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Abstract: Pancreatic ductal adenocarcinoma is an invasive tumor with similar incidence and mortality
rates. Pancreaticoduodenectomy has morbidity and mortality rates of up to 60% and 5%, respectively.
The purpose of our study was to assess preoperative features contributing to unfavorable 1-year
survival prognosis. Study Design: Retrospective, single-center study evaluating the impact of
preoperative features on short-term survival outcomes in head PDAC patients. Forty-four prior
features of 172 patients were tested using different supervised machine learning models. Patient
records were randomly divided into training and validation sets (80–20%, respectively), and model
performance was assessed by area under curve (AUC) and classification accuracy (CA). Additionally,
33 patients were included as an independent revalidation or holdout dataset group. Results: Eleven
relevant features were identified: age, sex, Ca-19-9, jaundice, ERCP with biliary stent, neutrophils,
lymphocytes, lymphocyte/neutrophil ratio, neoadjuvant treatment, imaging tumor size, and ASA.
Tree regression (tree model) and logistic regression (LR) performed better than the other tested models.
The tree model had an AUC = 0.92 and CA = 0.85. LR had an AUC = 0.74 and CA = 0.78, allowing
the development of a nomogram based on absolute feature significance. The best performance model
was the tree model which allows us to have a decision tree to help clinical decisions. Discussion and
conclusions: Based only on preoperative data, it was possible to predict 1-year survival (91.5% vs.
78.1% alive and 70.9% vs. 76.6% deceased for the tree model and LR, respectively). These results
contribute to informed decision-making in the selection of which patients with PDAC can benefit
from pancreatoduodenectomy. A machine learning algorithm was developed for the recognition of
unfavorable 1-year survival prognosis in patients with pancreatic ductal adenocarcinoma. This will
contribute to the identification of patients who would benefit from pancreatoduodenectomy. In our
cohort, the tree regression model had an AUC = 0.92 and CA = 0.85, whereas the logistic regression
had an AUC = 0.74 and CA = 0.78. To further inform decision-making, a decision tree based on tree
regression was developed.

Keywords: pancreatic cancer; machine learning; survival; decision support

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, known for its noto-
rious difficulty in early detection and limited treatment options, which in turn contribute
to its poor prognosis with similar incidence and mortality rates. It is the third leading
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cause of cancer-related deaths in the United States of America and the seventh leading
cause worldwide, thus becoming an increasing global health burden [1]. These alarming
statistics are projected to worsen, with an expected surge of 61.7% in the total number
of cases globally by 2040 [2]. The main difference between PDAC and other cancers is
the genomic heterogeneity of the tumors, which greatly complicates the identification of
patient phenotypes that can predict better or worse prognosis [3]. This may explain the
obstacles that prevent the identification of patient phenotypes predictive of better or worse
prognosis. For instance, based on transcriptome analysis, the International Cancer Genome
Consortium currently divides PDAC into three molecular subtypes: progenitor, squamous,
and aberrantly differentiated endocrine exocrine types [4]. However, the decision-making
process in clinical practice on multidisciplinary meeting for determining a patient’s suitabil-
ity for surgery, which is often the only potentially curative treatment for PDAC, remains
reliant on a traditional approach. This is predominantly grounded on clinical information
such as laboratory testing and imaging, rather than on individual tumor genomic signa-
tures. Despite the recent identification of novel and sensitive biomarkers from studies on
non-coding RNAs, such as miRNAs, and from targeted or shotgun proteomic approaches,
none of these promising biomarkers have been introduced into routine clinical practice [5].

Radical resection of the tumor, such as pancreaticoduodenectomy, is currently the only
possible curative treatment for PDAC [6]. However, the cure does not come without its
own set of challenges. Nonetheless, even after curative resection, up to 80% of patients
experience disease relapse, resulting in a 5-year survival rate of only 20–30% [7]. The
surgery itself is associated with a high morbidity rate of up to 60%, with mortality rates
being less than 5%, which brings about a substantial impact on the patients’ quality of life
and healthcare costs [8]. The 1-year disease-related mortality after resection for pancreatic
cancer is approximately 30% [9]. Some authors even developed the concept of “conditional
survival” (CS), which is the chance of surviving a certain period of time, calculated for a
group of patients who have already survived a predefined period. This measure can give
more accurate insights about survival prospects, which is especially useful for patients who
have undergone a pancreatic cancer resection [10].

