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Abstract: Introducing Advanced Air Mobility (AAM) as a novel transportation mode poses unique
challenges due to limited practical and empirical data. One of these challenges involves accurately
estimating future passenger demand and the required number of air taxis, given uncertainties in
modal shift dynamics, induced traffic patterns, and long-term price elasticity. In our study, we use
mobility data obtained from a Dresden traffic survey and modal shift rates to estimate the demand
for AAM air taxi operations for this regional use case. We organize these operations into an air
taxi rotation schedule using a Mixed Integer Linear Programming (MILP) optimization model and
set a tolerance for slight deviations from the requested arrival times for higher productivity. The
resulting schedule aids in determining the AAM fleet size while accounting for flight performance,
energy consumption, and battery charging requirements tailored to three distinct types of air taxi
fleets. According to our case study, the methodology produces feasible and high-quality air taxi flight
rotations within an efficient computational time of 1.5 h. The approach provides extensive insights into
air taxi utilization, charging durations at various locations, and assists in fleet planning that adapts to
varying, potentially uncertain, traffic demands. Our findings reveal an average productivity of 12 trips
per day per air taxi, covering distances from 13 to 99 km. These outcomes contribute to a sustainable,
business-focused implementation of AAM while highlighting the interaction between operational
parameters and overall system performance and contributing to vertiport capacity considerations.

Keywords: advanced air mobility; traffic demand; mobility data; flight scheduling; MILP optimization;
productivity; delay management; battery charging; air taxi; eVTOL

1. Introduction

Advanced Air Mobility (AAM) integrates urban and regional air transportation sys-
tems, and is expected to play a significant role in future mobility systems. By utilizing
the third dimension, AAM can offer faster transportation using direct connections over
longer distances while enhancing accessibility over competing transport modes due to very
limited infrastructure-related requirements. Technological advancements, such as electric
or hybrid engines and autonomous air taxis (also called eVTOLs), may further contribute
to the acceptance and cost-effectiveness of air transportation.

However, the integration of AAM into existing transportation systems introduces
several challenges:

• The complexity of the design of air taxis, involving modern battery resp. fuel cell tech-
nology and charging management within very limited space, including certification
aspects;

• Airspace management in (congested) urban environments requiring advanced tech-
nologies to overcome safety concerns;

• Infrastructure development, such as the construction of landing and takeoff areas and
charging stations (‘vertiports’) in potentially downtown urban areas with significantly
limited space;
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• Regulatory and legal challenges pertaining to air traffic management, privacy, envi-
ronmental impact, and noise abatement;

• Concerns related to a potential societal shift, requiring coordination and cooperation
among various stakeholders.

In Europe, various cities are part of the Urban Air Mobility Initiative Cities Com-
munity (UIC2), an initiative of the European Commission (EC) as an integral component
of its Smart Cities Marketplace [1,2]. The primary objective of the UIC2 is to facilitate
collaboration among cities actively implementing AAM, fostering knowledge-sharing and
mutual support. Figure 1 visually depicts the locations of these cities and regions, marked
by orange points [3]. Each region within the UIC2 framework possesses a distinct focus on
AAM applications, with priorities ranging from logistics and medical services to artificial
intelligence [4]. The Saxon government’s exploration of AAM diverges from UIC2, focusing
on rural areas with limited transportation infrastructure, rather than integrating AAM into
already well-connected urban transit systems. Its primary aim is to advance these regions
technologically and socially through AAM. Consequently, Dresden, the capital of Saxony
and not a part of UIC2, is represented as a green point in Figure 1.

Figure 1. Map of European cities and regions participating in the UIC2 initiative for the implementa-
tion of AAM.

