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Abstract: Background: The integration of edge computing into smart healthcare systems requires the
development of computationally efficient models and methodologies for monitoring and detecting
patients’ healthcare statuses. In this context, mobile devices, such as smartphones, are increasingly
employed for the purpose of aiding diagnosis, treatment, and monitoring. Notably, smartphones
are widely pervasive and readily accessible to a significant portion of the population. These devices
empower individuals to conveniently record and submit voice samples, thereby potentially facilitating
the early detection of vocal irregularities or changes. This research focuses on the creation of diverse
machine learning frameworks based on vocal samples captured by smartphones to distinguish
between pathological and healthy voices. Methods: The investigation leverages the publicly available
VOICED dataset, comprising 58 healthy voice samples and 150 samples from voices exhibiting
pathological conditions, and machine learning techniques for the classification of healthy and diseased
patients through the employment of Mel-frequency cepstral coefficients. Results: Through cross-
validated two-class classification, the fine k-nearest neighbor exhibited the highest performance,
achieving an accuracy rate of 98.3% in identifying healthy and pathological voices. Conclusions:
This study holds promise for enabling smartphones to effectively identify vocal disorders, offering
a multitude of advantages for both individuals and healthcare systems, encompassing heightened
accessibility, early detection, and continuous monitoring.
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1. Introduction

The integration of edge computing into smart healthcare systems represents a pivotal
advancement in the realm of modern healthcare. This evolution hinges on the creation of
computationally efficient models and methodologies tailored specifically for monitoring
and detecting patients’ healthcare statuses. In an era where data are paramount, especially
in healthcare, edge computing emerges as a solution that promises to revolutionize the
industry by bringing the power of computation closer to the source of data generation [1].
In this context, one of the remarkable developments is the utilization of mobile devices,
particularly smartphones, as indispensable tools for aiding in the diagnosis, treatment,
and continuous monitoring of individuals’ health [2,3]. The rationale behind this choice is
multifaceted. Firstly, smartphones have achieved an unprecedented level of penetration
and adoption globally. Their ubiquity ensures that a significant portion of the population
has access to these powerful pocket-sized computers, making them an ideal platform
for delivering healthcare services. Moreover, smartphones are equipped with an array
of sensors and features that can be harnessed for healthcare purposes. These devices
can capture data on a multitude of physiological parameters, such as heart rate, sleep
patterns, physical activity, and even environmental factors like air quality. Furthermore,
smartphones can easily connect to wearable devices and sensors, creating a seamless
ecosystem for continuous data collection [3,4].
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The usage of smartphones or, more generally, portable devices has found widespread
applications in the field of healthcare assessment [5,6]. In fact, smartphones are equipped
with several sensors that could be useful for diagnostic purposes. For instance, the visual
camera could provide pictures or videos able to detect the affective state of individuals, but
it could also provide information regarding skin diseases and heart rate through algorithms
for remote photoplethysmography (PPG) [7]. Moreover, the effectiveness of the continuous
monitoring of the health condition of a subject can be improved by coupling the smartphone
with wearable devices such as smartwatches, which can record several physiological signals
based on PPG and accelerometry [2,8–11].

One of the most intriguing applications of said devices, which has not been thor-
oughly explored yet, is their potential to enable the early detection of health issues through
voice analysis. Said potential is attributed to their optimal microphones, which have been
meticulously assessed for fidelity and accuracy in acoustic measurements of voice, as high-
lighted in previous studies [12–14]. Indeed, research has demonstrated that smartphone
microphones are proficient in capturing voice recordings, even amidst ambient noise [15].
Furthermore, Lee et al. showed that although there are variations in acoustic measurements
based on the device used, there was no difference in the diagnostic capability across the
devices tested, including smartphones [16]. From this perspective, recent studies have
demonstrated the consistency between the voice features derived from smartphones and
professional microphone recordings [17,18]. Notably, the human voice carries a wealth
of information, and subtle changes or irregularities in speech patterns can sometimes be
indicative of underlying health conditions [19,20]. Specifically, voice analysis has been
used for emotion recognition in order to improve the human–machine interaction and to
monitor the affective state of individuals [21–23], for the discrimination of younger and
older adults [24], as well as for the early diagnosis of vocal apparatus diseases [25–28]. For
instance, Jothilakshmi developed a system based on Mel-frequency cepstral coefficients
and linear prediction cepstral coefficients and used a Gaussian mixture model and hidden
Markov model classifiers, reaching 94.44% efficiency in classifying normal and pathological
voices [29]. Panek et al. evaluated the automatic detection of voice pathologies using an
auto-associative neural network (NLPCA) for four types of vocal pathologies (i.e., hyper-
functional dysphonia, functional dysphonia, laryngitis, and vocal cord paralysis). The
methods provided results with an efficiency level above 85% [30]. Vizza et al. proposed
two methods of vocal signal analysis to detect dysarthria in Parkinson’s disease (PD) and
multiple sclerosis patients with respect to healthy controls. The results showed significant
differences in the features of pathological and healthy voices [31]. Kowalska-Taczanowska
et al. found significant differences in the distribution of acoustic parameters between
PD patients and atypical parkinsonian syndromes. Atypical parkinsonism patients had
a mixed type of dysarthria with hypokinetic, spastic, and atactic features. Patients with
multiple system atrophy had ataxic components of dysarthria. Atypical parkinsonism
patients had pure hypokinetic dysarthria, fostering the employment of some parameters
for PD diagnosis [32].