While the last few years have seen considerable effort dedicated towards identifying
new biomarkers, improving therapies, and formulating better healthcare policies, several
significant obstacles still remain. Among the most prominent ones are the diversity of
disease phenotypes, the high cost of implementing novel methodologies, and the drive
for more explainable, faithful, and high-performing models, particularly in oncology [11].
In healthcare, particularly in oncology, the demand for explainability, model fidelity, and
performance has increased considerably, which leads to greater penetration of machine
learning (ML) in medical management. ML is a collection of artificial intelligence ap-
proaches and mathematical modeling aimed at predicting individual outcomes. As a
result, ML can potentially inform decision-making and lead to patient-tailored therapeutic
approaches [12–14]. In recent years, ML has had a transformative impact on many medical
areas. Its applications range from diagnostics and therapy to patient monitoring and health
management. Some of the major impacts have been found in medical imaging and radiol-
ogy, analyzing medical images such as X-rays, computerized tomography scans, magnetic
resonance imaging, and mammograms to help detect and diagnose disease, whereby based
on symptoms, medical history, and test results, ML algorithms can support disease diag-
nosis [15,16]. In solid organ transplantation, for instance ML has the potential to improve
patient and allograft outcomes, being applied in organ matching and allocation [17], organ
quality assessment [17], predictive analytics and risk assessment [18,19], and long-term
outcomes and survival prediction [19–21]. Also, in the field of oncology, ML has made sig-
nificant contributions by aiding in various aspects of cancer research, diagnosis, treatment,
and prognosis. Some key areas where machine learning is being applied in oncology:

Cancer Diagnosis: analyzing medical imaging data, such as mammograms, CT scans,
and MRIs, providing support to detect and classify tumors [22].
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Prognosis and Survival Prediction: by utilizing clinical and genomic data to predict
patient outcomes, such as survival rates and disease progression. By considering a wide
range of variables or features, including patient characteristics, tumor characteristics, and
treatment history, these models can provide personalized prognostic information [23].

Drug Discovery and Development: ML techniques being employed in the analysis of
large-scale genomic and proteomic data to expedite the process of identifying new drug
candidates and optimizing existing treatments [24].

Supporting Treatment Planning and Personalized Medicine: assisting in the implemen-
tation of personalized treatment plans by the integration of patient-specific data (genomic
profiles and clinical records). This approach has enabled oncologists to make more in-
formed decisions about treatment strategies, including selecting appropriate therapies and
determining optimal dosages [25–27].

Precision Oncology: supporting the identification of genetic mutations or biomarkers
associated with specific cancer types [28].

Clinical Trial Optimization: supporting the identification of suitable patient cohorts
for clinical trials, potentially leading to more efficient and successful trial outcomes.

Image-Guided Surgery: providing real-time surgical images to assist surgeons during
procedures [29].

Also, pancreatic cancer, like many other types of cancer, has not been an exception.
In fact, despite the aggressive nature and often late-stage diagnosis of this disease that
poses significant challenges for both diagnosis and treatment, in recent years there has been
a growing interest in exploring the potential of ML algorithms in the context pancreatic
cancer. Even so, researchers have been making significant advances by leveraging the
power of ML and deep learning techniques, with the intent of early detection, diagnosis,
prognosis, or even treatment planning,

Numerous studies have emerged, employing sophisticated algorithms to analyze
complex datasets related to pancreatic cancer, combining large amounts of clinical data,
genetic information, and imaging studies that enable the identification of patterns and
estimates, and provide valuable insights into our understanding and management of this
challenging disease.

