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Abstract: This review explores the integration of artificial intelligence (AI) and machine learning
(ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage
and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML
can enhance the transplantation process, from donor selection to postoperative patient care. Our
methodology involved a comprehensive review of current research, focusing on the application
of AI and ML in various stages of KT. This included an analysis of donor–recipient matching,
predictive modeling, and the improvement in postoperative care. The results indicated that AI and
ML significantly improve the efficiency and success rates of KT. They aid in better donor–recipient
matching, reduce organ rejection, and enhance postoperative monitoring and patient care. Predictive
modeling, based on extensive data analysis, has been particularly effective in identifying suitable
organ matches and anticipating postoperative complications. In conclusion, this review discusses
the transformative impact of AI and ML in KT, offering more precise, personalized, and effective
healthcare solutions. Their integration into this field addresses critical issues like organ shortages and
post-transplant complications. However, the successful application of these technologies requires
careful consideration of their ethical, privacy, and training aspects in healthcare settings.

Keywords: kidney transplantation; machine learning; artificial intelligence; precision medicine

1. Introduction

Kidney transplantation is a vital procedure for patients suffering from end-stage
kidney disease [1,2]. While significant progress has been made in refining transplantation
techniques and immunosuppressive protocols, the growing demand for transplantable
organs, spurred on by an expanding range of therapeutic needs, stands in stark contrast to
the ongoing shortage of available donors. This situation highlights the critical necessity of
improving and streamlining the entire transplantation process [3–5].

In response to this pressing demand in healthcare, the intersection of medical ad-
vancements and technological innovation has heralded the era of ‘Next-Generation Health-
care’ [6–9]. This transformation is especially evident in the field of kidney transplantation,
where the introduction of artificial intelligence (AI) and machine learning (ML) is reshap-
ing the field. These technologies not only address the issue of donor organ scarcity but
also enhance the quality and efficiency of transplant procedures, playing a crucial role in
improving patient outcomes and optimizing transplant processes [10–12].
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The application of these technologies spans a wide range of domains in kidney trans-
plantation, from donor procurement, improving donor–recipient matching and predictive
modeling, to enhancing postoperative care and the long-term monitoring of patients [13,14].

Healthcare professionals, empowered by AI and ML algorithms, can now gain deeper
insights into patient data, leading to more precise and individualized treatment strate-
gies [15–17]. The impact of these advancements goes beyond surgical procedures, contribut-
ing to better pre-transplant patient assessments, refined organ allocation, and improved
post-transplant monitoring [18]. As the demand for kidney transplants continues to exceed
the supply of available organs, these technological advancements offer a key solution for
navigating the complex transplantation process with enhanced precision and efficiency [19].

The objective of this narrative review is to conduct a comprehensive examination of the
significant and transformative effects of AI and ML in kidney transplantation. The recent
development and rapid advancement of these technologies have ushered in a new era of
progress and innovative approaches in this medical field. This review will cover various
aspects of kidney transplantation, from donor evaluation to postoperative care, with an
emphasis on addressing organ shortages and refining donor–recipient matching processes.
Ultimately, this paper aims to present an in-depth and forward-looking perspective on
the integration of AI and ML into kidney transplantation, highlighting the potential of
these technologies to catalyze a fundamental shift towards more personalized, precise, and
effective healthcare solutions in the realm of organ transplantation.

The pressing challenge of organ shortages for kidney transplantation presents a
methodological hurdle. AI and ML emerge as pivotal to addressing this, offering innovative
approaches to enhance donor–recipient matching and optimize the transplantation process,
thereby bridging the gap between the limited supply of and the increasing demand for
transplantable organs.

The key contributions of this review are summarized below:

• It introduces AI and ML to enhance donor–recipient matching and address the organ
shortage, improving kidney transplant success rates.

• It reviews predictive modeling applications that forecast postoperative complications,
aiding in the reduction of organ rejection and the enhancement of patient care.

• It showcases AI advancements in post-transplant monitoring and rehabilitation, lead-
ing to personalized and efficient patient recovery.

• It discusses the challenges of integrating AI into healthcare, emphasizing ethical,
privacy, and professional training considerations.

• It highlights the potential of AI and ML to revolutionize kidney transplantation
through innovation and interdisciplinary collaboration.

2. The Next-Generation Healthcare Paradigm

The healthcare landscape is currently experiencing a significant shift, propelled by
the rapid advancements and integration of technology, known as Next-Generation Health-
care (NGH). NGH represents more than just the introduction of new technologies; it is a
comprehensive approach that emphasizes real-time data analysis, fostering patient-centric
care models. These models are bolstered by AI, ML, and the Internet of Things (IoT), all of
which aim to improve health outcomes, enhance efficiency, and reduce costs [14,20–23].

This integration of technology and medicine is transforming healthcare practices,
shifting medical care towards a more proactive and predictive system. This shift enables
personalized medicine, enhances diagnostic accuracy, and facilitates the development of
innovative treatment modalities [24–28].