Notably, most of the studies proposed so far focused on serious vocal diseases, often
related to other pathologies, and used studio microphones to record the voice. The advan-
tages of using mobile apps or built-in features relies on the possibility that individuals can
conveniently and easily record and submit voice samples for analysis. These voice data can
then be processed using advanced machine learning (ML) and artificial intelligence (AI)
algorithms, which are optimized for edge computing. ML is a field within computer science
that employs efficient iterative algorithms in order to facilitate the learning process. It in-
volves the use of significant characteristics and particular observations from provided data,
with the aim of circumventing the need for computationally demanding programming
experiments [33]. In recent times, there has been a notable utilization of ML algorithms
in the field of health applications. This has garnered significant interest owing to their
capacity to effectively execute sophisticated decision-making solutions [34–36]. The benefit
of integrating ML and smartphone sensors into the healthcare ecosystem is that it puts
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the power of early detection and monitoring directly into the hands of individuals. They
become active participants in their own healthcare, with the ability to regularly assess and
track their well-being. Furthermore, healthcare providers can remotely access these data,
allowing for proactive interventions and personalized treatment plans in a telemedicine
context [37].

The objective of this study is to propose an ML-based analysis of voice recordings
acquired using an old-generation smartphone from both healthy individuals and subjects
with minor diseases of the vocal apparatus: reflux laryngitis, hypokinetic dysphonia, and
hyperkinetic dysphonia. Through a variety of ML techniques, this study demonstrates how
insightful information about the speaker’s health status can be extracted from a simple voice
recording. The significance of the success of this study lies in its execution with a concise
and easily extractable set of features. By focusing on data recorded with outdated devices,
this work showcases the quality of helpful information that has always been at hand but
never extracted, lending strong support to the necessity of moving from standard diagnosis
to aided diagnosis. Finally, this work holds significance in pioneering applications for
immediate health assessment and making inroads into the realms of translational and
personalized medicine. This breakthrough could empower individuals to comprehend
their health status through analyses performed using commonly used, everyday devices
such as smartphones.

2. Materials and Methods
2.1. Dataset and Classification Procedure

This study was conducted using the freely available VOICED database [38,39], which
comprises a total of 208 voice samples. These samples were obtained through the mo-
bile health system [40] called Vox4Health, an implemented application that allows voice
recordings using smartphone microphones. The device used for the acquisition was a
Samsung Galaxy S4 running on Android 5.0.1, positioned at an angle of 45 degrees and
held approximately 20 cm away from the patient. To ensure consistent results, the subjects
were instructed to maintain a constant voice intensity similar to that of a regular conversa-
tion. The recording consisted of the repetition of the vowel \a\ for approximately 5 s; if
necessary, a couple of training tests were conducted to ensure correct speaking performance.
Subsequently, all the recordings, sampled at 8000 Hz with a 32-bit resolution, underwent
preprocessing using optimal filters to eliminate any background noise. It should be noted
that the vocal recordings included in the dataset were already preprocessed, thus they
did not present any noise components. To complete the database, additional personal
information about the subjects, such as gender, age, alcohol consumption, and smoking
habits, was included. Notably, the dataset consisted of 72 voice samples from male subjects
and 136 samples from female subjects, resulting in an imbalance in gender representation.
Furthermore, within the dataset, 150 voice samples exhibited pathological characteristics:
70 subjects, 47 females and 23 males, suffered from hyperkinetic dysphonia; 41 subjects, 9 fe-
males and 32 males, suffered from hypokinetic dysphonia; and 39 subjects, 19 females and
20 males, suffered from reflux laryngitis. By contrast, 58 voice samples were from healthy
individuals, highlighting another imbalance in the distribution of healthy and diseased
patients. It is noteworthy that the assessment of both healthy voices and the presence of
voice disorders was conducted by medical experts who were actively engaged in the project.
The observed imbalances in gender and health conditions are important considerations,
with healthy male voice samples making up only 10% of the database, leading the study to
expand the number of available samples by splitting the vocal recordings into segments of
30 s. With this approach, a larger dataset of 3928 samples was available. The generalization
capabilities of the models were tested through a 10-fold cross-validation, and 10% of the
study sample was used as a test set [41–45]. Importantly, in order to avoid overfitting
effects due to the split of the available voice recordings, the vocal segments obtained from
a recording were put in the same fold, avoiding the training and validation pools having
samples from the same vocal recording. Furthermore, it should be considered that balanced
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classes were considered for each classification task. The numerosity of the classes used for
the classification was set accordingly to the smaller class, and the samples of the larger class
were selected randomly and in an iterative manner (10,000 iterations) in order to consider
all the possible combinations of the available samples. In this study, several ML approaches
have been employed for both the classification tasks: Linear Discriminant [46], Linear
SMV, Quadratic SMV, Cubic SMV [47], Fine KNN [48], Narrow Neural Network, Medium
Neural Network, Wide Neural Network, Bilayerd Neural Network, and Trilayered Neural
Network [49]. Particularly, for the SMV models, the strategy for the multiclass classification
was set on ‘One-vs-one’ [50], while the Fine KNN model was set on one neighbor and
Euclidean distance as metrics for the classification task. Furthermore, the neural networks
had a layer size of 10, 25 and 100 for the narrow, medium, and wide models, respectively,
while the multilayered models had a uniform layer size of 10 each. The selection of the
referenced models was made following a comprehensive review of the literature on the
topic, with the goal of identifying the most effective and commonly employed ML model
in the field of speech classification [51,52]. Further details on the structure of the database
are reported in Table 1.