Some studies have focused on early-stage identification or predicting the risk for
pancreatic cancer, as presented by Placido et. al., applying ML models to 27,900 cases
of pancreatic cancer from the Danish National Patient Registry and US Veterans Affairs
dataset was able to predict cancer occurrence within incremental time windows, reaching
an area under the receiver operating characteristic (AUROC) curve of 0.88 for disease
identification up to 36 months before occurrence [30]. Also, Savareh et. al., based on
circulating microRNAs associated with pancreatic cancer using Artificial Neural Network
and Neighborhood Component Analysis identified five microRNAs (miR-663a, miR-1469,
miR-92a-2-5p, miR-125b-1-3p, and miR-532-5p), with an accuracy, sensitivity, and specificity
of 0.93, 0.93, and 0.92, respectively, identifying a promising non-invasive diagnostic model
for pancreatic cancer [31]. Baek and Lee in 2020 by combining multi-omics data were able to
forecast pancreatic cancer survival and recurrence, with an AUC of 0.795 [32]. ML models
have also been used in drug response prediction and personalized medicine. Usually,
these models are applied as a mean to analyze patient-specific data, including genomic
profiles and treatment history, to predict individual responses to different treatment options,
providing support to treatment decision making, and identifying patients who are likely to
benefit from specific therapies or clinical trials. An example of this strategy was presented
by Wei and Ramsey who were able to predict chemotherapy drug response for pancreatic
cancer with AUC 0.77 [33].

As technology continues to advance, it is expected that ML will play an increasingly
vital role in pancreatic cancer research, ultimately leading to improved diagnostic accuracy
and treatment efficacy, as well as maximizing patient outcomes and ensuring the judicious
use of aggressive treatments such as pancreatic resection [34].
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The primary objective of our study was to comprehensively evaluate the preopera-
tive features that could potentially influence an unfavorable 1-year survival prognosis in
patients diagnosed with PDAC. To achieve this, we employed ML techniques to analyze
a wide range of preoperative factors and their association with patient outcomes. By
leveraging the power of ML algorithms, we aimed to identify key predictive features that
could help in early prognostication and aid in the development of personalized treatment
strategies for PDAC patients.

2. Materials and Methods
2.1. Study Population

This single-center, retrospective cohort study focused on patients who underwent
pancreatoduodenectomy (PD) for pancreatic ductal adenocarcinoma (PDAC) at Hospital
Curry Cabral from 2004 to 2016. The purpose was to assess how preoperative characteristics
influence short-term survival outcomes (365 days post-operation). For inclusion in the
training cohort, we considered 432 patients. Of these 432 patients, 172 were included in
this study using the following criteria: patients from whom the authors had full access
to the original patient records data; patients who were discharged without mortality
from surgical complications; patients with at least a 5-year follow-up. Feature extraction
was conducted from electronic patient records, and all data were manually validated by
checking the medical records. A second population of patients who underwent PD surgery
for PDAC during 2017 was included as an independent revalidation or holdout data-set
group (n = 33).

This study was approved by the Ethics Committee of CHULC (INV-106).

2.2. Features and Data Analysis

A total of 44 clinical features were extracted (24 categorical and 20 numeric) from elec-
tronic patient records. Categorical features included sex, jaundice, neoadjuvant chemother-
apy (yes/no), and AJCC stage. Numeric features included age, levels of serum cancer
antigen 19-9 (Ca 19-9), lymphocyte counts, neutrophil counts, and lymphocyte to neutrophil
ratio (ly/n ratio), among others presented in Table 1.

Machine learning algorithms (ML) and feature selection were performed in Orange
3 version 3.19.0 (Bioinformatics Lab, University of Ljubljana, Slovenia). Supervised ML
algorithms were assessed by area under the receiver operating characteristics (AUC);
classification accuracy (CA), F-1 score, and precision were also calculated.

