications, and recent discoveries, focusing on the
sustainable use of materials and products in obtaining green gels. Technological challenges
and issues that still exist in the formulation and production of these materials are also
highlighted and discussed.

2. Hydrogels

Hydrogels are hydrophilic, three-dimensional frameworks which are capable of hold-
ing large amounts of water and biological fluids [32]. This characteristic makes them an
excellent material to be used as drug delivery vectors, biosensors, and carriers or matrices
for cells in tissue engineering [33]. Table 1 presents a summary of the main characteristics of
hydrogels, a general comparison with organogels and bigels, and highlights the advantages,
disadvantages, and molecules involved in each gel.

Table 1. Main aspects, characteristics, and bioconstituents of hydrogels, organogels, and bigels.

Gel Type
[Refs]

Hydrogels
[5,6,33–37]

Organogels
[38–58]

Bigels
[38,59–74]

Definition
Water trapped in a 3-D network
using a hydrophilic gelling agent
(hydrophilic polymer)

Organic liquid trapped in a 3-D
network by using an
organogelator (LWM and HWM)

Organogel dispersed in hydrogel
system (O/W); hydrogel
dispersed in organogel system
(W/O); or bi-continuous systems
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Table 1. Cont.

Gel Type
[Refs]

Hydrogels
[5,6,33–37]

Organogels
[38–58]

Bigels
[38,59–74]

Advantages

- high hydration ability
- cooling effect
- good spreadability
- high biocompatibility and

bioactivity with biological
organisms

- tunable biodegradability
and porous structure

- high softness and flexibility

- topical deliveries of
hydrophobic drugs

- ultra-low adhesion for
antifreeze and antifouling
uses

- last longer than hydrogels
due to the boiling point of
organic solvents being
higher than that of water

- greater flexibility as it
contains components with
adjustable hydrophobicity

- thermoreversible

- ability to deliver both
hydrophilic and lipophilic
actives

- easy preparation and easy
spreadability

- improvement in the
permeability of drugs
through the skin

- cooling, moisturizing, and
emollient effects

- easily adapted consistency
and drug release rate

Disadvantages

- the liquid phase (water) can
be frozen at temperatures
below zero, causing a
decrease in softness and
bio-affinity

- low durability gel in dry
environments due to
significant evaporation of
the liquid phase

- low mechanical strength
and fragile nature

- difficulty in delivering
hydrophobic drugs

- difficulty removing after
application to the skin due
to the oily nature of
organogels

- lack of precise
understanding of the
thermodynamic and kinetic
factors that control the
stability of gelling fibers

- more sensitive to microbial
proliferation and
hydrolysis of systems
containing the ester group

- they may not be
thermoreversible since, at
higher temperatures, they
are unstable

- need for an emulsifier to
avoid phase separation

- the formulation procedure
and operating conditions
influence the gel properties

Bio-sourced
Molecules

water, biopolymers
(polysaccharides and proteins),
natural polymers (such as gelatine
or agar)

fatty acid, edible oils, waxes,
fatty alcohols, carbohydrates,
vitamin derivatives, peptides,
steroids, and
derivative molecules

Water, edible oils, lipids,
biopolymers, others arising from
the structures of organogels,
and hydrogels

Examples of
Biomolecules/
Biomaterials used in
gel formation

Gelatin, agar, chitosan, sodium
alginate, cellulose, hyaluronic
acid, pectin, dextran, and
their derivatives

stearic acid, 12-hydroxystearic
acid, palm oil, sesame oil,
soybean oil, canola oil, rice bran
oil, cetyl alcohol, stearyl alcohol,
ethylene glycol, propylene
glycol, glycerol, among others.

guar gum, gelatin, sodium
alginate, xanthan gum, agar,
protein, pectin, starch,
maltodextrin, olive oil, sunflower
oil, castor oil, soybean oil,
among others

The networks of hydrogels are composed of homo or copolymers and may present
chemical crosslinks (tie-points, junctions), or physical crosslinks, such as entanglements
or crystallites [32]. Due to existing interactions, physical hydrogels are not homogeneous
systems, as the structures obtained by clusters of molecular tangles or hydrophobically or
ionically associated domains create heterogeneous regions [75].