The successful integration of AAM depends on accurately determining the required
fleet size of air taxis needed to match the projected demand within an anticipated opera-
tional framework. However, predicting this demand poses a challenge due to uncertainties
surrounding the public acceptance of this novel mode of transportation and the dynamic
nature of urban travel demands, which is currently still not foreseeable. Furthermore, the
absence of a standardized model to evaluate fleet size, considering factors, like air taxi
flight characteristics, existing transportation infrastructure, traffic regulations, population
density, and pricing strategies, compound this challenge. The complexities are further
compounded when examining rural areas, which exhibit distinct traffic dynamics, limited
infrastructure, and unique economic considerations. Given the novelty of the AAM concept
and the numerous questions, there are currently few approaches for developing an AAM
network (cf. Section 2. Current approaches to fleet size determination predominantly rely
on traffic simulations incorporating air taxis as an additional transport mode or traditional
methodologies such as ongoing updates based on current bookings and forecasts, typically
in commercial aviation fleet planning.
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This study aims to address the research questions arising from the aforementioned con-
straints, aiming to bridge several gaps in the field. Firstly, it seeks to develop methodologies
that translate mobility survey data into temporally and spatially resolved demand forecasts
for AAM. Secondly, it aims to determine the optimal fleet size required to serve specific
rural areas based on passenger demand and travel patterns. Thirdly, it investigates the
impact of varying fleet sizes on performance metrics like travel time, passenger wait time,
and overall system efficiency. This will provide valuable insights for efficient AAM, help-
ing inform policymakers and stakeholders on the best strategies for implementing air taxi
services. We assume that the necessary infrastructure and technology for AAM is available
and there are no relevant regulatory constraints for scheduling and offering flights.

This paper is structured as follows: Section 2 provides an overview of demand mod-
eling and a state-of-the-art on AAM technologies. Additionally, we explore the literature
on capacity evaluation and the modeling of the number of required air taxis, consider-
ing different demand assumptions. Section 3 introduces the methodology for translating
mobility data into forecasts for AAM demand. This section outlines the air taxi demand
estimation approach from [5], which evaluates a segment of potential air taxi users and
includes comprehensive calculations for air taxi flight performance. Section 4 presents the
estimation of the number of air taxis required for AAM through a Mixed-Integer Linear
Programming (MILP) model. This kind of vehicle and resource planning involves inte-
grating flight scheduling, air taxi assignment, flight repositioning strategies, and considers
additional waiting times due to battery charging during operations. Section 5 identifies
the parameters for flight performance of each air taxi category to calculate estimated flight
times and energy consumption. The comprehensive results are generated and presented in
Section 6, followed by a thorough discussion in Section 7 within a broader context.

2. State-of-the-Art
2.1. Demand Forecast Modeling

Traffic demand forecast models synthesize the decision-making process of people
in terms of mobility behavior. Thereby, people’s decisions are influenced by their socio-
demographic attributes (such as age, status of employment, and income), spatial characteris-
tics (e.g., topography, urban or rural), and the offered mobility options (variety of transport
modes, costs, and routes). To correctly model these decisions, the underlying parameters
can be determined by calibrating a traffic model to meet an observed, empirical state.
Traffic models usually consist of links and nodes with different relationships, capacities, or
other restraints and of agents, as well as types of vehicles [6,7]. Furthermore, the demand
patterns within various homogeneous groups in terms of travel behavior are derived from
mobility surveys in Germany, such as System repräsentativer Verkehrsbefragungen (SrV)
and Mobilität in Deutschland (MiD) [8,9]. A well-calibrated model allows statements to
be made about future situations when changing some of the input variables. Thereby,
urban transport modes are usually categorized into motorized and unmotorized individual
traffic and public transport with different transport modes and vehicle types. This triggers
people’s decision to choose between mobility options. Most of the traffic results from
mandatory activities such as work, education, and accompanying persons. Hence, daily
traffic volumes follow fluctuations with usually one peak in the morning hours and one
during the afternoon, which are mainly driven by these mandatory trips [7,10,11].

Predicting the impact of a new mode of transport on existing and potentially induced
transport demand is challenging. The acceptance of new technologies and socio-economic
developments create systematic interactions that cannot be predicted without further
analysis [12]. Conventional transport demand forecast models, which rely on individual
traffic patterns, personal attitudes towards different modes of transport, and specific data,
cannot be applied easily to AAM, since historical data are missing.

In [13], an overview of scientific research concerning AAM, demand forecast mod-
eling is given. Most of these estimate the AAM demand for specific regions to design a
suitable network. The regions are the USA [14,15] (New York [16], Tampa [17], San Fran-
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cisco [18–20]), Asia (Seoul [21,22]), and Europe (Paris [20], Munich [20,23,24], Zurich [25]).
Most of these regions can be characterized by smaller areas with a high population density
to overcome the crowded transport situation on the ground. In this work, we address an
extensive region with lower population density to enhance the public transport situation,
particularly in rural areas of the region where public transport is not sufficient. For this,
our case study Saxony has mostly the same modal characteristics as regular regional- or
longer-distance public transport. Travelers enter the air taxi on a designated spot located
centrally and exit the AAM network on such a spot at the destination. As for that, not only
the regional but also local accessibility (‘the last mile’) matters.