AUC and CA are two of the available methods to measure the performance of a
classification model. This AUC curve plot enters into account two parameters: True
Positive Rate and False Positive Rate. Classification Accuracy is the proportion of correctly
classified subjects. For cross-validation, patients were randomly divided into training and
validation sets in an 80% to 20% ratio, respectively. An additional population of 33 patients
were subsequently evaluated as a holdout dataset.

From the initial 44 features, and based on Info Gain Feature selection algorithm 11,
features were identified which contributed to the strength of the models in identifying
1-year survival patients: age, sex, Ca-19-9, jaundice, endoscopic retrograde cholangiopan-
creatography (ERCP) with biliary stent, neutrophils, lymphocytes, ly/n ratio, neoadjuvant
chemotherapy, imaging tumor size, and ASA. Multicollinearity was evaluated between
features, and only ly/n ratio with lymphocytes counts presented a variance inflation factor
above 1 (1.27 indicating very low to slightly moderate collinearity, however, well below the
value of 5).

The target was defined as “Survivors” for those patients who had more than 1-year
survival post PD surgery and “Non-survivors” for those who had less than 1-year survival.
We decided on the 1-year cut-off because of the already high morbidity and mortality
caused by the disease itself and considering the available therapeutic alternatives. All the
patients that had a follow-up less than 1 year were patients that had deceased.
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Table 1. Demographic, clinical, and biomarker features for pancreatic cancer patient survival analyzed.

Numerical Features Categorical Features

Age at the time of Surgery Sex

Ca 19.9 at diagnosis (U/mL) Pre-operative cholangitis (Yes/No)

CEA at diagnosis (ng/mL) Pre-operative biliary drainage (Yes/No)

Total proteins at diagnosis (g/dL) Neoadjuvant therapy (Yes/No)

Albumin at diagnosis (g/dL) AJCC-stage (8th edition)

Total bilirubin at diagnosis/Jaundice (mg/dL) Histological grade

Lymphocyte count ASA score

Neutrophil count Type of Surgery

Number of total ICU (days) Venous vascular resection (Yes/No)

Image tumor size (mm) Arterial vascular resection (Yes/No)

Weight (kg) Pancreas Consistency (Soft/Firm)

Height (cm) Wirsung Localization (Excentric/Concentric)

Number of excised lymph nodes Sealant (Yes/No)

Number of metastasized lymph nodes Hemorrhagic complication (Yes/No)

Post-op ho-spitalization days Respiratory infection (Yes/No)

Date of recurrence Degree of gastric stasis (A, B, C)

Date of death Surgical re-intervention (Yes/No)

CEA in EUS aspirate (ng/mL) ICU readmission (Yes/No)

Amylase in EUS aspirate (U/L) Re-hospitalization (Yes/No)

Lymphocyte to Neutrophil ratio Diagnosis

Recurrence (Yes/No)

Status (Deceased/Alive)

Degree of the Pancreatic fistula

Clavien

2.3. Algorithms

Several supervised (e.g., Decision Trees, Naive Bayes, Support Vector, Random Forest,
Logistic Regression) and unsupervised (e.g., K-means Clustering, Principal Component
Analysis, t-Distributed Stochastic Neighbor Embedding) ML algorithms were tested and
all models were evaluated based on their AUC and CA. In the end, and based on their
performance for AUC and CA, two different types of supervised classification models were
used: tree model and logistic regression (LR).

2.3.1. Decision Tree

This is one of the most popular and interesting models in ML, which allows the
splitting of data into nodes by class purity. The concept entails the creation of a tree split
comprising decision nodes that are connected by branches from the root node to the leaf
node. The attribute is assessed at the decision node and each outcome results in a branch.
To generate a decision, each branch is led to another node or to the end node [12,35].