Hydrogels are responsive to various stimuli such as heating, pH, light, ionic strength,
electromagnetic radiation, and chemical agents and may also show a swelling behavior
dependent on the external environment and chemical composition [76–84]. Depending
on the degree of ionization, chemical compound, or any other external stimulus, the
behavior, osmotic balance, ionic strength, network structure, and swelling properties of the
hydrogel can be changed, making these materials attractive gels to be applied as biosensors,
controlled drug release systems, self-healing materials, superabsorbent materials, and
hemostasis bandages [85–91].
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There are numerous applications of hydrogels in the medical, pharmaceutical, and cos-
metic sectors [92–98]. They have been used as drug delivery [99–103], scaffolds [104–108], actu-
ators [109–113], biosensors [114–118], ophthalmic [119–122], tissue engineering [99,123–125],
wound dressing [126–128], analytical separation, and detection [129,130] materials, among oth-
ers. The great differential of these materials is their properties (water solubility, spreadability,
miscibility) that make them a highly used gel. In addition to their porosity and soft consistency,
the three-dimensional and hydrophilic structure of hydrogels enables the absorption of a large
amount of water in their interstitial space, which provides physical characteristics similar to
natural living tissue. Moreover, the fact that they are non-toxic, biocompatible, versatile, and
easy to handle makes them interesting not only in the administration of nutrients/drugs and
tissue engineering but also in food sectors and bioadsorbent systems [92,131,132].

A great variety of hydrophilic polymers have been used in the formulation of hy-
drogels. The main classes consist of natural polymers (polysaccharides and proteins)
and synthetic polymers containing hydrophilic functional groups (such as –COOH, –
OH, –CONH2, SO3H, amines, and R4N+ and ether) [75]. Depending on the intrinsic
properties of the polymers, a synergistic effect of properties is observed in the hydrogel
formed [133–136]. This characteristic can be addressed to modify or adjust the formulation
of materials with specific needs, mainly with regards to the medical and pharmaceutical
areas. Carvalho et al. [137] present an interesting review of the use of polysaccharides as
biomaterials for tissue engineering, focusing on advances involving technologies and mate-
rials for the repair and regeneration of an injured brain. In contrast, the use of hydrogels is
not limited to medical and pharmaceutical applications. Yang et al. [138] report the use of
mixed polysaccharide–protein systems in the manufacture of multistructured food gels,
including hydrogels. As noted in the examples cited, a wide variety of biopolymers have
been employed in the formulation of hydrogels, some of which are illustrated in Figure 4.
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3. Organogels

Organogels are defined as semi-solid systems whose organic liquid phase is en-
trapped within a thermoreversible three-dimensional gel network. In these systems, gelator
molecules are present in low concentrations (lower than 15 wt%), which makes them
interesting from an industrial point of view [9,139,140].

Organogels have structuring bonds similar to those observed in hydrogels, including
weak interactions, such as Van der Waals forces and hydrogen bonds [141–143]. Nonethe-
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less, the intrinsic properties of organic solvents and gelators make them more stable systems
in thermodynamic and kinetic terms. These characteristics are assigned to two events:
(i) the interaction of opposing forces related to the partial solubility of the organogelator in
the continuous phase [144] and (ii) the spontaneous formation of a fibrous structure that
has a low energy state [145].

In practical terms, these systems appear to be quite multifunctional, with applicability
in several sectors, such as the food industry, where organogelation is favorable for inhibiting
the migration of oils and fats, trapping these components in the matrix, reducing their
movement and thus decreasing the occurrence of the fat bloom phenomenon. In addition,
because they exhibit behaviors that reproduce the texture of trans fat, they are of great
importance in this replacement, as they can also act in the encapsulation of bioactive and
functional lipophilic components such as carotenoids, flavorings and essential unsaturated
fatty acids, with the aim of increasing their stability, since they are commonly susceptible
to oxidation in foods [21]. Moreover, studies of organogels applied to food are the most
varied [133,146–149] due to the large number of food-derived compounds that enable their
use in the formulation of these gels and also due to the bioactivity and biofunctionality
of these biocompounds, as is the case of TAG/MAG/fatty acids, proteins, carbohydrates,
applied in the formulation of different matrices.