To address the AAM demand estimation challenge, the Airport Cologne/Bonn (CGN)
estimates the potential demand for air taxis by calculating modal shift rates based on mode
characteristics by using its own modal split data for passenger arrivals at the airport [26].
The assumption is that initial air taxi users will come from existing modes of transport
without considering induced traffic demand. However, increasing the speed of travel
between two locations can lead to primary induced traffic, which generates new demand.
This can also lead to new spatial–structural and economic equilibrium states, possibly
resulting in further (induced) traffic [27]. The concept of modal shifting is not new, and
has been formerly discussed from private cars to public transport as a means of reducing
emissions [28]. Here, the authors introduce attractiveness characteristics for making public
transport a valuable option, such as costs (pricing), safety/security, comfort, information,
travel frequencies and times, and ease of use [28]. Since this contribution is focused on how
AAM can improve the existing transport system intelligently without replacing current
modes of transport, it is assumed that AAM must also possess these characteristics to be
appealing to the population. The approach of modal shifting in the context of AAM demand
modeling only requires data from mobility surveys and population figures, which are often
publicly available. The intent behind this is to identify travel patterns and connections
with a high demand, for which AAM could be suitable in the future. The advantage of this
approach is that it can be transferred to any region of interest.

However, it is important to note that the demand for AAM may change as the technol-
ogy evolves, and continuous monitoring and analysis of travel patterns and user preferences
will be necessary to accurately determine the demand. In this contribution, the demand
modeling only concentrates on the modal shift of individuals and does not include poten-
tial induced traffic demand (see Section 3). Furthermore, it is assumed that there is social
acceptance of AAM (according to a former acceptance study in the use case region, see [29]),
respective political and operational regulations, appropriate ground infrastructure, and
air equipment.

2.2. Operational Aspects of Air Taxis
2.2.1. Air Taxi Categories

Air taxis can be categorized into three groups based on their construction (fixed
and/or rotary wings) and lift/thrust production during horizontal flight segments: Vectored
Thrust, Lift and Cruise, and Multicopter [30–34]. These categories use electrical energy for
propulsion [35], but are supposed to differ in terms of operational characteristics such as
range, flight speed, and passenger capacity. As per [36], the battery mass is assumed to be
around one-third of the Maximum Take-Off Mass (MTOM). The air taxi range depends
on the specific energy density of the battery, which typically ranges between 200 and
250 W h kg−1 [33,37,38]. For the first generation vehicles, the passenger capacity (payload)
will be limited to one to seven passengers assuming 100 kg mass per passenger including
luggage [31].

In cruise, the Vectored Thrust and Lift and Cruise concepts behave similarly to conven-
tional fixed-wing aircraft. However, for climb and descent, Vectored Thrust concepts have
tilting elements that allow propulsion engines to be adjusted in the desired direction, while
Lift and Cruise concepts hold independent systems. Multicopter concepts are similar to
conventional helicopters with multiple horizontally mounted rotors and have high energy
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efficiency in vertical flight segments. These air taxi categories can each be assigned to spe-
cific routes within a network based on their estimated flight ranges, passenger capacities,
and energy consumption following pre-set optimization criteria [31].

2.2.2. AAM Flight Mission Profile

A generalized flight mission profile of an AAM air taxi operation is based on the
International Civil Aviation Organization (ICAO) DOC 8168 [39], where traditional aircraft
missions are divided into take-off, climb, cruise, descent, and (missed) approach segments.
In [40], these segments are also considered for AAM. This approach is extended for AAM
in previous studies [40,41], incorporating taxi segments before take-off and after landing,
as well as a transition phase for changing the configuration from vertical to horizontal,
particularly necessary for Vectored Thrust and Lift and Cruise electrical vertical take-off
and landing (eVTOL). In this study, the AAM flight mission profile includes taxi, vertical
take-off, cruise, and vertical landing segments. An acceleration and deceleration phase is
introduced before and after the cruise segment, where the air taxi accelerates to its cruise
speed after vertical take-off and decelerates to zero before vertical landing (see Figure 2).
This distinction is made for improved performance, energy, and time modeling purposes
(refer to Section 5).

