PPMC3Fitting

The script PPMC3Fi t t i ng (which stands for Pump-Probe Multiple Channels Markov Chain Monte-Carlo Fitting) is designed to fit complicated
observed pump-probe curves for different observables, that share the dynamical parameters.

It can do the:
® |ocal fitting,
® global fitting,
® Monte-Carlo sampling of the errors with Metropolis algorithm

for one or multiple pump-probe dependencies.

The software was written in Python, and can be obtained from Stash: https://stash.desy.de/projects/CFA/repos/mcmcmcfitting/browse

https://stash.desy.de/projects/CFA/repos/mcmcmcfitting/browse

Backgrounds on the fitting procedures
How each data set is fitted

Experimental data

Each data is given as a set of the experimental pump-probe points {z;, y©P(t;) = yf?”’),g,. }N., where t is the pump-probe delay, and y is the value of

i=1"7

the observable, is the error of y (required here!), and N is the total number of the experimental points.

Theoretical approximation

We assume that each observable is being formed as a superposition of independent channels producing the same observable. This can be
represented as

M
Y0y =Y Ac- filt)

k=1

where A is the amplitude of the different channels, M is the total number of channels, and f(t) is the possible pump-probe-dependent yield of the
observables (channel). There can be a few standard basic channels (see also Channels description files (what -c option requires)). We will describe
them with the quasi-chemical reaction schemes. The notations are:

® My is the initial molecule,

. pump/probe are the pump/probe lasers photons,

npump/nprobe are the numbers of pump/probe the in the process,
®* M (=1,2,...) are the intermediates,

® Mgy is the outcome molecular specie that is being observed.

The main parameters of the interaction of the molecules with the pump-probe pulses are the t; — the temporal overlap of the pump and probe pulses
(when two pulses hit the molecule simultaneously), and the cross-correlation time . of the pulses. If we assume the pump and the probe laser pulses
to be Gaussian-shaped, the . is given as

2 72
N Tpump probe
Tee = —

2
T2
itter
Npump Nprobe J

where pump and probe &€ the durations of the pump-probe pulses in the pulse shape given as
el
Pulse shape(t) = CXP<_1_2>
and is the random fluctuations of the pump-probe delay (important for the experiments with free-electron lasers with SASE). The resulting

jitter
functional dependencies can be derived by integrating a reaction scheme with distinct instant pulses (f,(t)), and convoluting the result with the cross-
correlation pulse shape:

F@ = exp(~*17%) ® fot)

Note: we always use a convention that the (t-t;)<0 corresponds to probe acting on the molecules before pump, and (t-t;)>0 to pump acting on the
molecules before probe. Therefore if we switch pump and probe, we would have to invert the (t-t;) axis!
Constant (const) channel

This is the background of the pump-probe experiment. For instance, An example of this channel can be interaction with the single laser, i.e.
My +ny - My, + The functional dependence thus is

f(®) = const(t) o 1
Gaussian-shaped channel (gauss)
This happens if the observable forms only if both pump and probe lasers hit the system simultaneously (Mo + fpump Ypump + Pprobe Yprobe = Maops + -..). In

practice, this means two very fast sequential processes. One example is the formation of the sidebands of the photoelectrons, when freshly ionized
electrons by a pump pulse absorb/emit one or several photons of the probe radiation. The functional dependence is thus

_) ((1 = 19)?)
f(t) =06(1) @ exp(—t~/tec) x exp| —————

2
Tee

Switch of the behavior (switch)

This happens if the absorption of the pump photon instantly produces something stable, that can further interact with the probe photons, i.e. reaction
scheme is

M, + Apump Ypump — M, +...
M, + Mprobe Yprobe — Mbs + ...

This leads to the functional dependence given as

F@) = 600) ® exp(—1*/7ec)

1 +erf<w>]
Tee

https://confluence.desy.de/pages/viewpage.action?pageId=222200028

with being Heaviside step function.