In the pharmaceutical industry, their use refers to the placement of drugs as delivery
vehicles, which may occur through different routes of administration, such as topical,
transdermal, parenteral, and oral [31]. Diverse literature can be found on the application
of organogels in the pharmaceutical sector. Tankov et al. [150], for instance, developed
systems containing two types of mesoporous silica particles incorporated in oleogel for
dermal delivery of quercetin. Among the results obtained by the authors, the formulated
oleogels presented excellent biocompatibility and a lack of hypersensitivity to quercetin. In
another study, Wang et al. [151] formulated oleogels derived from glycerol monostearate
for lipophilic bioactive delivery and observed that oleogels formed with 10% GMS showed
denser network structures and high stability, preventing the degradation of astaxanthin.
In another study, organogels formulated with lecithin were evaluated for the delivery of
anti-inflammatory drugs against sprains, strains, and contusions [152]. In this study, the
authors observed that the presence of lecithin in the new gel formulation promoted a faster
and significantly more marked therapeutic effect compared to that of gel without lecithin.

At the same time, in the cosmetic industry, organogels play an important role both
in the thickening and structuring of hydrophobic liquids in formulations to minimize
syneresis on the surface (thus improving their rheological properties) and in the distribu-
tion of functional ingredients conveyed in moisturizers and coloring agents (improving
the delivery profiles to the skin’s surface). In this application, organogels are presented
precisely to accommodate and maximize the partition of the active ingredient in the skin
tissue for the best delivery of bioactives due to better chemical stability since when using
the same ingredients, the organogels promote skin permeation to a greater degree [21,153].
This type of application is quite common in anti-aging formulations or in creams intended
for cellulite treatments, where permeation of the gel containing the active ingredient is
desired and where a modulation of structures and rigidity more appropriate for each case
is necessary [153].

This primordial structuring ability based on organic nature, chain symmetry, and
molecular weight, as well as characteristics that take into account issues of saturation
and molecular chain length, result in distinct microstructures, as well as different physic-
ochemical characteristics. Some examples of well-known and widely used structuring
agents are polyethylenes, polyalkylene glycols, polyesters, those of synthetic/mineral
origin, and commonly those of natural origin, for example, fatty acids and alcohols such
as 12-hydroxystearic acid, wax esters such as carnauba wax and candelilla wax, phospho-
lipids such as lecithin, monoacylglycerols (glyceryl monopalmitate and monostearate), and
phytosterols such as β-oryzanol and ceramides [154,155].
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Table 2 shows organogel systems reported in the literature with examples of solvents
and structuring agents used for their formation. This table also presents the use of some
constituents that allow for the incorporation of water-insoluble bioactives, generating
greater bioaccessibility and bioavailability of these assets, as is the case of the system
explored by Yu et al. [156] who developed an oleogel with high-loading and bioavailability
of curcuminoids for use in food grade.

Table 2. Examples of organogel systems formed from different pairs of organic solvents and structur-
ing agents.

Solvent Organogelator Oil Content %
(w/w) Ref.

Amaranth oil mixture of palmitic and stearic acid 88–93 [157]

Canola oil candelilla wax (CDW) and glycerol
monostearate (GMS) 90 [158]

Canola oil Ethylcellulose 90 [159]

Canola oil hydrosypropylmethyl cellulose
(HPMC) 94 [160]

Coconut and peanut oil whey protein isolate 95 [161]
Coconut, canola and corn oil Monostearin 95 [156]

Grapeseed oil GMS, palmitic acid, Compritol 888,
and stearic acid 85 [162]

Macadamia oil GMS >85 [163]
Palm oil Beeswax >95 [164]
Palm oil whey protein isolate 12–20 [165]

Peanut oil stearic acid/stearic alcohol 75–95 [166]

Soybean oil sugarcane wax (SCW) and
candelilla wax (CLW) 96–99 [42]

Soybean oil carnauba wax (CRW) 85–95 [167]
Soybean oil Ethylcellulose 88 [168]

Sunflower oil lecithin and α-tocopherol 75 [169]
Sunflower oil Gelatin (pork skin) 20 [170]

The literature also describes that, like sugars, substances such as ethylene glycol,
diethylene glycol, propylene glycol, 1,4-butane diol, and 1,6-hexane diol for example
(group of polyols), have interesting properties such as resistance to tension, tearing, cutting,
abrasion, adhesion, and dimensional stability [171]. Such mechanical properties can be
explained by the greater compatibility of the flexible polar polyester segments with the
rigid polar segments, which causes a slower phase separation, making them relevant in the
composition and distribution of the polymeric matrix [171]. However, the disadvantages of
this system configuration refer to the ester group being more sensitive to hydrolysis and
microbial proliferation. An alternative is the use of glycols or longer chain diacids such as
palmitic acid (C16) to increase resistance to hydrolysis, resulting in a greater hydrophobic
portion of the polyester polyol, also leading to the formation of the desired oil gel.