Table 1. Detailed contents of the subjects’ information.

Section Options Values (Number of Subjects)

General Information

Age
Gender

Diagnosis
Occupational status

Healthy (58), reflux laryngitis
(39), hypokinetic dysphonia (41),

hyperkinetic dysphonia (70)

Medical Questionnaires Voice Handicap Index (VHI)
Reflux Symptom Index (RSI)

0–120
0–45

Smoking Habits
Smoker

Number of cigarettes smoked
per day

No, casual smoker, habitual

Drinking habits

Alcohol consumption
Number of glasses containing
alcoholic beverage drunk in

a day
Amount of water’s liters

drunk every day

No, casual drinker, habitual
drinker

Building an ML model involves the critical task of selecting a suitable set of attributes
or features to effectively train and test the classifier using samples. When considering
speech samples, it becomes apparent that three primary categories of features can be
extracted:

• Prosodic features: these encompass the rhythm and intonation of the speaker. Due
to their inherently subjective and controllable nature, their extraction presents chal-
lenges [53].

• Frequency features: these features offer insights into the distribution of frequencies
within the audio signal [54,55].

• Voice quality features: this category provides information directly related to the overall
quality of the speech sample [56,57].

In this investigation, acknowledgement of the unconventional nature of the speech
samples was to be taken into consideration: the subjects were tasked with the repetition of
the vowel/a/, which is not a properly conventional speech scenario. Given this distinct
task, the standard features reported—prosodic features, frequency features, and voice
quality features—were deemed inadequate for the analysis. Thus, our focus shifted to-
ward advanced methodologies implied in speech and voice assessments, and more in
general, into audio analysis. Our analysis centers on Mel-frequency cepstral coefficients
(MFCCs) and the harmonic ratio as distinctive features, since attributes focused especially
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on frequency characteristics would hold little to no significance given the constant sound
participants were required to make.

MFCCs are evaluated by obtaining the power spectrum through the fast Fourier
transform (FFT) and subsequently mapping it onto the Mel scale, which is a perceptual
scale of pitches that approximates the non-linear human auditory system response to
different frequencies. Said mapping is achieved by passing the power spectrum through
a series of triangular filters evenly spaced along the defined scale. Once the Mel-filtered
energies are obtained, the logarithm of the powers at each Mel frequency is taken. This
logarithmic operation helps to mimic the human ear’s sensitivity to changes in loudness
at different frequencies. Next, a discrete cosine transform is applied to the logarithmic
powers. The application of the DCT is aimed at decorrelating the values and emphasizing
the most important features. The resulting coefficients represent the cepstral domain,
which holds the essential characteristics of the signal. The utilization of 13 MFCCs aligns
with established standards in audio processing, strategically balancing the need for a
comprehensive representation of the spectral envelope while mitigating redundancy, thus
overcoming the constancy of the sound. This way, the MFCCs collectively provide a
nuanced snapshot of the vocal output during the prescribed task, working on a nonlinear
frequency scale and thus providing an important description of the perceptual features of
the human voice. In the cepstral domain, information about the rate changes in different
spectrum bands is summarized owing to the computation of cepstral features through
the Fourier transform of the warped logarithmic spectrum. This unique characteristic of
cepstral features proves advantageous, as it facilitates the separation of the impact of the
source (vocal cords) and filter (vocal tract) in a speech signal.

In detail, positive cepstral coefficients denote sonorant sounds, concentrating spectral
energy in low-frequency regions, while negative coefficients signify fricative sounds, with
predominant spectral energies at high frequencies. Furthermore, lower-order cepstral
coefficients offer insights into the overall spectral shape of the source–filter transfer function,
as, in fact, the zero-order coefficient indicates the average power of the input signal and
the first-order coefficient represents the distribution of spectral energy between low and
high frequencies. Although higher-order coefficients provide increasing levels of spectral
details, optimal voice analysis typically involves selecting 12 to 20 cepstral coefficients.

It should be noted that, although the sound made by the subjects is rather simple and
can thus easily be described by a small number of MFCCs, the choice of 13 coefficients has
been deemed correct as it aligns with the majority of audio analyses that involve this type
of processing [58] and so as to avoid underestimating the effect dysphonia can have on
vocal characteristics.