Short lived intermediates = transients (trans)

If we have something short-lived formed by the pump pulse, we can probe it with the probe pulse by turning it into something observable, i.e. the
reaction scheme:

M, — M, (relaxation described by the reaction constant ;)

Mo + npumpYpump = M (short lived intermediate) + ...
M, + Mprobe Yprobe — Mops + ...

This leads to the functional dependence of

f@) = (G(I) . exp(—%)) ®exp(—r2/rcc) [+ exp(—@) . [1 +erf(@ - %)] - ex]

Fitting procedure
We have the two sets of parameters:

® linear parameters (amplitudes, or cross-sections of the different channels, A's), this we will denote as a vector A,
® nonlinear parameters (to‘s, Cc‘s, and r's), this we will denote as a vector T.

The problem can be that there can be multiple ty's (if there are pre-/post-pulses, if the temporal shape of the laser pulse contains "shoulders"),
multiple .. 's (if different processes require different number of pump and/or probe photons), and |'s (if there are multiple possible intermediates). We

can try to separate fitting of these two sets of parameters. If we fix the T at some values, we will represent the theoretical function as a scalar product
y(t,A, T) = A -£(z,T) with vectors A = (A}, Ay,...,Ay)" and f = (£, T), £, T),..., fn(@ T)F . This leads to simple linear least-squares (LSQ) fitting. We
want to minimize functional

CD(A]T) — z w; (,erxm _ y;lhcur))Z — min

with weights w; = 67 . Extremum condition {% =0}, leads to standard linear LSQ equations QA = B with matrix Q containing elements
Qu = YN, wi fu) f1(1;), and vector B with elements B, = Zfi] w;i Y f,(1;) - The solution will give an optimal set of cross-sections A at the fixed
nonlinear variables vector T (i.e. A,.(T)), and the smallest possible LSQ functional with this T:

() = Y wi ()™ — Apin(T) - £;)?

Therefore, finding the optimal set of nonlinear parameters T (&(T) — min) will lead to the best possible solution. Therefore we consider linear
parameters (cross-sections) fitting as an intermediate step procedure.

Regularization in the fitting

We can augment the fitting by replacing the @®(T) — min by an effective functional minimization ®@csteciive (T) = (Pinitia (T) + Pree (T)) — min, Where @, (T)
is the penalty (regularization) functional.

There are two cases when we might want to have the regularization.

1. One of the parameters has an independent experimental/theoretical estimation, namely the value () and its error estimation (), and this can

be used to constraint the fitting procedure. In this case, we need to add to the @, (T) a term % (basically a Gaussian distribution, see

next section).
2. Two channels can give variables close to each other, which will cause the linear dependence in the fits, and the close-by parameters (say,
and) need to be "pushed apart". This can be done by adding to the @, (T) a term F“”l (0 is the regularization parameter with the same

dimensionality as and , and the physical meaning of the is the separation range we believe is for this pair of variables).

More details can be found in Optional: regularization files (-r option).

How Monte-Carlo sampling works

In reality, we can have multiple possible local minima solutions of the nonlinear parameters T with similar values of (T) (does not matter, with
regularization or not), or the local shape of the functional in the vicinity of the optimal T solution can be far away from parabolic, that would lead to bad
estimation of the error of the nonlinear parameters with the standard formulas. To get a better estimation of the errors we will apply the Monte-Carlo
sampling procedure. We assume that the deviation of each i-th measurement and theory is distributed with a normal distribution (invert the idea of the
LSQ fitting ‘<). The probability of each solution with nonlinear parameters T is thus given by equation

P(T) = Py - exp(—®(T))

with an unknown normalization constant P,. This can be solved by the Metropolis algorithm.

¢ Let's assume we have the current values of the T given by T,.. with functional value . .=(Ty..c)-
® We generate a new trial vector of the value T,;., with functional value y;,=(Ty;a)-

® We calculate the acceptance probability of this trial point by a formula P,.. =.5 - min{1, exp(®umis — Puiar)} (S>0 is an arbitrary scaling
parameter, that defines acceptance ratio, changed by parameter "- - Met r oPr obScal e", S=1 by default).

https://en.wikipedia.org/wiki/Heaviside_step_function
https://confluence.desy.de/pages/viewpage.action?pageId=226006823
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

* We generate the trial probability P, as a uniformly-distributed random value between 0 and 1.
* We compare P, and P...