In order to minimize the resistance to hydrolysis, additives, such as dispersions of
vinyl polymers like polyvinylpyrrolidone in the polyester polyol mass, can be used in order
to obtain greater hardness at the same density, more uniform cellular structure, and better
dimensional stability [171]. An alternative has been proposed by Gandolfo et al. [172]
to adjust the physical–chemical, rheological, thermal, and textural properties of oleogels.
These authors mixed stearic acid with fatty alcohols of different chain length (C16 to C22)
at a concentration of 5% (w/w) in sunflower oil, producing an oleogel of better quality
than the oleogels formed by individual gelators. Another example of the use of gelator
blends was studied by Kamali et al. [156], in which amaranth oil oleogel was formulated
with a mixture of palmitic and stearic acid. In this work, the use of the mixture of fatty
acids as a gelator promoted the creation of a structured gel richer in solid contents than
the reference sample. Kim et al. [157] studied blends of candelilla wax (CDW) and glycerol
monostearate (GMS) in the preparation of canola oil oleogels and verified that the ratio of
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60:40 of CDW:GMS presented better results, producing oleogels with a harder texture and
lower melting temperature.

4. Bigels

The idea of elaborating defined materials to obtain bigels is quite new compared to
other gel structures. The literature mentions the work by Almeida et al. [72] as the first study
on the elaboration of these materials with pharmaceutical applications. In this study, the
authors evaluated formulations of the hydrogel/organogel mixture using different oleogels
mixed with polyacrylic acid hydrogel, and found bigels with an improved moisturizing
effect, making them promising candidates for topical formulations. Bigels are uniform
semi-solid systems obtained by mixing hydrogel and organogel at a given temperature and
appear as a single gel when visually observed [173,174]. The peculiarity of bigels comes
from their ability to deliver hydrophilic and lipophilic active agents at the same time.

Bigels bring together in a single gel interesting properties of each original gel; that
is, they have characteristics arising from both aqueous and oily phases and have better
properties than gels in their original forms [68]. The great advantage of bigels is their
greater stability, in addition to being easy to prepare and not requiring large amounts
of surfactants to be formed [69]. The greater stability of the bigels is associated with the
formation of extra-fine colloidal dispersions, which are the result of the immobilization
of the original gel phases in a three-dimensional gel structure [72]. In addition, among
other advantages of these gels, the following can be mentioned: they are easy to spread
and absorb through the skin, they have refreshing, emollient, and moisturizing effects due
to the enrichment of hydration in the stratum corneum, as well as easy washability after
administration on the skin [38,60,70–72,74,175,176] (other qualities are listed in Table 1).
Depending on the method of preparation, structural organization, characteristics of the
original gel, and organogel/hydrogel ratios, the bigels can be presented as (i) organogel
dispersed in a hydrogel system (O/W); (ii) hydrogel dispersed in an organogel system
(W/O); or iii) a bi-continuous system [38] (Figure 5). The latter may have greater structural
complexity depending on the organogel/hydrogel ratio and methodology for obtaining
the bigel [69]. The preparation method has a strong influence on the type and structure of
the bigels due to intrinsic factors in gel formation, such as oleogel content, homogenization
temperature, shear level and time, and gelling state of each phase [177]. The balance
between these factors will promote the most appropriate training for a given application.
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The literature cites several studies of the applications of bigels in the food, cosmetics,
pharmaceutical, and medical sectors. Some of them are listed in Table 3. This is due
to certain functional characteristics of bigels, such as greater thermal stability, firmness,
electrical insulation, and greater ease of permeation of the bioactive due to its emollient
properties [38,69,70,177].

Table 3. Some bigel systems developed for the food, cosmetic, pharmaceutical, and medical sectors.