2.3.2. Logistic Regression

This is a statistical classification method that is used to predict the probability of a
target variable based on the fitting of data to a logistic function. The target or output must
assume a dichotomous nature; the target is expected to be success/yes or unsuccessful/no.
LR is frequently one of the first go-to algorithms used in classification problems [12,36].
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3. Results

The clinical, laboratory, and imaging variables of the training and validation with
independent or holdout datasets are presented in Table 2. Only two features were sig-
nificantly different between the training and holdout datasets: lymphocytes count and
American Society of Anesthesiologist scores (ASA). This highlights the consistency of the
data across the two sets. However, as part of an external validation of the model using an
independent dataset or cohort, this validation with a completely separate dataset helps
assess the model’s generalizability beyond the training and validation cohorts, providing a
more robust evaluation of its performance.

Table 2. Demographic and clinical characteristics of patients in the training set and holdout dataset.
(SD Standard deviation, ASA American Society of Anesthesiologist).

Features Training
(n = 172)

Holdout Dataset or
Validation Set

(n = 33)
p Value

Age (years) Median; SD 66.38; 9.95 66.52; 10.4 0.9451

Gender Female (%)
Male (%)

48
52

39
61 0.3525

Ca19-9 (U/mL) Median; SD 985; 3770 2273; 7881 0.1718

Jaundice % 80 90 0.1455

Neutrophils (*109/L)
Pre-operative

Median; SD 4631; 2203 4514; 2082 0.7786

Lymphocytes (*109/L)
Pre-operative

Median; SD 1889; 777.6 1540; 752.4 0.0187

Lymphocytes/ Neutrophils
Pre-operative Median; SD 0.559; 0.682 0.379; 0.22 0.1338

Neoadjuvant
Chemotherapy

Yes (%)
No (%)

11.6
88.4

9.2
90.8 0.6741

Nodule size (mm) Median; SD 30.83; 11.78 30.81; 14.36 0.9959

ASA

I (%) 8.2 0.0

0.0001
II (%) 65.3 22.2
III (%) 25.5 77.8
IV (%) 1.0 0.0

Sealant (Epiploplasty) % 69.7 75.7 0.8753

Target
(Survivors or

Non-survivors)
% 71.5 72.7 0.8878

*—multiplication.

Tree and logistic regression (LR) ML models were built and validated externally. The
relative importance of the features was evaluated, as shown in Figure 1. Preoperative
Lymphocytes to Neutrophils ratio (Ly/n), nodule size, age, preoperative neutrophils, pre-
operative lymphocytes, and neoadjuvant therapy were the features that most contributed,
by this order, to the Area Under the Receiver Operating Characteristics (AUC) results
obtained in the tree model (Figure 1a) with dominance of the ly/n ratio. In the case of the
LR AUC, the ly/n ratio also emerged. In this model, Ca19-9 also contributed to the results
and jaundice had a negative weight in the final results (Figure 2c). The feature weights
were similar in the classification accuracy (CA) for the tree model, with the exceptions of
age and preoperative neutrophils. In the case of LR, different features contributed with
different strengths to the CA (Figure 2d).
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Figure 2 shows a comparison of the ROC curves of the two models to predict death
at 1-year after PD in the training cohort. The two models exhibited excellent performance
in the training set with the tree model being the outperformer. The results were slightly
better in the case of patients classified as “Survivors” (Figure 3a) versus patients classified
as “Non-survivors” (Figure 3b).
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Both models performed well, but the decision tree model performed better than the
logistic regression model in predicting 1-year survival rates. Figure 3 presents the results of
the AUC and CA in the training set for risk of death one year after PD: 0.92 with 0.85 for
the tree model and 0.74 and 0.78 for LR, respectively. In the validation holdout dataset, the
tree model still had better performance, with AUC and CA for risk of death one year after
the PD of 0.89 and 0.76, whereas the LR showed 0.68 and 0.82, respectively.
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4. Discussion

The inherent aggressive nature of pancreatic ductal adenocarcinoma (PDAC), coupled
with the complexity of the associated surgical treatments, underlines the necessity of well-
informed decision-making processes to ensure the best therapeutic outcomes for patients.
Comprehensive prognostic models have an important role in the stratification of patients
with PDAC and we focused on the variables that are examined during routine clinical
examinations [37]. In our cohort, 28.5% of patients did not survive beyond one year. If
the decision is to undergo surgery, it should be performed within 1 month after diagnosis.
The criteria to consider are survival and quality of life of the patients. Hence, we created
models (Curry-score) aided by ML that cross all available information and identify those
patients to whom the surgery will grant survival benefits [38].