NGH is instrumental in bringing the concept of personalized care to clinical settings,
moving away from the traditional one-size-fits-all approach [29–31]. Patient-centric models,
informed by AI-generated insights, customize treatment plans to the unique needs and risk
factors of each individual, thereby optimizing patient outcomes and reducing the incidence
of adverse events [14].
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This approach is particularly beneficial in kidney transplantation, a field that stands to
gain immensely from the synergistic combination of NGH and medical expertise. With this
paradigm shift, patient outcomes become the primary focus, leading to enhanced success
rates, reduced waiting times, and overall improvements in the transplantation process.
NGH also holds promise in addressing the issue of organ shortages, whether through
refining organ allocation strategies, improving donor–recipient matching, or introducing
new tools for donor identification and organ procurement [32–36].

The potential of NGH is particularly noticeable in organ allocation. AI algorithms can
analyze complex datasets, including immunological profiles, organ quality information,
and geographical considerations, to find the most compatible matches. This not only
optimizes graft and patient survival rates but also reduces the risk of rejection and expands
patients’ access to life-saving transplants. However, the transformative nature of NGH is
not without its challenges. Ethical considerations, data security, and the need for healthcare
professionals to keep pace with rapidly evolving technologies are essential factors that
must be carefully managed for a responsible and effective implementation of NGH.

The transition to NGH introduces methodological challenges in adapting healthcare to
a more predictive and personalized model. AI and ML are instrumental in this transition,
enabling the shift towards patient-centric care by refining organ allocation strategies and
improving the accuracy of donor–recipient matching, thus addressing critical aspects of the
organ shortage for kidney transplantation.

3. Machine Learning and Artificial Intelligence in Healthcare

Artificial intelligence and machine learning are becoming increasingly dynamic and
indispensable across various sectors, including healthcare [20]. These technologies have
enabled a significant transformation in how diagnosis, treatments, and patient care are
approached, introducing remarkable innovation and efficiency across the healthcare ecosys-
tem [37,38].

One of the most significant areas in which AI and ML have made groundbreaking
contributions is in diagnostics and, consequently, the level of precision achieved by them.
Through powerful algorithms that analyze extensive datasets, these technologies aid in
early and accurate disease diagnosis. From interpreting medical imaging to scrutinizing
pathology reports, AI enhances precision, reduces errors, and ultimately improves patient
outcomes. Another growing application is predictive analytics. By extracting patterns and
trends from patient data, AI and ML enable healthcare professionals to anticipate disease
risks and patient needs, facilitating proactive and preventive healthcare interventions [39].

Further, AI and ML are revolutionizing the customization of treatment plans. By
considering a patient’s medical history, genetic makeup, and other pertinent data [40], AI
models can pinpoint the most effective treatment strategies for individual patients [41].
In drug discovery and development, these technologies expedite the process by identi-
fying new drug targets and predicting the efficacy and safety of potential therapeutics.
This not only accelerates the introduction of novel treatments into patient care but also
enhances the overall efficiency of pharmaceutical research [27,42], among its numerous
other applications.

The significant contributions of AI and ML to diagnostics and treatment planning
address the methodological challenge of developing precise, individualized healthcare
strategies. By leveraging extensive data analysis, these technologies enable early disease
detection and the customization of treatment plans, marking a substantial leap forward in
patient care quality.

4. From Algorithms to Allografts: Embracing a Transformative Journey

In the complex field of kidney transplantation, a journey that begins with the altruistic
act of organ donation and culminates in the transplantation of the allograft, the role of
AI and ML is increasingly pivotal. This journey, marked by the transition from intricate
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algorithms to life-saving allografts, encapsulates a remarkable process that touches every
aspect of transplantation, from donor selection to the patient’s final outcome.

As these technologies continue to advance, the field of kidney transplantation is poised
to benefit from even more innovative solutions. Examples of such advancements include
personalized pre-transplant risk assessment tools, AI-driven therapeutic management
systems, and virtual reality-enhanced rehabilitation programs. These innovations exemplify
the potential of AI to further elevate patient care and outcomes in kidney transplantation.

The integration of AI into kidney transplantation marks a new era in precision
medicine and personalized care. By leveraging the capabilities of AI, the field is set to
undergo a transformative change, enhancing patient outcomes, reducing healthcare costs,
and broadening access to this vital treatment. The journey from algorithms to allografts is
not just a technical evolution but a leap towards a future where technology and medicine
converge for the greater good.

The complex journey from algorithms to allografts encapsulates the significant method-
ological challenges in kidney transplantation. AI and ML technologies provide innovative
solutions that enhance the precision and personalization of patient care, thereby transform-
ing the transplantation process, from donor selection to patient recovery.

4.1. Addressing the Organ Shortage

The demand for kidney transplants continually exceeds the supply of donor organs,
placing the issue of organ shortage at the forefront of the “Algorithms to Allografts” journey.
This challenge is multi-dimensional, calling for a collaborative effort from medical and
scientific communities to find innovative solutions to issues like high organ demand,
insufficient donor identification, and the discard of organs for various reasons.