O If P > Psa We accept the new point, i.e. on the next iteration Ty, = Ty -
O If P < Psa We reject the new point, i.e. on the next iteration Ty, = Tipis -

With this algorithm we generate a long trajectory of values T: {T,, T, ..., Ty} (here we redefined the N to be the length of the trajectory, given by
parameter "- - NunO>f MCMCSi nPoi nt s"). The first part of the trajectory is usually ignored as an equilibration stage (controlled by the parameter "- -
Whi chPar t Of MCMCTr j Tol gnor e"). From the trajectory we can compute the probability distribution of the T parameter, or any functional
dependence dependent from T (F(T)): (F) ~ E;ZN,,M F(T)).

How to use?

One has to apply the top-level script ppmc3fitting.py.

The simplest application can be given by the command

Simplest comand to run the script

pyt hon3 ppnc3fitting. py -d dataset.def -c channels.def -v variables. def

In this case, one should have the actual pump-probe data stored in different files, and three files defining the job to be done:
* file defining the data sets (here — dataset.def, see DataSet files (what goes to -d)),
* file defining the channels (here — channels.def, see Channels description files (what -c option requires)),
* file defining the variables (here — variables.def, see Variables descripton files (what -v option requires)).

Additionally, the actual datasets should be provided (see How should pump-probe data look like?).

The additional options can be viewed using - h or - - hel p flag.

|

actual
pump-probe
data

data set
Ideﬁn itions

Ppmc3fitting. py channels

variables

A

regularization

Installation and usage

1. Get a copy of the code from https://stash.desy.de/projects/CFA/repos/mcmcemcfitting/browse. Either clone the git using git clone, or save it
some other way.
2. Software depends on a few Python modules. All of them can be installed using pip (as e.g. pi p i nstall <nmpdul e name> --user),
these modules are:
a. NumPy
b. SciPy
c. configparser
d. re
e. argparse
3. Optionally, one can make the script executable e.g. via chnod +x ppnt3fitting. py.
4. To run the script either add the path to the script to the PATH variable in Shell/Bash/Z Shell/..., or give the full path to the file.

Examples

Examples of the application are distributed with the scripts. They can be found in here: https://stash.desy.de/projects/CFA/repos/mcmemcfitting
/browse/tests/fitting_test

https://confluence.desy.de/pages/viewpage.action?pageId=222200026
https://confluence.desy.de/pages/viewpage.action?pageId=222200028
https://confluence.desy.de/pages/viewpage.action?pageId=222200030
https://confluence.desy.de/pages/viewpage.action?pageId=222200023
https://stash.desy.de/projects/CFA/repos/mcmcmcfitting/browse
https://numpy.org/
https://www.scipy.org/
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/argparse.html
https://stash.desy.de/projects/CFA/repos/mcmcmcfitting/browse/tests/fitting_test
https://stash.desy.de/projects/CFA/repos/mcmcmcfitting/browse/tests/fitting_test

Channels description files (what -c option requires)

An example file can look like this:

Example of channels definition file

[Basel i ne]
type = const

[PunpPr obeSwi t ch]
type = switch

t0 =10

tcc = tcc

[Forwar dTr ansi ent]
type = trans

to =10
tcc = tcc
tr = tr

Probel sPunp : false

Each block defines a channel (a building block of the fitting functions).

In the square bracket is the name of the channel, this name it should be referred by in the dataset definition file. Note, that the capital letters will be
converted to lower case letters, therefore don't use case-sensitive names.

Within the definition of each channel, there are a few possible parameters:

® type = const/gauss/switch/trans. This is the type of the fitting function (see below).
¢ t 0 —is the name of the variable from the variable definition file, that represents the t, parameter (temporal overlap of the pump and probe

pulses). This parameter is not required for the 'const' type.
® tcc —is the name of the variable from the variable definition file, cross-correlation time (..), which consists of the duration of the pump and

probe pulses, and of the random fluctuations of the pump-probe delay. This parameter is not required for the 'const' type.