In our study, we used an integrated approach, leveraging clinical, blood test, and
imaging features to predict patient mortality one-year post-surgery. In the non-survivors
group, PD surgery would likely increase morbidity and possibly contribute to premature
death with a lower quality of life.

Lymph node status (N-stage) and vascular invasion are classic factors of poor prog-
nosis. In this study, we sought to identify any earlier relevant features contributing to the
informed discussion of the cases in a multidisciplinary meeting [39–41].

Predicting relapse after an operative intervention is difficult. ML algorithms may
help to identify at-risk patients with precocious recurrence that would not benefit from
a treatment as aggressive as a PD. By identifying these high-risk patients, healthcare
professionals can make better-informed decisions and possibly avoid unnecessary surgical
interventions that may increase morbidity and compromise quality of life. This approach is
particularly critical in multidisciplinary discussions where an understanding of a patient’s
overall condition is necessary for effective treatment planning. In addition, these patients
can alternatively be candidates for clinical trials. Currently, artificial intelligence research in
healthcare is accelerating rapidly, with potential applications across almost every domain
of medicine [42–44]. Unlike conventional regression-based approaches, ML algorithms are
capable of capturing higher-order nonlinear interactions between predictors [45], and their
effectiveness has been proven in predicting the recurrence of various diseases [46–48].

Some authors have established a nomogram to predict the probability of recurrence
within 12 months after surgery in a single medical center [49]. We approached data from a
different perspective, seeking to assess not only recurrence but also to predict recurrence in
time. We intended to identify patients with a more aggressive biology, so that a therapeutic
strategy other than surgery would be offered. Kim et al. [49] also focused on identifying
preoperative clinicopathologic factors for predicting early recurrence after surgery. In their
study, a Cox proportional hazard regression analysis showed an AUC of 0.665, which is
worse than ours with LR. Interestingly, Ca19-9 and tumor size overlapped with our study.

The tree model showed superior predictive capability in validation compared to the LR
(Figure 4), constructing a decision tree with the highest AUC in the training and validation
sets. In the tree model, we achieved an AUC = 0.92 and CA = 0.85 for predictive validation.
Of the patients with a ly/n ratio greater than 0.88, the probability of being alive at 1 year
was 100%; in contrast, if the ratio was less than 0.88, only 68.2% were expected to be alive. In
this branch, if the nodule was bigger than 36 mm, patients were split into 52.9% (deceased)
vs. 75.0% (alive). In the case of survival, all patients who underwent neoadjuvant CT were
alive at 1 year, while in the group without neoadjuvant CT, only 72.9% were alive at 1 year.
In this last group, 93.3% of patients under 58 years of age were alive after surgery, while
only 69.1% were alive if they were over 58 years of age. For example, a 70-year-old patient
with a Ly/n ratio below 0.88, a 28 mm nodule, and no neoadjuvant chemotherapy, has a
probability of 69.1% of being alive for one year after surgery.