Rising organ transplant demand is driven by an increase in chronic diseases such as
diabetes and hypertension, an aging population, and the recent medical advancements
expanding transplant eligibility [43]. This demand is compounded by a shortage of or-
gans due to factors like cultural barriers, limited awareness or education about donation,
inefficiencies in donor identification, and the restrictive legal frameworks in some re-
gions [4,44–47]. Additionally, organs are often discarded due to quality concerns, logistical
challenges, or stringent acceptance criteria [48,49].

The intersection of decision modeling, public perception, and policymaking is key
to addressing this issue. Studies by Yaghoubi et al. [50] and Boadu et al. [51] delve into
healthcare economics and public attitudes towards organ donation. Boadu et al., using ML
to analyze survey data from 2017 to 2021, found that approximately 58.8% of people would
consider donating to a family member, friend, or stranger, with the key factors influencing
this willingness including their support of organ donation, awareness of campaigns, and
demographic variables [51]. Khan et al. [52] developed a model that combined ML methods
and network science to predict consent outcomes, enhancing detection and potentially
increasing organ donation consent rates. Harfouche et al. [53] aimed to improve organ
donation processes and reduce illegal trade, offering novel perspectives in understanding
consent outcomes. Sauthier et al. [54] utilized ML to enhance the identification of potential
organ donors in intensive care units. By employing a neural network model that analyzes
clinical data and laboratory time series, their approach showed improved accuracy over
traditional logistic regression models in pinpointing potential donors. This method is
particularly aimed at addressing the challenge of missed donor identifications, thereby
increasing the efficiency of organ donation processes and potentially mitigating the organ
shortage issue in kidney transplantation.

In terms of assessing donor–recipient compatibility, ML is redefining this process.
Thongprayoon et al. [55] used ML to analyze the outcomes of kidney transplant recipients
receiving kidneys from deceased donors with diabetes, identifying distinct clusters with
varying post-transplant outcomes. Wies et al. [56] focused on the interpretability of ML
models predicting post-transplant survival, particularly regarding donor organ quality.
Other researchers have concentrated on predicting allograft or donor discards. Pettit
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et al. [57] showed the efficacy of the XGBoost model at predicting organ use, while Barah
et al. [58] observed random forest’s proficiency in identifying kidneys at risk of discard,
with Price et al. [59] having developed a kidney discard risk index, identifying 21 factors
predictive of organ discard.

Understanding these facets is vital to developing strategies to mitigate organ shortages.
This approach involves decision modeling, public perception, AI, ML, precision medicine,
and data science, aiming to enhance the transplant process’s efficiency and patient outcomes.
It ultimately seeks to bridge the gap between organ supply and demand, saving lives and
improving the quality of life of transplant recipients. As we integrate advanced algorithms
into healthcare, a future can be envisioned where the complexities of organ shortage are
met with technological precision, as highlighted by several authors in Table 1.

Table 1. Overview of ML and AI applications to mitigate organ shortage.

Problem Organ Type Population ML AI Models Results Ref.

Donor identification Donor

Potential organ donors
(n = 80)

Not potential organ donors
(n = 564)

Neural networks AUC-ROC 0.97, sensitivity
0.84, specificity 0.93 [54]

Optimizing the
consent rate Donor Consent (n = 1461)

No consent (n = 2811)
Networked Logistic

Regression

Accuracy 99.912, precision
0.999, recall 0.999, F-Measure

0.999
[52]

Donor organ quality Kidney Kidney transplants
(n ≈ 60,000) Random forest VIMP 0.0087 [56]

Donor discard
Liver Organ used (n = 167,676)

Organ discarded (n = 56,422) XGBoost
AUC-ROC 0.93, AUC-PR 0.87,

and F1 statistic 0.76 [57]

Kidney Organ used (n = 184,746)
Organ discarded (n = 41,965)

AUC-ROC 0.95, AUC-PR 0.88,
and F1 statistic of 0.79

Kidney discard Kidney Organ used (n = 61,313)
Organ discarded (n = 12,510) Random forest AUC-ROC 0.90 and balanced

accuracy 0.78 [58]

Kidney discard Kidney Organ used (n = 79,039)
Organ discarded (n = 23,207) Logistic regression C statistic 0.89 [59]

Optimizing organ
yield Donor Donors (n = 89,520) Tree-based gradient

boosting MAE 0.73, MSE 0.87 [60]

Decision to accept Kidney Accepted kidney transplants
(n = 36,653) Neural networks AUC-ROC 0.81, F1-score 0.66 [61]

AUC-ROC, Receiver operating characteristic curve; VIMP, permutation variable importance; AUC-PR, Precision-
Recall Area Under the Curve; MAE, Mean Average Error; MSE, Mean Squared Error.

AI and ML directly tackle the multifaceted challenge of organ shortages. By improving
the efficiency of organ donation processes and enhancing donor–recipient compatibility
assessments, these technologies offer a methodological breakthrough in addressing one of
the most pressing issues in kidney transplantation.