® tr —is the name of the variable from the variable definition file, relaxation rate of the short-lived intermediate. This parameter is required only
for the 'trans’ type.

® Punpl sProbe — boolean flag (can be True, False, yes, no,...) to control the direction of the pump-probe axis for this particular channel. By
default is False, and therefore the channel will see only the +x. If set to true, the channel will use the -x. Crucial only for 'trans' type and for
the 'switch' type, when no 'const' channel is given.

Types of the channels (fitting functions)

type = const

This is a constant value with respect to pump-probe delay:
f(@) = const(t) =1

Physical meaning: background signal.

type = gauss

This is a Gaussian function in the form:

fy = exp(—@)

cc

Physical meaning: some cross-correlation process, that happens instantly only if both pump and probe pulses hit the system simultaneously.

type = switch

This is the switch for some process being enabled only if the pump is hitting the target before the probe. The functional form is:

f= [l +erf<—(’;m) >]

type = trans

This is a signal of a shortly lived transient with the lifetime of .. Functional form is

_ _ 2
f@) = exp(——(r rU)) . [l +erf(—(r fo) _ l)] ~exp< Tee)
Tr Tee 27, 42’,‘2

(exp(e) is there to prevent the function from becoming too large/too small).

p)
4z

What if Punpl sProbe = True?

If Punpl sProbe = Fal se (default), then we use f(t). If Punpl sProbe = Tr ue, then we will use f(-t) instead!

DataSet files (what goes to -d)

This file defines which pump-probe datasets (see How should pump-probe data look like?) are to be taken, and how to fit them. An example file looks
like this:

Example of dataset definition file

[LKEe]

file : flu_l kee. dat

channel s : Baseline PunpPr obeSwi t ch For war dTr ansi ent
[dication]

file : flu-dication_yield.dat
channel s : Baseline PunpProbeSwi t ch Backwar dTr ansi ent Forwar dTr ansi ent

Each block indicates the dataset. The squared parentheses contain the name of the dataset, that will be used in the code. Each dataset definition
must contain two parameters:

® fil e —thisis the name of the file to take the pump-probe data (in the format described in How should pump-probe data look like?) from.
® channel s —this is the list of channels from the channels description (Channels description files (what -c option requires)) file. Note: all the
channels' names will be converted to the lower case string!

https://confluence.desy.de/pages/viewpage.action?pageId=222200023
https://confluence.desy.de/pages/viewpage.action?pageId=222200023
https://confluence.desy.de/pages/viewpage.action?pageId=222200028

How should pump-probe data look like?

The pump-probe data should be either three-column files with columns contents being

<(x) 1st colum contains the punp-probe delays> <(y) 2nd colum contains the fitted observable value> <
(yerrors) 3rd colum is the errors of the y's>

or four-column file with (this is what is being produced by the CAMPFancyAnalysis)
<(x) 1st colum contains the punp-probe delays> <(y) 2nd colum contains the fitted observabl e val ue> <3rd
columm can contain anything, but presumably there are the errors of the x's> <(yerrors) 4th colum is the

errors of the y's>

In both cases only the x, y, yerror s data are taken.

https://confluence.desy.de/display/CFA/Software+for+Analysis+of+Data+from+CAMP@FLASH+end-station

There is a possibility to also use the regularization in the scripts. Two main reasons for that are:
® sometimes one of the parameters has an independent experimental/theoretical estimation, and this can be used to constraint the fitting
procedure;
® sometimes two channels can give variables close to each other, which will cause the linear dependence in the fits, and the close-by

parameters need to be "pushed apart”.

This can be done with a file that looks, for instance, like this:

Regularization file example

constrai nt t0_a 0.0 0.5
constraint tcc_a 0.1 0.5
repel | ent t0_a tO_b 0.01

Constraint type parameters

These parameters are to impose an a priori known value of some variable. Note: there can be as many constraints for a single variable, as we want.
A corresponding definition line in the file has the following structure:

constraint <nane of the variable from-v file> <known val ue of the variable> <error of the variable,
standard devi ati on>

&6

This block will add a penalty term = with , being the <known val ue of the variabl e>, being<error of the variable, standard

devi at i on>, and is the value of the variable <nane of the variable from-v file>.