A B D

D E F

G H

A Departure stand
B Take-off 
C Arrival at cruise altitude
 Configuration change of VT & LC (vertical to 

horizontal)
 Beginning of acceleration
D Reaching cruise speed
 Beginning of cruise flight
E Beginning deceleration
F End of deceleration
 Configuration change of VT & LC (horizontal to 

vertical)
G Touchdown
H Arrival stand

C

Time t

Distance s

Acceleration

Vertical 
Landing

Cruise Flight Deceleration

Vertical 
Take-off

Taxi Taxi

Figure 2. Generic flight mission profile for air taxi operations.

It is essential to note that this flight mission profile is a simplified representation,
and the duration of the vertical takeoff depends on the obstacle situation at each ver-
tiport. From an energy demand perspective, the presented profile represents the most
demanding case due to the pure vertical climb without any forward flight movement. In
the end, the certification process of each eVTOL aircraft type reveals the later operational
mission profiles.

2.2.3. Turnaround Procedures

The battery capacity of air taxi is discussed in [31,42], where it is split into total and
usable energy (80%), leading to a reserve of 20% to account for contingency procedures and
potential re-routing. Depending on the distance to be covered and corresponding energy
consumption, intermediate or inter-trip recharging at a destination is required, with this
happening during the air taxi ground time, or turnaround. Recharging is identified as
laying on the critical time path [42], representing the most time-consuming process during
air taxi turnaround. Maintenance, Repair, and Overhaul (MRO) works during turnaround
are only mentioned for the sake of completeness. Currently, there are no specific analyses
regarding these tasks, e.g., cleaning the exterior.
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Regardless of the specific designation used, it is assumed that the required infras-
tructure for air taxi operation (including all equipment, e.g., charging) is available in the
use case network. Additionally, it is assumed that the air taxi categories are certified for
passenger operation.

2.3. Vehicle Fleet Sizing Problems

Estimating the required number of vehicles to operate in a transportation network
satisfying a given demand is well studied and defined as a Fleet Sizing Problem (FSP), e.g., for
conventional aircraft fleets. Regression analysis is one of the commonly used methods to solve
these problems by providing a quantitative estimate of the relationship between a dependent
variable (the demand) and independent variables (the number of vehicles). In early research,
Beamon and Chen [43] use regression methods to estimate fleet size in an industry system.
They use different indicators to evaluate the production systems performance, where the
most relevant measures for such problems are according to Imen et al. [44]: vehicle utilization
rate, throughput rate, vehicle waiting time, vehicle blockage time, empty vehicle traveling
time, total number of delivered loads or passengers, waiting time of units/passengers to
be transported. All of them can be directly transferred to a specific transportation problem,
such as the present one, and so also for AAM. Ehlers et al. [45] also demonstrated a further
possibility for evaluating a mixed fleet based on an economic efficiency compared to other
fleet compositions via a Fleet Efficiency Factor. Recent works based on regression methods
are focusing on fleet sizing summarized under the term Mobility on Demand for shared
bikes [46–49], cars and taxis [50–52]. Similarities can be found also for the optimum mix and
size of air taxi fleets in the aviation industry [53–56].

However, regression analysis requires a sufficient sample size with the assumption
of exogeneity of the independent variables. Often, historical demand and fleet data are
analyzed as input data to identify patterns and trends and estimate the required fleet
size. However, these databases do not exist for AAM. Here, potential future demand
must be estimated using market research methods to determine the optimal fleet size and
schedule [57]. Due to these disadvantages, regression analysis is barely able to capture the
variability of demand due to seasonality and daily fluctuations, as well as fundamental
uncertainty in determining demand. Especially, the future number of flights in the consid-
ered AAM network is uncertain because there is little knowledge about demand (general
acceptance, comfort, pricing) as well as the operational constraints (range, speed, capacity,
available in air time due to maintenance and battery charging times). In addition, typical
fleets are composed of vehicles with different specifications in terms of range, capacity, and
cost structures (both fixed and variable). By regression methods, the assignment of specific
transport tasks to these vehicles is only possible by dividing the tasks into subgroups with
similar characteristics.