4.2. Predictive Modeling in Kidney Transplantation

Predictive modeling has become an indispensable tool in kidney transplantation,
reshaping how healthcare professionals approach various aspects of the process such
as donor–recipient matching, risk assessment, and post-transplant management. This
approach, employing statistical methods, ML algorithms, and big data analytics, forecasts
transplant outcomes with remarkable accuracy by integrating diverse data sources like
clinical data, patient medical histories, and genetic information. The enhancement in the
probability of successful transplants and the facilitation of individualized patient care,
tailored treatment strategies, and the efficient utilization of healthcare resources are direct
outcomes of this methodology. The increasing focus on predictive modeling in kidney
transplantation, as highlighted in numerous research papers and studies, is laying the
groundwork for future advancements that promise to redefine this evolving field.



BioMedInformatics 2024, 4 678

In kidney transplantation, predictive modeling has been pivotal in several key ar-
eas. Donor–recipient matching is one such area, where compatibility is assessed based
on factors like blood type, histocompatibility, allosensitization profile, age, and medical
history [62]. The objective is not only to find the best match to reduce rejection risks and
improve long-term outcomes but also to diminish organ refusal rates. Another crucial
area is risk assessment, which evaluates various risks such as organ rejection, infection,
and transplant failure, providing tools for personalized risk management and customiz-
ing immunosuppressive therapy. Long-term outcomes and survival analysis also play a
significant role, in which predictive models estimate graft and patient survival, aiming to
optimize long-term results. Lastly, post-transplant monitoring is vital for tracking risks,
signs of rejection, infection, or other complications, thus enabling personalized follow-up
and timely intervention.

4.2.1. Donor–Recipient Matching and Organ Allocation Strategies

The process of donor–recipient matching and organ allocation in transplant medicine
is a crucial element that requires equitable access to and the efficient distribution of organs.
This balancing act involves addressing the immediate needs of critically ill patients while
also aiming to maximize the long-term success of transplants. The challenge lies in the
intricate assessment of compatibility between donors and recipients, factoring in the re-
cipient’s medical urgency and waiting time, against a backdrop of clinical, biological, and
ethical considerations [63,64].

Innovative approaches are being explored, such as those utilizing data from the
Scientific Registry of Transplant Recipients in the United States [insert reference: Scientific
Registry of Transplant Recipients (SRTR)]. The Scientific Registry of Transplant Recipients
is available online: https://www.srtr.org/ (accessed on 28 December 2023) [65]. Various
survival analysis models, including Cox proportional hazards, random survival forests, and
advanced artificial neural networks like DeepSurv, DeepHit, and recurrent neural networks
(RNNs), have been employed. A study evaluating these models indicated that neural
network-based models, particularly the RNN, exhibited superior discriminative abilities
(with scores of 0.65, 0.66, and 0.66, respectively) compared to the Cox model and random
survival forest model (with scores of 0.65 and 0.64, respectively). The RNN model thus
strikes a balance between accurate predictions and practical applicability for healthcare
professionals [66].

Furthermore, the study of HLA antigen-level mismatches (Ag-MM) and HLA amino
acid-level mismatches (AA-MM) has become increasingly significant. While Ag-MM
has traditionally been the focus, AA-MM variability within Ag-MM categories has a
substantial impact on allorecognition. The novel Feature Inclusion Bin Evolver for Risk
Stratification (FIBERS) system was developed to stratify donor–recipient pairs into low
versus high graft survival risk groups based on HLA AA mismatches. FIBERS has proven
effective in predicting graft failure risk, even when adjusting for traditional Ag-MMs and
donor/recipient characteristics, offering a nuanced understanding of HLA immunogenetics-
based risk stratification in kidney graft failure [67].

In terms of living donor kidney transplantation, the development of a living kidney
donor profile index (LKDPI) marks a notable advancement in this area. Aligned with
the deceased donor, the kidney donor profile index scale, the LKDPI scale, incorporates
factors like donor age, BMI, race, smoking habits, and HLA mismatches. The practical
application of the LKDPI reveals insightful data: the median LKDPI score is 13 (interquartile
range 1–27), with 24.2% of living donors scoring below 0, indicating a lower risk than any
deceased donor kidney, and 4.4% scoring above 50, suggesting a higher risk than the median
deceased donor kidney. These findings demonstrate the LKDPI’s utility in stratifying living
donor kidneys, allowing for better comparisons with deceased donor kidneys and informed
clinical decision making [68].

The detection of alloreactive anti-HLA antibodies, both pre-transplant and post-
transplant, is another critical area of research. Employing multi-beads flow cytometers

https://www.srtr.org/
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and unsupervised machine learning techniques like principal component analysis (PCA),
Vittoraki et al. [69] observed complex clustering patterns of antibody responses against
HLA class I antigens. This study underscores the significance of identifying antigenic
targets and cross-reactive groups, aiding in more precise and personalized organ transplan-
tation approaches.

These advancements, as detailed in Table 2, highlight the evolving landscape of kidney
transplantation, where technological innovation and detailed immunogenetic analysis are
increasingly integral to enhancing patient outcomes. The incorporation of sophisticated
models and analytical tools not only improves graft survival predictions but also sheds
light on the complex immunological interplay within kidney transplantation.

Table 2. ML and AI approaches to enhancing donor–recipient matching and organ allocation for
kidney transplantation.

Problem Feature/Target Population ML AI Models Results Ref.