Complementing the MFCC analysis, the harmonic ratio augments our exploration by
providing insights into the degree of harmonicity in the voice. The features described were
then normalized with a zero-score normalization technique. In summary, the ML classifier
worked on 13 MFCCs and the harmonic ratio.

Separate tables, to be utilized in said ML applications, were prepared: one for each
gender. These tables included the subjects’ IDs and gender—defined as 1 for males and
0 for females—indications of the health status—defined as 1 for diseased and 0 for healthy—
and the 14 described attributes. Once the ML models were applied, the performance was
evaluated through a measure of accuracy, as defined in Equation (1).

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(1)

Concerning the accuracy associated with the training phase, it was obtained by av-
eraging the accuracies delivered for each iteration performed, as described in Section 2.1.
Moreover, in the binary classification task in this study, the outcomes were categorized
into two actual classes (i.e., male and female, healthy and diseases) and two predicted
classes, yielding four possible types of predictions. This led to four potential prediction
types: True Positives (TPs) refer to the cases correctly identified as positive, True Negatives
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(TNs) refer to the cases correctly identified as negative, False Positives (FPs) refer to the
cases incorrectly labeled as positive, and False Negatives (FNs) refer to the cases incorrectly
labeled as negative. In order to assess the effectiveness of the model, a confusion matrix
was employed, which is a 2 × 2 table that represents the actual and predicted classes in
rows and columns, respectively. The matrix was filled with the frequencies of the TP, FP,
FN, and TN outcomes, positioned in the top-left, top-right, bottom-left, and bottom-right
cells, respectively.

Notably, the splitting of the vocal recordings, preparations of train and test tables,
and ML models were performed through MATLAB 2022b©, particularly, in the case of
the latter, with the aid of the Classification Learner tool, which encompasses a variety of
models ready for implementation and presents output confusion matrices, enabling a quick
assessment of performances. Notably, the number of predictors is significantly lower than
the number of samples, hence allowing reduction of a possible overfitting effect.

2.2. Gender Classification

To assess the feasibility of implementing ML models for speech classification, an initial
investigation aimed at distinguishing between genders was conducted. Tables for training
and testing were built, consisting of 1000 and 400 samples, respectively. Notably, both
tables contained an even number of male and female samples, selected randomly, with the
purpose of avoiding biases such as overfitting, as described in Section 2.1. A wide spectrum
of ML models was harnessed, spanning the range from linear discriminant and support
vector machine to K-nearest neighbors and neural networks. Most of the models varied
in complexity, encompassing coarse, medium, and narrow extensions. The selection of
more than one model is explained by the will to understand which one is better suited for
speech analysis and classification. Moreover, the classification process for each ML model
underwent multiple iterations, generating tables anew each time. This approach facilitated
the assessment of the average accuracy during both training and testing phases, offering
insights into the stability of the models. In conclusion, the goals of this preliminary part of
the study can be summarized as follows:

• Understanding the feasibility of employing ML techniques in speech analysis for
gender discrimination.

• Defining the best models for the purpose.

2.3. Health Status Classification

In similarity with the previous task, a random selection process was conducted,
following the same procedure described in the gender classification but this time acquiring
samples exclusively from a single table and ensuring a balance between the number
of pathological and healthy voice samples. In the end, the training pools consisted of
800 samples for the females and 480 samples for the males, while the test ones consisting of
200 and 100 samples, respectively.

The classification process pipeline is described in Figure 1.

BioMedInformatics 2024, 4, FOR PEER REVIEW 7 
 

 

 
Figure 1. Classification process pipeline: the voice recordings have been split into windows of 30 s. 
Then, informative features have been extracted and used as input for the ML framework. 

Furthermore, a MANCOVA was performed for each MFCC to examine the effect of 
the independent variables (diagnosis–-healthy or diseased) on multiple dependent varia-
bles (the MFCCs), while controlling for covariates (age, gender, smoking habits, and alco-
hol consumption). This analysis helps in understanding if the differences in the MFCCs 
are significantly associated with the health status after accounting for the covariates. 

3. Results 
3.1. Gender Classification 

Detailed results concerning the average performances in the training and testing 
phase of the various models are documented in Table 2 Notably, the training and testing 
phases were conducted on 1000 and 400 samples, respectively. 

Table 2. Detailed performances for the gender classification. The best accuracy for both the train-
ing and test sets is reported in bold. 

Model Train: Average Accuracy Test: Average Accuracy Sensitivity Specificity 
Linear Discriminant 90.6% 90.5% 89.2% 91.8% 

     
Linear SMV 91.2% 91.5% 92.7% 90.3% 

Quadratic SMV 95.1% 95.7% 94.4% 97.0% 
Cubic SMV 95.7% 96.4% 98.4% 94.4% 

     
Fine KNN 98.0% 98.3% 98.3% 98.3% 

     
Narrow Neural Network 94.6% 95.4% 94.2% 96.6% 
Medium Neural Network 95.3% 96.5% 97.7% 95.3% 

Wide Neural Network 95.7% 95.4% 94.2% 96.6% 
     

Bilayerd Neural Network 95.0% 94.0% 92.0% 96.0% 
Trilayered Neural Network 94.7% 94.9% 94.1% 95.7% 

Of the multiple trials, the confusion matrices reporting the average results of the best 
performing model for the training and testing performances is shown in Figure 2. 