We were able to predict 91.5% of the surviving patients one year after surgery. In our
model, 29.1% of the patients were misclassified, as they were predicted as deceased but
were alive one year after surgery. However, even if patients in this group were not operated
on earlier, they could receive neoadjuvant treatment and be operated on later, as long as
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biological behavior remained favorable. As such, we do not envision any detrimental
effects imposed by the model.
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This study had some limitations. The reliability of the 52% challenges the clinical
applicability of this model. The fact that the patients are segregated in approximately half
on each arm may not be viewed as very informative regarding clinical decision support.
However, this value refers to a subgroup of patients that is previously selected in the
first step of the decision tree. As we continue to dichotomize the sample, we find that
patients may still benefit from surgical treatment. Furthermore, this model predicts that
18 out of 34 patients have a discouraging prognosis and, eventually, become candidates to
neoadjuvant chemotherapy. The prevailing outcome from this analysis is that this model is
clinically applicable in all groups.
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Given the retrospective nature of our study, selection bias cannot be excluded. Due to
the low incidence of PDAC, the relatively limited sample size in the training and validation
independent datasets may compromise the quantification of the interpatient variability
effects. One of the benefits of Machine Leaning is the fact that it allows for the identification
of relevant and/or weighted variables for the defined model even in small samples. In this
case, we use “Info.gain” for the expected amount of information (reduction of entropy).
This study, being single-centered, inevitably raises the question of generalizability. We
believe that the future collection of larger and more balanced cohorts from multiple medical
centers will further enhance the robustness and validity of the proposed models. As
artificial intelligence continues to evolve and embed itself in healthcare, the collaborative
relationship between physicians and these human-centered AI tools will significantly
influence the clinical landscape, ultimately leading to improved patient outcomes. As
mentioned earlier, this study was conducted in a single center with a relatively small sample
size. This could limit the generalizability of the findings as they might not be representative
of the larger population of patients with PDAC. This could potentially introduce selection
bias, as patients in a single center might not capture the full range of variability seen in the
general population. As with any retrospective study, there is potential for information bias,
meaning that the data collected may not have been as rigorous or as accurate as it would
be in a prospective study design. In addition, retrospective studies are inherently subject
to confounding variables that may not be fully adjusted for, even with statistical methods.
While our models consider several important factors, there might be other unmeasured or
unobserved confounding variables that could influence the outcomes. Examples could be
lifestyle factors, genetic predispositions, and other comorbidities that were not taken into
account. While the predictive models (Tree and Logistic Regression) provided meaningful
results, they are based on algorithms that have their own limitations. For instance, they
may not perfectly capture the complex biological and pathological interactions in real-
world scenarios. Although our study included a validation set, an external validation with
an independent dataset from a different center or population would further strengthen
the generalizability of our models. Machine learning models, especially those built on
relatively small datasets, can be prone to overfitting. Overfitting happens when a model
learns the training data too well, to the extent that it performs poorly on new, unseen
data. While the models provided for survivors group predictive accuracy, the practical
implementation of these models in clinical decision-making would require further study.
This involves considering factors like clinician acceptance, integration into current systems,
and the potential for these models to actually change patient outcomes. Recognizing these
limitations can also provide a basis for future studies that aim to address them.

We anticipate that additional research will play a decisive role in the understanding of
the complex and evolving relationship between physicians and human-centered artificial
intelligence tools in a live clinical environment, ultimately leading to better outcomes for
our patients.

5. Conclusions

In conclusion, the field of cancer research has in recent years made great strides
towards improving diagnosis, prognosis, and treatment options. The emergence of multi-
omics technologies, which involve analyzing multiple types of biological data, has provided
researchers with a wealth of information that can be used to better understand the under-
lying mechanisms of cancer and develop more effective interventions. However, despite
these advancements, pancreatic cancer prognosis still presents significant challenges.

In this context, we present an inexpensive alternative approach that combines routine
perioperative laboratory tests and demographic data with a modern machine learning
algorithm to improve the accuracy of pancreatic cancer prognosis. By using these readily
available data sources, our approach is both cost-effective and easily implemented in
clinical settings where resources may be limited.
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Our study demonstrates that the use of ML algorithms can significantly improve the
prediction of high-risk pancreatic adenocarcinoma patients’ 1-year survival. Moreover,
the user-friendliness and low costs of ML software programs make them particularly
relevant in resource-limited centers, where the adoption of new diagnostic and prognostic
technologies may be more challenging.

Overall, our findings suggest that machine learning has the potential to become a
powerful tool for improving cancer prognosis, especially in low-resource settings. While
there is still much work to be done to refine and validate these approaches, we are optimistic
about the future of machine learning in cancer research and clinical practice.
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