Allocation

Organ donors,
recipients,
transplant
outcomes

180,141 transplants Neural network C-index 0.66 [66]

Matching
HLA amino acid
mismatch-based
risk stratification

166,574 transplants FIBERS algorithm hazard ratio 1.09 to
1.11 [67]

Living donor risk
index Donor

69,994 deceased donors
36,025 living donor

recipients
Cox regression Index tool [68]

Alloreativity Single antigen
beads profile

660 non-transplants
406 transplants

Principal
component

analysis
-- [69]

4.2.2. Risk Assessment

Risk assessments in kidney transplantation encompass evaluating potential adversities
such as allograft rejection, opportunistic infections, the primary non-function of the graft,
and graft failure. The accurate prediction or early identification of these events is crucial
for guiding clinical decisions for transplant candidates and formulating effective post-
transplant management plans.

The risk of allograft rejection involves assessing the likelihood of immunological
incompatibility, where the recipient’s immune system identifies the transplanted kidney
as foreign, leading to potential graft function loss. Contributing factors include HLA
compatibility, the patient’s allosensitization status [70], patient immune status [71], organ
quality [72], and chronic infections, among others.

Infection risk assessment is particularly vital as patients undergo immunosuppressive
therapy, increasing their vulnerability to bacterial, viral, fungal, and parasitic infections.
This assessment focuses on the intensity of immunosuppression, environmental exposures,
and the patient’s immunological history, including prior infections and vaccinations [73].

The risk of graft failure is influenced by a range of donor and recipient factors. Donor-
related factors such as quality, whether the donor is living or deceased, donor age, and
health, as well as HLA compatibility, are considered. Recipient-related factors include
comorbid conditions like diabetes mellitus, hypertension, the presence of preformed donor-
specific antibodies (DSA), and immunological factors such as antibody-mediated rejection
and the patient’s immunosuppressive regimen. Technical factors during the transplant
surgery and post-transplant care, including adherence to immunosuppressive regimens,
also play a role [74–76].

Studies like the ones presented in Table 3 have collectively demonstrated the po-
tential of data-driven approaches in enhancing patient care and transplant success rates.
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Jo et al. [77] focused on early subclinical rejection (SCR) prediction post-kidney transplanta-
tion. Analyzing data from 2005 to 2020, they identified key risk factors and utilized logistic
regression and elastic net models, achieving average AUCs of 0.717 and 0.712, respectively.
HLA II mismatch and the induction type were significant variables, with HLA II mismatch
having an odds ratio (OR) of 6.77 as a risk factor, and Antithymocyte Globulin (ATG)
induction an OR of 0.37 as a favorable factor.

In Brazil, a retrospective study aimed to predict 30-day graft rejection using features
from recipient, donor, transplantation, and postoperative data. The XGBoost model was
the best performing, with an accuracy of 0.839 and an AUC of 0.715, highlighting important
variables such as deceased donor transplantation, glomerulopathy, and the donor’s use of
vasoactive drugs [78].

Fran et al. [79] employed a quantitative label-free mass spectrometry analysis on
biopsies to develop a molecular diagnostic model for T-cell-mediated rejection (TCMR).
Their random forest (RF) model achieved an accuracy of 0.80 for TCMR detection and
100% accuracy for stable kidney function in blind tests. The RF model also demonstrated
78.1–82.9% sensitivity and 58.7–64.4% specificity when applied to public transcriptome
datasets. Luo et al. [80] evaluated the utility of ML in developing a model for severe
pneumonia, with the random forest model showing the best performance, with an AUC
of 0.91. Its key predictive features included preoperative pulmonary lesions, reoperation,
and recipient age. Konieczny et al. [81] used random forest classifiers and a multi-layer
perceptron to predict delayed graft function, achieving an accuracy of 0.94 and an AUC
of 0.92. Meanwhile, Quinino et al. [82] developed a XGBoost model to predict immediate
graft function (IGF), which showed good predictive performance.

Other studies have focused on supporting clinical decision-making in the immediate
post-transplant period, identifying the risks of rejection or rehospitalization. One study
on data from 1516 kidney transplant recipients showed AUC scores of 0.83 for rejection
and 0.95 for graft failure [83]. Another aimed at predicting the 30-day rehospitalization
of 2060 kidney transplant recipients, utilizing structured and unstructured clinical data,
achieving an optimal AUC of 0.69 [84].

Table 3. Compilation of ML and AI studies focused on risk stratification in kidney transplantation.

Problem Feature/Target Population ML AI Models Results Ref.

Rejection risk early subclinical
rejection 987 transplants Logistic regression

prediction AUC-ROC 0.72 [77]

Rejection risk
predictive model
for 30-day graft

rejection

1255 transplant
patients XGBoost

AUC-ROC 0.72;
accuracy 0.84;
precision 0.90

[78]

Rejection risk allograft rejection
within 1 year

22,687 Afro-American
kidney transplant

patients
Cluster analysis odds ratios

1.41–1.76 [85]

Rejection risk T-cell-mediated
rejection 15 transplant patients Random forest Accuracy 0.80 [79]

Rejection risk
day 90

day 180
wDay 360

1516 transplants Gradient-Boosted
Regression Trees AUC-ROC, 0.83 [83]

Rejection infection
Severe

Pneumocystis
carinii

88 patients Random forest

AUC-ROC 0.92,
F1-Score 0.80,
accuracy 0.89,

sensitivity 0.82,
PPV 0.67, NPV 0.91

[86]
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Table 3. Cont.