Figure 1. Classification process pipeline: the voice recordings have been split into windows of 30 s.
Then, informative features have been extracted and used as input for the ML framework.

Furthermore, a MANCOVA was performed for each MFCC to examine the effect of the
independent variables (diagnosis—healthy or diseased) on multiple dependent variables
(the MFCCs), while controlling for covariates (age, gender, smoking habits, and alcohol
consumption). This analysis helps in understanding if the differences in the MFCCs are
significantly associated with the health status after accounting for the covariates.
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3. Results
3.1. Gender Classification

Detailed results concerning the average performances in the training and testing phase
of the various models are documented in Table 2 Notably, the training and testing phases
were conducted on 1000 and 400 samples, respectively.

Table 2. Detailed performances for the gender classification. The best accuracy for both the training
and test sets is reported in bold.

Model Train: Average Accuracy Test: Average Accuracy Sensitivity Specificity

Linear Discriminant 90.6% 90.5% 89.2% 91.8%

Linear SMV 91.2% 91.5% 92.7% 90.3%
Quadratic SMV 95.1% 95.7% 94.4% 97.0%

Cubic SMV 95.7% 96.4% 98.4% 94.4%

Fine KNN 98.0% 98.3% 98.3% 98.3%

Narrow Neural Network 94.6% 95.4% 94.2% 96.6%
Medium Neural Network 95.3% 96.5% 97.7% 95.3%

Wide Neural Network 95.7% 95.4% 94.2% 96.6%

Bilayerd Neural Network 95.0% 94.0% 92.0% 96.0%
Trilayered Neural Network 94.7% 94.9% 94.1% 95.7%

Of the multiple trials, the confusion matrices reporting the average results of the best
performing model for the training and testing performances is shown in Figure 2.
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3.2. Health Status Classification

Detailed results concerning the average performances in the training and testing phase
of the three models are documented in Tables 3 and 4, respectively. Of the multiple trials,
the confusion matrices reporting the average results for the training and testing health
status classification performances, for both the male and female voices, are shown in
Figures 3 and 4, respectively. Notably, in the classification of the female voice recordings,
the training and testing phases involved 800 and 480 instances, respectively. Meanwhile,
for the classification of the male voice recordings, the training and testing phases included
200 and 100 instances, respectively.
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Table 3. Detailed performances for the health status classification for females. The best accuracy for
both the training and test sets is reported in bold.

Model Train: Average Accuracy Test: Average Accuracy Sensitivity Specificity

Linear Discriminant 70.1% 75.5% 71.8% 80.7%

Linear SMV 71.4% 74.5% 75.8% 73.2%
Quadratic SMV 86.5% 85.5% 91.5% 79.5%

Cubic SMV 92.5% 93.8% 94.0% 93.6%

Fine KNN 96.3% 95.5% 95.0% 96.0%

Narrow Neural Network 89.1% 88.7% 90.9% 86.5%
Medium Neural Network 90.8% 90.5% 90.0% 91.0%

Wide Neural Network 92.9% 92.2% 91.6% 92.9%

Bilayerd Neural Network 89.9% 89.7% 92.9% 86.5%
Trilayered Neural Network 89.2% 89.8% 93.0% 86.6%

Table 4. Detailed performances for the health status classification of the male divided samples. The
best accuracy for both the training and test sets is reported in bold.

Model Train: Average Accuracy Test: Average Accuracy Sensitivity Specificity

Linear Discriminant 66.7% 66.7% 69.9% 63.5%

Linear SMV 60.5% 67.3% 66.9% 67.7%
Quadratic SMV 67.1% 80.0% 79.5% 80.5%

Cubic SMV 76.9% 96.7% 95.9% 97.5%

Fine KNN 98.3% 98.3% 97.9% 98.4%

Narrow Neural Network 98.5% 90.5% 90.0% 91.0%
Medium Neural Network 92.3% 92.5% 92.1% 92.9%

Wide Neural Network 92.4% 93.9% 92.7% 94.1%

Bilayerd Neural Network 90.6% 93.0% 92.5% 93.5%
Trilayered Neural Network 90.3% 89.7% 92.9% 86.5%

BioMedInformatics 2024, 4, FOR PEER REVIEW 9 
 

 

 
Figure 3. (a) Confusion matrix showing the average training performance of a fine k-nearest 
neighbor model applied to the female samples. Accuracy: 97.0%, Sensitivity: 95.6%, Specificity: 
98.4%. (b) Confusion matrix showing the average testing performance of fine k-nearest neighbor 
model applied to the female samples. Accuracy: 95.5%, Sensitivity: 94.2%, Specificity: 96.9%. 

Table 4. Detailed performances for the health status classification of the male divided samples. 
The best accuracy for both the training and test sets is reported in bold. 