Oleogel Hydrogel
Hydrogelator Incorporated Active Application RefSolvent Organogelator

Almond oil Sorbitan monosterate Carbopol Ketoprofen drug delivery [66]
Caprylic + capric

triglycerides Compritol Carbopol Ibuprofen [47] periodontitis [178]

Castor oil Tween 80 Sodium alginate Essential oil of Bidens
tripartita

antifungal
treatment [179]

Corn oil glycerol
monoglyceride

Dispersion of
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-carrageenan β-Carotene food bioactive
delivery [180]

Fish oil Beeswax Carbopol Coenzyme Q10 cosmetic [181]
Fish oil Beeswax Carbopol Imiquimod transdermal [182]

Fish oil Beeswax
Sodium alginate,
Hydroxypropyl-
methylcellulose

Imiquimod drug delivery [59]

Linseed oil Tween 80 Sodium alginate Metronidazole periodontitis [183]
Liquid paraffin Cholesterol Carbopol - cosmetic [72]

Olive oil Beeswax Hydroxyethyl-
cellulose Povidone-iodine transdermal [184]

Rapeseed oil glycerol monoglyceride +
beeswax Xanthan Curcumin food bioactive

delivery [185]

Rice bran oil Stearic acid Tamarind gum Moxifloxacin drug delivery [186]

Rice bran oil Stearyl alcohol Agar Ciprofloxacin
hydrochroride drug delivery [187]

Sesame oil Sorbitan
monostearate Carbopol Metronidazole drug delivery [74,188]

Sesame oil Sorbitan
monostearate Gelatin Ciprofloxacin drug delivery [189]

Sesame oil Sorbitan
monostearate Guar gum Ciprofloxacin drug delivery [190]

Soybean oil

Sorbitan
monostearate,
cetyl alcohol,

lecithin-pluronic

Hydroxypropyl-
methylcellulose

Diltiazem
hydrochloride drug delivery [64]

Soybean oil Stearic acid Agar + gelatin Metronidazole drug delivery [67]

Soybean oil glycerol monoglyceride +
beeswax Gellan gum Lycopene food bioactive

delivery [191]

Sunflower oil Sorbitan
monopalmitate

Gelatin, whey
protein Metronidazole drug delivery [60]

Sunflower oil Sorbitan
monopalmitate

Guar gum, acacia
gum, xanthan gum Metronidazole drug delivery [192]

Sunflower oil Sorbitan
monopalmitate + tween 80

Guar gum, acacia
Gum Metronidazole drug delivery [193]

Sunflower oil Sorbitan
monopalmitate

Polyvinyl alcohol,
polyvinyl

pyrrolidone
Metronidazole drug delivery [194]

Sunflower oil or
mineral oil

candelilla wax or
1,2–hydroxstearic acid

Sodium
polyacrylate Vitamin E food bioactive

delivery [195]

Sweet almond oil Sorbitan monosterate Alginate Cetavlon drug delivery [196]
Sweet almond oil Sorbitan monosterate Carbopol - Cosmetic [72]

Isopropyl
palmitate + soya

lecithin
pluronic lecithin Hydroxy propyl

methyl cellulose Ketoprofen drug delivery [62]
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Interesting studies have been developed for the investigation of the physical–chemical
characteristics of these systems. Loza-Rodríguez et al. [197] formulated a bigel consisting
of oil-beeswax oleogel and hydrogel, with a high potential for drug delivery through the
skin. In this work, differences in each type of gel produced were pointed out, with the
evidence that the bigel, although visually presented as a homogeneous phase, in reality, is
a heterogeneous system. Analyses performed by fluorescence microscopy indicated the
presence of two phases in the bigel structure, with the hydrogel phase incorporated into a
continuous matrix of oleogel (Figure 6).
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Two of the questions involved in the formulation of all these gels (hydrogels, organogels,
and bigels) are (i) knowing the proportion of the constituents and (ii) what structure
one wants to obtain and for a given purpose of application. In this sense, the study
of phase equilibrium is presented as an important tool in the analysis of the different
possibilities of gel elaboration [9]. The importance of knowing the phase behavior of
these systems lies in defining the application of the gel as a function of the amount of
the constituent used, together with the functionality of the product obtained. Literature
involving the study of the phase equilibrium of these systems is still very scarce. In a
recent study, Corredor-Chaparro et al. [198] showed the formation of HPMC bigels formed
by organogelator system (sorbitan monostearate:polysorbate 80), sesame oil, and hydro-
gel. In this work, the authors illustrate the region of existence of the bigel (Figure 7) and
describe the bigel as a uniform and brilliant color system, without lumps, and smooth
and creamy to the touch. In another study, Cortés et al. [199] evaluated the use of two
non-ionic surfactants derived from castor oil (Kolliphor ELP and Kolliphor RH40) that
are commonly used in pharmaceutical formulations in the evaluation of phase diagrams
with water, sunflower oil, and ethanol as cosurfactant. In the study, the use of Kolliphor
RH40 exhibited a larger microemulsion (ME) area than that formulated with Kolliphor
ELP, along with other regions of emulsion (E) and phase separation (2P), with a region of
gel-like behavior similar to lipogels and gel microemulsion, characterized by the region
indicated as L9 in Figure 8. In both cases, without studying the phase's behavior for the
entire range of compositions, knowledge of the limits and existing possibilities for a given
mixture of solvent (s) + structuring agent (s) + bioactive (s) would be restricted to the
range of pre-prepared compositions, and perhaps it would not be possible to visualize the
biphasic regions so clearly.
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5. Concluding Remarks and Future Challenges