Problem Feature/Target Population ML AI Models Results Ref.

Infection 3-year follow-up 863 patients

Least Absolute
Shrinkage and

Selection Operator
(LASSO)

regression model

AUC-ROC 0.83, F
score 0.76,

sensitivity 0.76,
specificity 0.88

[87]

Infection
pneumonia,

posttransplant
hospitalization

519 patients Random forest
AUC-ROC 0.91,
sensitivity 0.67,
specificity 0.97

[80]

Graft failure -- 378 transplant patients Decision tree

AUC-ROC 0.95,
accuracy 0.95,

sensitivity 0.94,
specificity 0.97, F1

score 0.95

[88]

Graft failure graft failure within
3 years

22,687 Afro-American
kidney transplant

patients
Cluster analysis odds ratios

1.93–2.4 [85]

Graft
failure/status

1 year
5 years 50,000 transplants

Support vector
machine

AdaBoost

AUC-ROC 0.82 (1
year), AUC-ROC

0.69 (5 years)
[89]

Immediate graft
function

predict immediate
graft function 859 transplant patients XGBoost

AUC-ROC 0.78;
sensitivity 0.64;
specificity 0.78

[82]

Immediate graft
function

delayed graft
function 157 transplants

Random forest~
artificial neural

network

AUC-ROC 0.84,
accuracy 0.84 [81]

Rehospitalization 30-day
rehospitalization 2060 transplants

Frequency-inverse
document

frequency plus
logistic regression

AUC-ROC 0.68 [84]

AUC-ROC, Receiver operating characteristic curve.

4.2.3. Predicting Long-Term Outcomes and Survival Analysis

In the context of predicting long-term outcomes and survival following kidney trans-
plantation, the integration of ML represents a significant advancement as data science and
medical expertise combine to enhance patient care. ML’s ability to process and extract mean-
ingful insights from extensive datasets offers healthcare professionals new perspectives on
post-transplant prognostics and management [90].

Traditional approaches, despite their utility, often fall short in capturing the complex
nature of transplant outcomes [91]. In contrast, as presented in Table 4, ML algorithms, par-
ticularly those employing deep learning (DL) techniques, can integrate diverse data types,
including detailed donor and patient characteristics and postoperative care nuances. This
comprehensive approach allows for more accurate predictions of graft survival. Research
has shown that ML models, with their advanced analytical capabilities, often outperform
traditional methods in predicting graft survival rates, thus refining long-term care plan-
ning [92]. A case in point; a study by Yi et al. [93] analyzed the baseline and 12-month
post-transplant Periodic Acid–Schiff (PAS)-stained slides of kidney donor biopsies. They
found that the baseline interstitial and tubular abnormality score predicted early graft
damage and 1-year graft loss more effectively than other clinical predictors. Furthermore,
12-month digital features, particularly the Composite Damage Score, were superior pre-
dictors of long-term graft loss compared to traditional Banff scores and clinical factors.
This demonstrates the potential of artificial intelligence and DL, in transplant pathology, to
improve early and long-term graft outcome predictions.
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Naqvi et al. [89] tested various ML models across different post-transplantation time
frames. Their study reported that the support vector machine (SVM) model achieved
an AUC of 0.82 for short-term predictions, while AdaBoost led with an AUC of 0.69 in
medium-term predictions and 0.81 in long-term predictions, followed by the SVM with
0.80.

Furthermore, Pan et al. [94] focused on the pre-operative data of kidney transplant
recipients from deceased donors, demonstrating their model’s good accuracy in predicting
post-transplant survival. The significant predictors in their model included biochemical
blood indices, recipient age, and donor age, with the model achieving an AUC of 0.69,
indicating its moderate predictive accuracy.

Table 4. ML and AI research on predicting the long-term outcomes and survival rates in kidney
transplantation.

Problem Feature/Target Population ML AI Models Results Ref.

Long-term
outcomes

12-month
transplantation

biopsies

789 transplant
biopsies

Region-based
Convolutional

Neural Networks
AUC-ROC 0.81 (5 yr) [93]

Long-term
outcomes

Graft
failure/status 50,000 transplants AdaBoost AUC-ROC 0.81 (17 yr) [89]

Long-term
outcomes Graft survival 3117 transplants Decision tree

AUC-ROC
0.97 (1 yr), 0.89 (2 yr),
0.79 (3 yr), 0.75 (4 yr),
0.71 (5 yr), 0.71 (6 yr),
0.67 (7 yr), 0.69 (8 yr),
0.67 (9 yr), 0.65 (10 yr)

[95]

Patient survival Mortality risk 263 transplants Logistic regression AUC-ROC 0.69 [94]

Patient survival Eurotransplant
Senior Program 42 transplants Cox regression

analysis

Odds ratio
1.09 (1 yr),1.16 (3 yr),

1.17 (5 yr)
[96]

AUC-ROC, Receiver operating characteristic curve; Yr, Year.