Model 
Train: Average Ac-

curacy 
Test: Average Accu-

racy Sensitivity Specificity 

Linear Discriminant 66.7% 66.7% 69.9% 63.5% 
     

Linear SMV 60.5% 67.3% 66.9% 67.7% 
Quadratic SMV 67.1% 80.0% 79.5% 80.5% 

Cubic SMV 76.9% 96.7% 95.9% 97.5% 
     

Fine KNN 98.3% 98.3% 97.9% 98.4% 
     

Narrow Neural Network 98.5% 90.5% 90.0% 91.0% 
Medium Neural Network 92.3% 92.5% 92.1% 92.9% 

Wide Neural Network 92.4% 93.9% 92.7% 94.1% 
     

Bilayerd Neural Network 90.6% 93.0% 92.5% 93.5% 
Trilayered Neural Network 90.3% 89.7% 92.9% 86.5% 
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Figure 4. (a) Confusion matrix showing the average training performance of a fine k-nearest neighbor
model, applied to the male samples. Accuracy: 99.2%, Sensitivity: 99.2%, Specificity: 99.2%. (b) Con-
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The MANCOVA analysis showed a not significant difference between the MFCCs of
the healthy and diseased groups (p = 0.0802). Importantly, the gender and the age exhibited
significant differences between the two groups (p~0 and p = 0.0291, respectively), but only
the interaction between the gender and the group was statistically significant (p = 0.0466).

In Figure 5, the distribution of the MFCCs categorized for gender and health status
is displayed.
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4. Discussion

This work constitutes a novel approach in the field of vocal health evaluation, with
a specific emphasis on harnessing the capabilities of ML to identify and diagnose mi-
nor ailments of the vocal apparatus with the support of outdated devices. The primary
methodology employed involves the analysis of vocal recordings obtained via smartphone
technology. The main aim of this study was to examine the viability of employing this
method, especially in cases involving vocal recordings of poorer quality. The study focused
on two primary areas of investigation: the categorization of gender and the identification
of vocal apparatus disorders. The ML algorithms were fed using the MFCCs, which are
crucial to vocal analysis, especially for speech recognition and audio signal processing.
The MFCCs simplify complex audio signals into a manageable set of coefficients, enabling
advanced data analysis techniques such as ML approaches. In this study, the employment
of MFCCs allows for a significant reduction in the dimensionality of the features. In fact,
by encapsulating the most relevant aspects of the sound spectrum into a compact set of
coefficients, they mitigate computational intensity and enhance the efficiency of ML models.
Moreover, the representation of audio signals through MFCCs focuses on characteristics
critical to speech comprehension, such as timbre and tone. This targeted representation
contributes to the improved accuracy and effectiveness of the ML algorithms proposed in
this study, as it allows the models to concentrate on pertinent features while disregarding
extraneous noise and data.

In the gender classification task, the application of a Fine kNN model demonstrated
exceptional performance, achieving a cross-validated accuracy of 98.3%. This outcome
underscores the model’s capability to accurately distinguish between male and female
voices. Notably, when compared to other machine learning models, comparable results
were observed, with the lowest-performing model being Linear Regression, achieving an
accuracy of 90.5%, and the second and third best-performing models being the Cubic SMV
and the Medium Neural Network, achieving accuracies of 94.6% and 94.5%, respectively.
The consistency of these results further emphasizes the robustness and reliability of the
presented research.

Subsequently, the research shifted its emphasis toward the principal objective of
detecting diseases within the voice apparatus. Once more, the majority of models produced
promising results, notably the Fine kNN model, which exhibited an average accuracy of
95.5% for female classifications and 98.3% for male classifications. Additionally, the other
models consistently yielded comparable outcomes, with the Cubic SMV emerging as the
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second-best model, achieving accuracies of 93.8% and 96.7% for female and male samples,
respectively. This accomplishment showcases the model’s capacity to detect potential
health concerns in the voice apparatus, even under less-than-ideal recording circumstances,
and leverages a set of attributes for easy extraction.

It is worth mentioning that in trials involving the classification of health status, the
average accuracy of the tests seemed to exceed the accuracy of the training phase, which
may seem illogical at first glance. The observed discrepancy can be ascribed to the quanti-
tative and stochastic characteristics of the criteria employed to partition the training and
test datasets in each iteration, as elucidated in previous scholarly works [42].

The model that performed better in the classification task was the Fine kNN. Specif-
ically, the model provided by MATLAB extends the principles of the kNN classification
method, a non-parametric technique used for classification tasks. Operating on the basis
of the k-closest training examples within the feature space, this model determines class
membership through a plurality vote among its k-nearest neighbors, commonly a small
positive integer. In essence, it assigns an object to the class most prevalent among its
neighbors—with k = 1 resulting in direct classification based on the single element. Fine
kNN, akin to traditional kNN, embodies instance-based learning, deferring computation
until function evaluation and allowing local approximation of said function. Through
MATLAB’s implementation, weighting schemes for the neighbors’ contributions can be
applied, augmenting the algorithm’s adaptability and accuracy; though, for the study
presented, default values have been employed. Particularly, k was set to 1, while the
distance metric and weight were respectively set to Euclidean and Equal. Notably, Fine
kNN, similar to kNN, exhibits sensitivity to the local data structure, contributing to its
simplicity, versatility in handling various class numbers, and ease in addressing multi-class
problems. Nevertheless, the model encounters challenges with computational intensity,
particularly evident with large datasets, susceptibility to irrelevant or redundant features
leading to diminished performance, and suboptimal performance with high-dimensional
datasets. Despite these limitations, kNN remains popular in machine learning due to its
simplicity and intuitive classification methodology for unknown instances.