To address these problems, different kinds of simulations are suitable. Agent-based sim-
ulations can model optimum fleet sizes by creating virtual agents that mimic the decision-
making of vehicles, passengers, and other actors in a transportation system. This allows for
complex system modeling and scenario testing. Agent-based simulations are already being
used in research to calculate fleet sizes in various transportation networks. Sha and Srini-
vasan [58] present an agent-based model that considers the independent decision-making
and interactions across different supply chain operations and demonstrate that fleet size sig-
nificantly impacts the performance of the supply chain including customer satisfaction. By
the probabilistic nature of freight transportation processes, Samchuk et al. [59] use simula-
tion runs to investigate the service quality depending on the number of vehicles and assess
the resulting truck utilization rate. A similar methodology is used by Valmiki et al. [60]
and Saprykin et al. [61], who determine the optimal fleet size for automated vehicles or taxi
fleets, respectively, based on achieving a targeted service quality. However, these studies
have highlighted that larger and more complex problems in this domain require significant
computational resources, and may present a challenge to implementation. Rajendran and
Shulman [62] propose a simulation model to determine the number of air taxis required
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to fulfill potential demand in New York City. Their simulation is based on a commercial
tool, and includes a queue of customers for AAM, which are either serviced by available
air taxis or disappear from the system unsatisfied after a long wait time. The approach is
suitable for determining the number of air taxis with subsequent evaluation of service level,
but does not yet allow for fleet heterogeneity.

Further models approach the problem of finding the optimal fleet composition through
numerical and analytical approaches. Relevant according to the literature are queuing models
and optimization problems. Queuing models are applied in various industries to improve
queue system efficiency and customer satisfaction by analyzing arrival and service rates.
Papier and Thonemann [63] present a M/M/c/c queuing model for fleet planning of a
cargo rail company by developing a lost sales rate and a profit function to optimize the fleet
size and structure. However, queuing models assume idealized conditions, such as infinite
resources, constant arrival rates, and first-come-first-served service, so they are limited to
their inability to fully capture the real-world conditions that impact fleet performance [64].
Recently, Amjath et al. [65] introduced a combination of a queuing model with a MILP
to find the optimal fleet sizing of trucks, but do not consider a heterogeneous fleet and
stochastic features.

The MILP form is most commonly used for determining the optimal fleet size, and
is solved either exactly or approximately using heuristics [66]. Vis et al. [67] introduce a
problem minimizing the vehicle fleet size required for the transportation of containers in
a terminal within a specific time window. The authors validate their estimates using a
simulation, showing the effectiveness of the analytical model in the context of a container
terminal. Li and Tao [68] expand upon these concepts to include vehicle repositioning be-
tween two cities to meet the demand of a rental company and calculate an optimal fleet size
for this purpose. These types of repositioning are critical in mobility-on-demand scenarios
to ensure that vehicles are brought to customers while minimizing empty trips. Repoussis
and Tarantilis [69] and Çağrı Koç et al. [70] integrate the fleet sizing problem with the rout-
ing of each individual vehicle through the Vehicle Routing Problem (VRP), thus providing
detailed statistics on the usage of each vehicle. Accordingly, the utilization of all vehicles in
a fleet can be maximized.

Due to the typical NP-hardness of the presented MILP models, they are unsuitable for
large problems due to the increasing computational effort. Instead, the present problem can
be spatially and timely divided into smaller sub-problems and solved selectively. If highly
relevant features such as the demand imbalance between peak and off-peak are taken into
account [71], forecasts can be made for the necessary fleet size of future transport modes. If
the properties and characteristics of the sub-problems’ transport networks also represent
the cross-section of the main problem, these forecasts can be used for upscaling to the
main problem with uncertainties. Those uncertainties can then be determined, for example,
via Monte Carlo Simulation (MCS) to specify the required fleet size more precisely. By
combining these methods, an approach for determining fleet sizes can be provided, even if
the boundary conditions are still relatively uncertain at the current time.

3. Case Study and Air Taxi Flight Performance

This section introduces the network of the case study and outlines key assumptions
related to demand estimation, air taxis, and flight planning. These assumptions form
the foundational framework for addressing the primary research questions in the subse-
quent analysis.

3.1. Case Study, Network and Demand for Trips

The traffic network of the case study in this work is a result of preliminary work during
the ‘SmartFly’ research project [5] and shown in Figure 3. It depicts a hub-and-spoke air taxi
network in Saxony, with Dresden serving as the central hub. The network design is based
on German mobility data (SrV [8,72] and MiD [9]) that has been evaluated for sketching
the daily ground-based commuting situation around Dresden [73]. The combined data of