4.2.4. Personalized Post-Transplant Management

The shift towards personalized post-transplant management marks a significant ad-
vancement in patient care, with ML and data analytics playing a key role. This approach
supports tailored immunosuppression therapy and provides us with tools to predict disease
recurrence, steering kidney transplantation towards a more patient-specific model.

Personalized management, particularly in immunosuppression therapy, is crucial.
Traditional approaches often rely on standardized protocols, which may not suit every
patient due to variations in genetic profiles, lifestyles, and comorbidities. This lack of
personalization can contribute to non-adherence, as patients may experience adverse side
effects or an insufficient response to the standard regimen. However, ML algorithms can
analyze a multitude of factors influencing a patient’s response to immunosuppressive
drugs. By processing this complex data, these algorithms can predict the most effective
regimen for individual patients or tailor a therapy to make it specifically designed for their
unique needs.

This personalized approach promises to enhance treatment efficacy by fine-tuning
drug types and dosages, thereby maximizing their therapeutic benefits and minimizing
their adverse effects. For instance, it could reduce drug toxicity, lower cancer incidence, or
prevent graft rejection. Tailored treatments not only improve physical well-being but also
serve to alleviate the psychological burdens associated with a generalized approach.

A personalized immunosuppressive therapy could also significantly improve adher-
ence, as when patients experience fewer side effects and better treatment outcomes they
are more likely to adhere to their medication regimens. This improves their quality of life
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(QOL) and reduces the healthcare system’s burden by decreasing the need for additional
treatments and hospitalizations related to complications due to non-adherence.

As highlighted in Table 5, several studies have explored optimal dosing and non-
adherence. Zhang et al. [97] focused on tacrolimus dosing using the TabNet algorithm,
achieving a high R2 value of 0.824 and minimal prediction errors. Sridharan et al. [98]
identified significant predictors useful in optimizing tacrolimus and cyclosporine dosing
regimens using various ML algorithms. Zhu et al.’s [99] study on non-adherence found the
SVM model to be the most effective, with a sensitivity of 0.59, a specificity of 0.73, and an
average AUC of 0.75.

Table 5. ML and AI implementations in the personalized post-transplant management of kidney
transplantations.

Problem Feature/Target Population ML AI Models Results Ref.

Immunosuppression
therapy Non-adherence 1191 patients Support vector machine

AUC-ROC 0.75,
sensitivity 0.59,
specificity 0.73

[99]

Immunosuppression
therapy

Tacrolimus daily
dose 584 patients TabNet R2 0.824, MAE

0.468, MSE 0.558
[97]

Immunosuppression
therapy

optimize
tacrolimus and

cyclosporine
120 patients

Generalized linear
model, support vector

machine, artificial neural
network

MAE 1.3, 1.3, 1.7
MAEs 93.2, 79.1,

73.7
[98]

Recurrence
Recurrent

membranous
nephropathy

195 patients Penalized Cox
regression AUC-ROC 0.91 [100]

AUC-ROC, Receiver operating characteristic curve; MAE, Mean Average Error; MSE, Mean Squared Error.

Monitoring and managing disease recurrence in a transplanted organ is another vital
aspect of post-transplant care. For diseases like glomerulonephritis, known for their risk of
recurrence, traditional periodic testing may not be sufficient for early detection. ML models
can identify patterns in a patient’s biomarkers that are indicative of a high recurrence risk,
leading to pre-emptive therapy adjustments or more frequent monitoring [100].

Predictive modeling, powered by AI and ML, addresses the methodological challenge
of forecasting transplant outcomes and managing post-transplant risks. These advanced
tools enable healthcare professionals to make more informed decisions, leading to improved
patient care and transplant success rates.

5. Challenges and Future Directions

The landscape of kidney transplantation is evolving rapidly alongside the advance-
ments in AI and ML. While these technologies promise transformative improvements in
transplant processes and patient care, they also introduce a set of challenges that require
thoughtful navigation.

A primary challenge is the ethical use of patient data and the maintenance of privacy.
The efficacy of AI and ML in this field largely relies on their access to extensive, diverse,
and highly curated datasets, which include sensitive personal health information. The
integration of AI and ML into kidney transplantation, while promising, necessitates a
thorough examination of ethical considerations, particularly in the context of data usage
and algorithm development. The ethical implications are multifaceted, involving patient
privacy, data security, and the potential for bias in AI models.

Ensuring ethical data handling and safeguarding patient privacy are not just legal
obligations, as mandated by regulations like the Health Insurance Portability and Account-
ability Act (HIPAA) [101], but also moral ones. Healthcare institutions and AI developers
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must implement robust data governance frameworks that prioritize patient consent, data
anonymization, and secure data storage and transmission.