Repellent type parameters

These parameters are to push apart two variables, that are close to each other, and that cause bad linear dependencies. A corresponding definition
line in the file has the following structure:\

repell ent <name of the fist variable from-v file> <nanme of the second variable from-v file> <regulariza
tion paraneter >

This block will add a penalty term 3% (@ > 0) to the regularization functional.

https://confluence.desy.de/pages/viewpage.action?pageId=222200030
https://confluence.desy.de/pages/viewpage.action?pageId=222200030
https://confluence.desy.de/pages/viewpage.action?pageId=222200030
https://confluence.desy.de/pages/viewpage.action?pageId=222200030

Variables descripton files (what -v option requires)

This file should contain a description of the variables. For example:

Example of variables definition file

[tO]

m nval ue = 12. 3
maxval ue = 13.1
inivalue = 12. 649
maxdi sp = 0.005

[tcc]

m nval ue = 0. 07
maxval ue = 0. 20
inivalue = 0.15
maxdi sp = 0.005
[tr]

m nval ue = 0. 005
maxval ue = 0. 200
inivalue = 0.050
maxdi sp = 0. 005

Each block is a definition for a single variable with a name (identifier) given in the squared parentheses. Note, that the upper case letters will turn to
lower case letters internally, therefore choose wisely the names of the variables. Each variable is defined by four possible keys:

* m nval ue/ maxval ue (required) — these are the lower/upper bounaries for the possible values of the variable.

® i ni val ue (optional) — this is the initial value of the variable, the fitting/Monte-Carlo (MC) sampling will start from. By default is None, and if
not given, the initial value will be drawn from the uniform distribution in the ranges [m nval ue; maxval ue).

* maxdi sp (optional) — this is the maximal displacement of the variable in the MC sampling step. By default is None, and if not given, each
MC iteration will draw this variable from the uniform distribution in the ranges [mi nval ue; maxval ue). If given, each next trial value of this
variable will be Xy = Xprevious + maxdisp - £ where x's are the variable values (new and previous), and is the random variable drawn from the
uniform distribution in the range [-1;1).

Software structure

The script consists of the library (I i bMCMCMCFi t t i ng. py) with different routines and the user interface script (pprc3fitti ng. py).

i PMCMCMCFi tti ng

The library can be used as an API for something more complicated, than what ppnt3fi tti ng. py can do. The general idea for the fitting routines
will be discussed somewhere else. The contents of the library are the following.

Fitting functions

These are
® Const Func (type of the function = 'const)
® GaussFunc (type of the function = 'gauss’)
® Swi t chDi rect Func (type of the function = 'switch’)
® Swi t chBackwar dFunc (type of the function = 'switch')
® TransDir ect Func (type of the function = 'trans’)
L]

Tr ansBackwar dFunc (type of the function = 'trans’)

Each of these functions can be returned based on the type of function requested using Get SoneFunc routine.

Reading of the input files

The direct reading of certain types of files is done using three routines. Each of these routines uses the configparser module of Python, they take only
a single argument: the name of the file to be read. As a result of their execution, all of them return a dictionary with certain values.

® readVari abl esDef i ni ti ons (just reads the variables definition file). It returns a dictionary with the keys being the names of the
variables, and each of the dictionary values contains another dictionary with the keys "value" (the current value of the variable), "minvalue"/"
maxvalue" (the minimal/maximal values of the allowed range for the variable), and the "maxdisp” (the maximal displacement in the Monte-

Carlo sampling, can be None).

® readChannel sDefi ni tions (just reads the channels definition file). The keys of this dictionary are the channel names, the value
accessed by the channel name are the definitions of the channels with the keys being "type" (the type of the representing fitting function),
"t0" (the variable that is the t0 for this channel, required for all four types of the channels), “tcc" (cross-correlation time, is not required and
thus is ignored for the 'const' type), and "tr" (relaxation time, only needed in the "trans" type).