While previous research has indeed demonstrated similar classification accuracies by
utilizing different ML models and employing more intricate data preprocessing and feature
extraction techniques on the same dataset [58,59], the main objective of this study was to
demonstrate how a wide variety of models can perform well with simpler processing of the
data, focusing solely on feature extraction, laying the foundations for future applications
for early detection of more complex and severe diseases. Importantly, simpler models
are usually computationally less intensive than complex ones, and they can run on less
powerful hardware and require fewer resources, making them more accessible and cost-
effective, especially in resource-constrained environments. Moreover, when a limited
dataset is available, a simple model may generalize better and be less prone to overfitting,
which can be a concern with more complex models. This methodology showcases a novel
strategy for examining speech samples, presenting possibilities for future improvements.

The capability to detect vocal disorders through MFCCs is also confirmed by the
MANCOVA analysis, showing significant differences between the two groups, as shown in
Figure 5. It is worth highlighting that in the mentioned figure, the mean value and standard
deviation of the MFCCs are reported, since they are sufficient to highlight the differences
between the two groups. However, the complex features of statistics in the real-world
could be considered. In detail, they span a wide range of areas, reflecting the intricate and
multifaceted nature of data analysis and interpretation across different domains. These fea-
tures often involve sophisticated statistical models, methods for handling large and diverse
datasets, and techniques for making sense of uncertain or incomplete information [60,61].

The limitations of this study include the forced sampling of the original data, given the
scarce number of healthy male samples. Indeed, this data augmentation procedure allowed
us also to perform a classification of the healthy and pathological male voices. Importantly,
despite the relatively limited sample size, the research was carried out using a nested
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cross-validation process (specifically, a 10-fold approach), which inherently assesses the
performance of the model on unseen data [41,62]. Therefore, the findings obtained possess
generalizability. Expanding the sample size has the potential to enhance performance
by mitigating the risk of in-sample overfitting exhibited by the classifier. An additional
crucial factor to take into consideration is that the dataset utilized for this study included
a diverse range of voice disorders among the unhealthy subjects. These disorders may
exhibit a wide range of variations and can manifest distinct acoustic properties. Therefore,
during the data analysis process, this study examined a diverse range of vocal problems,
each characterized by distinct attributes and difficulties. Therefore, given that the primary
objective of vocal analysis, particularly in the context of diagnosing voice disorders, is
to effectively categorize and distinguish distinct illnesses, additional measurements are
certainly required. Increasing the size of the dataset will facilitate the attainment of accurate
classification for a particular disease.

It is crucial to recognize that, in a realistic situation, participants would probably utilize
various devices to carry out the vocal recordings. These devices may exhibit substantial
variations in their specifications and operating conditions. Moreover, the angle at which
the recordings are made, which can significantly impact the quality and attributes of the
recorded audio, would also differ among different users. The presence of different types
of devices and recording angles adds further intricacies that are crucial for the practical
relevance of these findings. Nevertheless, the dataset lacked the comprehensive variety
of devices and recording conditions that would typically be encountered in a real-life
environment. In addition, the presence of ambient noise and the use of different record-
ing settings can have a substantial effect on the quality of vocal recordings, which may
obscure signs of vocal disorders or introduce distortions that could result in inaccurate
results. Smartphone-based recordings lack standardization in terms of the distance from
the microphone, volume, and speaking style, unlike controlled clinical environments. The
absence of standardization can have an impact on the dependability of the recordings. The
efficacy of the study may be impacted by the user’s proficiency in accurately adhering to
the instructions for documenting their vocalizations. Moreover, the adherence of users
to consistently documenting and transmitting voice samples can represent a restricting
element. Consequently, additional research is required to examine the influence of these
factors on the effectiveness of speech analysis algorithms in identifying vocal disorders.
To conduct such research, it would be necessary to gather and analyze data from a larger
and more diverse sample of devices, while also documenting the conditions under which
the recordings were made. This approach would offer valuable insights into the resilience
and applicability of the proposed methods across various recording environments. Com-
prehending these variables is essential for the creation of a diagnostic tool that can be
universally applied and consistently perform under the diverse conditions encountered
in regular use. It is noteworthy to state that supplementary experiments, which are not
encompassed within the scope of this study, have investigated the discriminatory capacity
of the aforementioned ML model in distinguishing between voice samples obtained from
individuals who smoke and those who do not. The exploration of this captivating research
area has encouraged the contemplation of assessing and harnessing the vocal modifica-
tions that manifest in individuals who initiate smoking for medicinal reasons. What is
more, the weight of this study lies in the versatility of a good ML approach, with sights
set on assessing how a pathology, the smoking or the alcohol consumption, could make
the voice samples of two subjects alike and if specific frequency features are carried by
different vocal disorders. Finally, it should be noted that the severity of the pathological
conditions included in the database used in this study is not available, thus preventing the
possibility of providing a more nuanced understanding of voice disorders and aiding in
the development of more tailored and effective diagnostic models. This point highlights
the necessity of further investigation on this topic.