In recent years, the concern and need to use biocompatible products have increased
the search for new materials and processes. The use of clean technologies with green
materials has been the basis of several research groups. Linked to this, there are biogels,
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made up of biomaterials with great applicability in the food, cosmetics, pharmaceutical,
and medical sectors (some of which are listed in Tables 1–3. Bioactive raw materials play
a crucial role in the design and synthesis of multifunctional gels for applications in the
various production axes.

Research in different databases (Science Direct and SciELO) was performed to evaluate
the advance in knowledge of these materials using the terms bigel, hydrogel, and organogel
as keywords, considering the main sectors of application: food, pharmaceutical, cosmetic,
and medical (simple and combined search). Figures 9 and 10 illustrate the distribution of
literature by application area and the annual evolution of scientific papers, respectively. A
total of 20,066 scientific papers were found in the 1980–2023 period (until July), with great
advances in the last decades.
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The vast majority of works were focused on the elaboration of hydrogels (96.5%),
which is expected since the discovery of the others is more recent. Among the scientific
papers evaluated, separated by area (Figure 9), most of the papers are related to the medical
sector (12–37%), followed by the pharmaceutical (25–32%), food (25–33%) and cosmetic
(8–30%) sectors. In recent years, research involving gels has increased exponentially, in-
creasing from 815 in 2015 to 2267 papers published in the first seven months of 2023
(Figure 10). The increase in studies focused on the formulation of biogels broadens the
possible applications, and the results obtained so far are quite encouraging.

Although the growth observed in studies with green gels is evident, knowledge of
fundamental and specific points in the formulation of these materials is still the key to their
implementation in the industrial sector. In general, studies are still needed in the design of
new multifunctional molecules with specific applications, mainly regarding the issue of
simultaneous delivery of bioactive substances with synergistic or non-synergistic effects.

In specific terms, while presenting numerous studies and reviews on hydrogels, due
to the great importance and applicability of these materials, investigations still need to be
carried out regarding the issue of stability and mechanical strength. New hydrogels that
are more stable and have better mechanical strength are needed and remain an important
direction for research. Furthermore, although a wide variety of polymers have been used
for hydrogel formulations, among the constant concerns are the biocompatibility and
biodegradability of the polymers used and that their networks make new systems effective
and easy to obtain. In addition, special attention must also be paid to the synergistic
behavior that may result from the combination of two polysaccharide networks, requiring
fundamental studies to better understand the physicochemical, mechanical, and biological
properties of each system. As far as organogels are concerned, one of the important points
to be unraveled concerns the clear description of the mechanism of gel formations, as well
as the effect of solvent–gelator interactions on the formation process and behavior of the gel
formed. Furthermore, because there is a wide variety and structures of gelators that have
been used in the formation of organogels, the complete and interconnected knowledge of
the thermodynamic and kinetic factors that control the stability of gelling fibers continues
to be a question that needs to be answered by researchers in the field.

Another important aspect to be highlighted is the characterization of biogels not only in
rheological terms but also in physical–chemical and thermodynamic terms, including phase
equilibrium (which is very scarce). This information is essential from the industrial point of
view since knowledge of thermophysical and thermodynamic properties of materials plays
an important role in simulating and designing new products and processes. Moreover,
there is a great lack of studies involving the optimization and techno-economic analysis
of the process, which may make the production of these materials on an industrial scale
unfeasible. Nonetheless, the performance of engineering, science, and technology together
can fill these gaps.
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