® readDat aSet sDef i ni ti ons ((just reads the channels definition file). The returned dictionary has the names of the datasets as the keys,
and each dataset has a few keys: "x", "y", "yerr" (Numpy 1D arrays containing the X,y, values of the pump-probe curves, and the errors for y-
values), "channels" (list of the names of the channels to fit the discussed dataset).

Note! All the keys given in all the files are always turned into the case insensitive lower case strings!

Then there also is a generalized routine, ReadTheDat a, that is being used to obtain a prepared data.

Definition of ReadTheData function

def ReadTheDat a(Dat aDescri pti on, # data description file name

Channel sDescription, # channels description file nane

Vari abl esDescription, # variables description file name

Regul ari zati onDescri ption = None, # regularization description file nane

xm n=None, xmax=None, Npts=100, xM nMaxPart=0.1 # these are paranmeters of the
Dat aSet Handl er cl ass exanple initiation

):

This function returns:
1. ListOfData, a list of DataSetHandler instances, storing the datas and the definition of the functions for the fitting

2. VarHand, a VariablesHandler class example, which controls the life of the fitted nonlinear variables
3. Reglnstance (None or AdditionalConstraints class example) -- is the thing controlling the regularization

Handlers of the data

There are three handlers of the data.

Var i abl esHandl er

This class is used to store the variables and generate their new values (in Monte-Carlo sampling).

Initiation of the example requires all three dictionaries produced by r eadDat aSet sDef i ni ti ons, readChannel sDefinitions,andreadVaria
bl esDef i ni ti ons functions (in this order). The important methods of this class are:

® Vari abl esHandl er. get Map() —get a map: a list of the variables' names. It is being used to map a sampled variables vector to the actual
variables in each channel. The maps are being produced by the consequential application of the Get Onl yTheChannel s, Get Onl yTheVari
abl es, and Cet Var i abl eMap routines.

https://docs.python.org/3/library/configparser.html

® Vari abl esHandl er. get Var Vec() — get the current variables vector, a Numpy array with the values.

® Vari abl esHandl er. get Bounds() — get a tuple of (min,max) tuples for each variable, can be directly used by the Scipy.optimize routines
as the variables boundaries.

® Vari abl esHandl er. updat eVar Vec() — change the currently stored variables.

® Vari abl esHandl er. genTri al Var Vec() — returns a trial vector according to the rules for sampling this variable.

Dat aSet Handl er

This class stores the actual data for fitting, fitting functions, makes linear least-squares (LSQ) fitting and gives the data for plotting. The initiation is like
this:

Dat aSet Handl er (Dat aSet, Dat aSet Nane, Channel s, Variabl eMap, xm n=None, xnmax=None, Npts=100, xM nMaxPart=0.1),
where

® Dat aSet is the dictionary being a value of the dictionary produced by the r eadDat aSet sDef i ni ti ons routine accessed using the data
set name,

® Dat aSet Nane is the name of the dataset (e.g. the key in the dataset dictionary),

® Channel s is the dictionary produced by the r eadChannel sDef i ni ti ons function.

® Vari abl eMap is the list of variables names, produced either by the Var i abl esHandl er . get Map() method, or using the Get Vari abl eM
ap.

® xm n/xmax are the boundaries of the theoretical function produced for plotting, by default they are determined using the xM nMaxPar t
parameter.

® Npt s is the number of points in the theoretical function produced for plotting,

®* xM nMaxPart is the parameter to automatically determines the xm n/xmax by taking them to be the last/first experimental point + XM nMax
Part * (last point value - first point value).

Important methods.

Dat aSet Handl er .updat e(Var i abl esVect or), updates the theoretical fits according to the new values of the fitted parameters.

Dat aSet Handl er . get ChNanes(), shows the names of the channels, in the form of the array.

Dat aSet Handl er . get Anp(), shows the amplitudes of the different channels.