Furthermore, addressing potential algorithmic bias is crucial. This bias, where models
may unintentionally reinforce healthcare disparities, must be mitigated through diverse
data training sets, inclusive practices, and transparent algorithmic procedures [102]. To
mitigate this, it is essential to use diverse training datasets that represent various demo-
graphics, including age, gender, ethnicity, and socioeconomic status. This diversity in data
will certainly help in developing algorithms that are equitable and able to generalize well
across different patient populations.

Another hurdle is integrating AI and ML into existing healthcare systems. This
integration involves not only the technical aspects of embedding these technologies into
existing clinical workflows but also ensuring that healthcare professionals are trained
to interpret and utilize the insights that these tools offer. As these tools have become
increasingly integrated into kidney transplantation processes, the healthcare sector faces a
dual challenge: the technical integration of these technologies into existing systems and
the continuous professional development of healthcare providers. Integrating AI and
ML into clinical workflows requires more than just embedding new technical systems,
as it fundamentally involves preparing healthcare professionals to adeptly navigate and
leverage these tools.

Continuous education and training are pivotal for clinicians, nurses, and other health-
care professionals. As technology rapidly advances, the knowledge and skills required
to effectively utilize AI and ML in clinical settings evolve correspondingly. This ongoing
learning process is essential not only for understanding and interpreting AI and ML outputs
accurately but also for applying these insights in a way that complements and enhances
healthcare professionals’ clinical judgment and decision-making processes.

Maintaining a critical perspective is vital as AI and ML become more prevalent in
decision-making processes. Healthcare professionals must ensure that their clinical judg-
ment is not entirely supplanted by algorithmic recommendations. Human oversight
remains crucial, particularly in complex medical fields like kidney transplantation, where
patient variables are diverse and nuanced.

Adapting to technological advancements is another key aspect of this integration. The
field of AI and ML is rapidly evolving, and what is cutting-edge today might become
outdated tomorrow. Continuous education ensures that healthcare professionals keep
pace with these advancements, allowing them to provide the most current and effective
patient care.

Furthermore, with the integration of AI and ML, and, as stated, with new ethical
and practical challenges emerging, training and education programs need to address
these challenges, providing healthcare professionals with the skills to navigate the ethical
implications of AI and ML, such as data privacy, patient consent, and algorithmic bias.

Looking to the future, kidney transplantation in the era of Next-Generation Healthcare
is expected to advance towards more personalized and precise patient care. Treatments and
monitoring tailored to the individual genetic, lifestyle, and environmental factors of each
patient are likely to become the norm. This shift is expected to bring advancements in pre-
cision medicine, refined organ matching and allocation processes, and the development of
sophisticated predictive models for patient outcomes, which in turn could lead to improved
outcomes, reduced instances of graft rejection, and optimized immunosuppression regimes.

However, the success of these advancements depends on the medical community’s
ongoing adaptation and learning, ensuring that healthcare professionals are well-equipped
to effectively utilize these technologies.

To overcome these challenges and fully leverage AI and ML in kidney transplantation,
a collaborative approach is essential. This collaboration should involve partnerships
between healthcare professionals, data scientists, ethicists, and policymakers. Together,
they can work to create frameworks that ensure the responsible use of AI and ML, with a
focus on patient safety, privacy, and equitable healthcare resource distribution.
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As the ethical integration of AI and ML into kidney transplantation requires collabora-
tive efforts from various stakeholders, including healthcare professionals, AI developers,
ethicists, and policymakers, this collaboration should aim to:

Develop Ethical Guidelines: provide clear guidelines for the ethical use of AI in
healthcare, focusing on patient consent, data privacy, and algorithm transparency.

Promote Interdisciplinary Dialogues: encourage regular dialogue between technol-
ogists, clinicians, and ethicists to address the ethical challenges that arise as AI technolo-
gies evolve.

Implement Bias Mitigation Strategies: actively work towards identifying and miti-
gating biases in AI models through diverse data collection and algorithm testing across
different patient groups.

Foster Continuous Learning: plan opportunities for healthcare professionals to engage
in lifelong learning about AI and ML advancements, ensuring that their skills remain
relevant and their clinical judgment sharp.

The integration of AI and ML in kidney transplantation, while promising, introduces
methodological challenges related to ethical considerations, data privacy, and system
integration. Addressing these challenges is crucial for the responsible and effective imple-
mentation of these technologies, ensuring that they serve to enhance patient outcomes and
the efficiency of healthcare.

6. Final Remarks

In conclusion, the integration of AI and ML into the field of kidney transplantation
represents a pivotal moment in the evolution of healthcare innovation. While this journey
is not without its challenges, the transformative potential of these technologies to enhance
patient care and address enduring challenges within the field is substantial.

However, adopting these advancements from a balanced perspective is crucial. This
means giving due importance to ethical considerations, safeguarding data privacy, and
promoting the continuous education of healthcare professionals. By doing so, the future of
kidney transplantation can be steered towards providing care that is not only more precise
and personalized, but also available and affordable to the masses.

As we step into this new era, the combined efforts and collaborations of healthcare pro-
fessionals, biomedical engineers, researchers, and policymakers will be vital. It is through
these collaborative endeavors that we can fully realize the promise of Next-Generation
Healthcare and set new standards in patient care.
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