The use of smartphones in medical research for voice diseases detection has gained
significant attention. Studies have explored the development of artificial intelligence tools
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for predicting vocal cord pathology in primary care settings [63]. Additionally, the appli-
cation of convolutional neural network ensembles and deep learning methods has been
investigated for the detection of Parkinson’s disease from voice recordings, demonstrating
the potential of smartphone-based voice analysis in disease detection [64,65]. Furthermore,
research has shown the association of noninvasive vocal biomarkers with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [66], highlighting the potential
of smartphone-based voice analysis in infectious disease detection [67].

These findings could be highly useful for society. In fact, the utilization of smartphones
for voice problem identification has the potential to enhance the earliest identification of
voice problems, which might result in prompt intervention and therapy. This intervention
has the potential to enhance the therapeutic efficacy and mitigate the extent of voice ab-
normalities, hence leading to an enhanced quality of life for individuals affected by such
conditions. In addition, smartphone-based screening can be cost-effective compared to
traditional clinical assessments. Moreover, smartphones enable continuous monitoring
of vocal health. Individuals with diagnosed conditions or those recovering from vocal
disorders can use their devices to regularly monitor their condition, helping track progress
or identify any deterioration in their condition. The use of telemedicine mitigates the
necessity for regular face-to-face appointments, which could be costly and time-intensive
for both patients and healthcare practitioners. In fact, healthcare practitioners have the
ability to include smartphone-based vocal evaluations into telemedicine services, therefore
facilitating remote consultations and enabling the monitoring of patients with voice ab-
normalities. This is particularly advantageous for people who have restricted mobility or
who reside in physically remote regions. Individuals have the ability to actively participate
in the monitoring of their voice health. This facilitates the active involvement of patients
in their healthcare and promotes their inclination to seek appropriate medical interven-
tion. Importantly, addressing privacy issues and ensuring the protection of individuals’
health data are imperative considerations when utilizing smartphone applications for the
identification of voice disorders. From this perspective, the implementation of robust data
security and privacy protocols is crucial in order to foster a sense of confidence among
users. Furthermore, the widespread use of smartphones for vocal disorder detection can
lead to the collection of a large amount of data, which can be invaluable for research. These
data can help in understanding patterns in vocal disorders, contributing to better diagnostic
tools, treatment methods, and overall knowledge in the field of otolaryngology. Finally,
these findings could be useful for professional voice users, such as singers, teachers, and
public speakers, who can use this technology for regular monitoring of their vocal health,
which is crucial for their careers.

The distinctive contributions of this study lie in its innovative use of smartphone
technology, the development of accurate and reliable diagnostic models, and the application
of a simple ML framework. Together, these elements signify a considerable leap forward in
making voice disorder screening more accessible, efficient, and inclusive, thereby having a
profound impact on early detection and treatment strategies. Further studies, including a
dataset encompassing a broad spectrum of voice disorders and collecting data from a wide
demographic, including varied age groups, genders, and linguistic backgrounds, could
ensure the robustness and generalizability of the diagnostic model.

Lastly, further investigations exploring novel algorithmic approaches and employ-
ing state-of-the-art data analysis techniques could push the boundaries of voice disorder
screening procedures. In conclusion, this work has presented a complete approach for
categorizing voice samples collected from both individuals without vocal disorders and
those with vocal pathologies. The acquired results continuously demonstrate promise,
indicating that as the database expands with additional speech samples, further enhance-
ments are expected. This innovative methodology also establishes a fundamental basis for
future investigations, potentially employing analogous patterns and models to evaluate a
diverse array of medical ailments via speech analysis. This work provides insight into the
promising possibilities of ML in the domain of vocal health evaluation, as it encompasses
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how consistent results can be achieved with an ML model working off a set of attributes for
easy extraction, leaving wide room for improvements and developments when those fea-
tures are implemented and demonstrating how essential tasks, as the health classification
through vocal analysis, can be performed at low computational expenses and complexity,
thus being accessible to everyone.

5. Conclusions

This study introduces an innovative methodology for classifying voice recordings
obtained from an older-generation smartphone, with the potential for enhanced results
as the utilized database expands. The significance of this work lies in the effectiveness of
MFCCs as optimal features for classification tasks across various machine learning models.
This suggests that vocal recordings acquired through smartphone microphones could be
adequate for conducting at-home assessments of one’s health status. This paves the way
for the development of simple yet innovative technologies, taking a step forward in the
realm of personalized medicine. However, further studies are indeed necessary to improve
the robustness of the findings.
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