Dat aSet Handl er . get Current Yt her or (G veExpPoi nts = Fal se), returns the theoretical points of the fit, G veExpPoi nt s controls

which grid to use (if Tr ue, the experimental grid will be used).

* Dat aSet Handl er. get Current Xt heror (G veExpPoi nts = Fal se), returns the x-points or the theoretical points of the fit, G veExpP
oi nt s controls which grid to use (if Tr ue, the experimental grid will be used).

® Dat aSet Handl er. get LSQ), this returns the LSQ deviation between experiment and theory.

Addi ti onal Constraints

This class is for doing the regularization.
Addi tional Constraints(FileNanme, Variabl eMap), where

® Fi | eNan® is the name of the file containing the regularization parameters,
® Vari abl eMap is the list of variables names, produced either by the Var i abl esHandl er. get Map() method, or using the Cet Var i abl eM
ap.

Important methods.

® Additional Constraints. get RegVal ue(Var Vec) — returns the value of the regularization functional with the given vector of variables.

Functions to do the fitting
There are three functions for doing that:

® DoThed obal Fit(ListOf Data, VarHand, AddConstr=None, Method = 'DiffEvo', Additional Arguments=dict(),
Ret urnDi cti onary=Fal se, Addl nfoToFiles = None), does global fit of the dependencies.

® DoTheMCMCSanpl i ng(Li st Of Data, VarHand, AddConstr=None, NSteps=10000, NStepsTol gnore=None,
Part Tol gnore=0. 1, AcceptanceProbabilityScale = 1.0, AddlnfoToFiles = None, NBinslnH st = 50,
Print Status = True), performs Monte-Carlo sampling of the nonlinear fitted variables, to obtain a reasonable error estimates.

® DoTheLocal Fit(ListOf Data, VarHand, AddConstr=None, Method = 'Powel|', Additional Arguments=dict(),
Ret urnDi cti onary=Fal se, Addl nfoToFiles = None), does the local optimization.

The main parameters are shared:

Li st O Dat a is a list of Dat aSet Handl er instances,

Var Hand is a Var i abl esHandl er instance,

AddConst r is either None (then no regularization), or the Addi t i onal Constr ai nt s instance.

Addl nf oToFi | es is an additional description, that will be added to the names of the output files produced by the functions.

The specialized parameters are given below

DoThed obal Fi t/ DoTheLocal Fi t

® Met hod is the method of the Sci py. opti mi ze to be used. Only two are supported for global fit: 'DiffEvo’ (differential evolution) and
'‘DualAnn’' (dual annealing). Local fit supports all the types of the Sci py. opti m ze. ni ni m ze.

® Additional Argunent s are the additional arguments of the optimization method function, given in the form of a dictionary.

® ReturnDictionary --determines whether it will return a vector of variables, or a dictionary (good for printing).

DoTheMCMCSanpl i ng

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

NSt eps -- number of steps in MCMC simulation,

NSt epsTol gnor e — how many first steps to ignore (overrides PartTolgnore if provided).

Par t Tol gnor e — which part of the MCMC simulation to ignore (is overridden by NStepsTolgnore if not None),
Accept ancePr obabi | i t yScal e — scaling coefficient for the Metropolis acceptance probability.

NBi nsl nH st — number of bins in the histograms.

Pri nt St at us — bool flag to print the status of the MCMC sampling.

ppnc3fitting

The way this software works (flagwise) is the following:

Begin
{all the required files are given)

Is the flag
—~TurmnOffOptimization
r given?
Yes

--UselocalOpfimization

Theoretical fits
(*_Ifit_<method=>*res)

Theoretical fits
{*_gfit_<method>"res)

3 1

Is the flag
—~TumOfMACMC
given?

ITheoretical fits (total and separate channels)
(*_memec_sampling*res)

Yes

Variables distributions
(variable_*_sampled_distribution*res)

- =

Parameters
with their
errors
{variables_mcmc_sampling*res)

MC trajectory
(mcmec_sampling*res)

Understanding the results

The script ppmc3fitting.py gives multiple output files. Here is a small guide to understanding them.

Files produced by the local/global fitting

The fitting produces two files:

variables_[g,l]fit_<nane of the optim zation method><optional additional information, if given> res This
file contains the values of the fitted variables.

<dataset name>_[g,|]fit_<name of the optim zation method><optional additional infornation, if given>.
res This file contains a theoretical fitted function (including separate channels) fitted to each experimental dataset (distinct by the name),
that can be used for plotting. The length of the function outside the region of the experimental value is defined by the option "- - M nMaxPar t
", whether the number of theoretical points for the plotting is given by the parameter "- - NunOf Theor Poi nt s". The plots produced by that

Example of the fitted data

1.1 T T T
Experiment ———
Total
1 I Switch+Background ——— -
1 Switch+Transient
w09 i
=
=1
2 08 i
[~
k=] /
T o7r 1 .
(] i
3 0.6 \ -
os| g |
04 1 1 1 1 1
11.5 12 12.5 13 13.5 14 14.5

are e.g. this: pump-probe delay, ps

<dat aset nanme>_residuals_[g,|]fit_<name of the optinization nmethod><optional additional information, if
gi ven>. res This file contains residuals of the fit, defined as the difference of theoretical fitted function (including separate channels) from

each experimental point in the dataset (distinct by the name), that can be used for plotting.

Global optimization results are denoted with "gf i t " in the file names, and the local optimization — with "l fi t".

Files produced by the Monte-Carlo (MC) sampling

MC sampling produces lots of files.

Similar to the fitting, it produces a file called var i abl es_ntnt_sanpl i ng<optional additional information, if given>.res,
which contains the average values of the variables and their standard deviations, that come from the sampled distribution.

<dat aset nane>_ntnt_sanpl i ng<optional additional information, if given>. res, which contains a theoretical fitted
function (including separate channels) fitted to each experimental dataset (distinct by the name), that can be used for plotting. The length of
the function outside the region of the experimental value is defined by the option "- - M nMaxPar t ", whether the number of theoretical points
for the plotting is given by the parameter "- - NunOf Theor Poi nt s". The plots produced by that are e.qg. this:

Example of the fitted data

11 T T T
Experiment +——+—1
Total ———
1r }\ Background+Switch ———
E[I \ Background+Trans ——
n 09 - -
S
=1
2 08+ 4
o
k=)
@
5 0.7 - -
(7]
v
= 06 B
05 - -
04 1 Il Il 1 Il
115 12 125 13 135 14 145

pump-probe delay, ps
ncne_sanpl i ng<optional additional information, if given>.trj —thisisthe Metropolis MC trajectory (full), which contain
the values of the variable on the each step of the simulation, the acceptance probability, trial random number, and the values of the least-

squares (LSQ) and regularization functional. This can give the graphs of the trajectory, or the relative distributions of the different

MCMC sampling trajectory
68 T T

T
Total
LsQ
66 B

M

56 - B

LSQ + Regularization functional

54 | | | 1 | | 1 | 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Step number or

parameters, e.g.:

Parameter 1 vs parameter 2

0.135 |

0.125 |

0.115 |

parameter 2

0.105 |*
R

0.1 -

0.095 L .
12.625 12.63 12.635 12.64 12.645 12.65 12.655 12.66 12.665 12.67

parameter 1

® variable_<name of the variable>_sampled_distribution<opti onal additional information, if given>.res - thisisthe MC
sampled probability distributions for each fitted variable. The number of bins of the distribution is controlled by the - - NunOf Bi ns| nHi st "
parameter. The distribution show the actual shape (non-Gaussian for nonlinear parameters):

t0 shift distribution from MCMC sampling

1 T T T T

T T T
0 s New result C—
M Expectation 1

probablity
1

0.4 - -

0.2 - N -

0 |
25 -20 -15 -10 -5 0 5 10 15 20 25
t0(new) - tO(He), fs .
® <dataset nane>_residual s_ncnt_sanpl i ng<optional additional information, if given>.res, which containsa
difference between theoretical fitted function (including separate channels) and experiment (fit residuals) for each experimental dataset
(distinct by the name), that can be used for plotting.