Future Transp. 2024, 4 181

SrV and MiD is structured into three levels: households, individuals, and trips. In sum,
there are listed 157,000 households with approximately 320,000 individuals living in there,
resulting in around 971,000 single trips. Each household has a unique code to which the
other levels are linked so that each resulting trip can be assigned to any individual in the
household. The trip data are filtered to the region of Dresden, resulting in approx. 1100 daily
ground-based trips (each trip corresponds to one person) originating or terminating in
Dresden. Under these circumstances, Table 1 summarizes the most frequently mentioned
destinations with their total number of trips per destination, corresponding relative shares
on the total ground-based trips, and the Great Circle Distance (GCD) between Dresden and
the respective cities. All in all, this leads to the reduction from originally 1100 ground-based
trips to 497 relevant ones (corresponds to 43.5% of the total ground-based trips) that are
originating or terminating at Dresden, which serve as the basis for further analysis (see
Section 3.2). The remaining 56.5% of the ground-based trips between other cities and rural
regions are excluded in further analysis, as they only have a very small share of the total
trips. Therefore, and at this stage of work, no significant demand for air taxi services is
assumed for these locations.
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Figure 3. AAM network of the case study, connecting several cities in Saxony (red) with the network
hub Dresden (yellow).

Table 1. Summarized SrV and MiD data for potential air taxi connections between Dresden and the
surrounding areas in Saxony, including the total number of trips per destination and day, along with
their corresponding relative shares in total ground-based trips and distance.

City # Trips Rel. Share [%] GCD [km]

Pirna 103 9.0 17.4
Radeberg 77 6.7 14.8
Meißen 46 4.0 22.3

Glashütte 46 4.0 22.4
Wilsdruff 38 3.3 13.9

Ottendorf-Okrilla 32 2.8 16.5
Leipzig 29 2.6 99.9

Altenberg 27 2.4 31.8
Kreischa 22 1.9 11.9

Moritzburg 22 1.9 12.6
Dippoldiswalde 20 1.8 17.9

Neustadt in Sachsen 18 1.6 33.5
Chemnitz 17 1.5 62.1

Total 497 43.5 -
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The network design itself is based on a linear cost optimization, where the model is
developed in [74] and adjusted according to the characteristics of a pure hub-and-spoke
network. The mobility dataset of SrV and MiD serves as a basis for the demand estimation,
which is detailed in the subsequent Section 3.2. The aircraft rotation scheduling model in
Section 4.1 also supports flights between non-hub cities, if required.

3.2. Air Taxi Travel Demand

In this section, the key assumptions underlying the demand estimation approach,
including the proposed methodology based on modal shift rates, are highlighted.

The modal shift rates encompass considerations of established modes of transport
and, conversely, aspects of social acceptance. This incorporates personal attitudes towards
air taxis and includes statements about a potential intention to use them. In [29], aspects of
social acceptance are surveyed within the Dresden use case region.

To measure the intention to use air taxis, three scenarios are introduced: longer dis-
tances for non-everyday occasions, individual routes from respondents’ homes to Dresden
city center, and network commuting in alignment with a public transport system. For the
presented use case network in this contribution, the focus is on network commuting, where
a total of 21.6% of respondents stated that they would ‘likely’ use an air taxi in this context,
at least to some extent (respondents could choose between one (not likely at all) and five
(very likely)) [29].

Regarding mode-specific characteristics, the following assumptions, which also take
financial aspects into account [74], are established:

• Bicycle trips typically involve shorter distances, characterized by very low financial
outlay (purchase and maintenance costs for a bicycle). In this context, the motivation
for using an air taxi could be driven by factors such as the fun factor or personal
interests in technology [29].

• Public transport generally serves medium to long distances and travel times. Users
in this category typically exhibit high price sensitivity, accepting longer travel times
for a lower price compared to individual transport options. Here, the fun factor
and potential technology interests could be influential in choosing an air taxi for
sporadic trips.

• Trips covered by individual transport (e.g., cars) are also characterized by medium
to long distances, resulting in a moderate willingness to pay. Users in this category
accept higher operating costs for a car (purchase, fuel, maintenance, insurance) in
exchange for time savings and individuality compared to public transport.

These assumptions suggest that individual mobility users are more likely to transition
to air taxis than users from other modes [75,76]. Additionally, the purpose of the trip could
play a significant role in terms of punctuality, especially for business reasons, and potential
time savings [76–78]. Therefore, the assumed shifting rates from ground-based transport
options to air taxis are as follows [74]:

• Car users: 15%.
• Public transport users: 5%.
• Bicycle users: 2%.

Now, these rates have to be extended by the previously described social acceptance
(by multiplication with 21.6%), as they only consider the mode-specific characteristics at
this point. Finally, the assumed mode-specific shifting rates are displayed in Table 2 [74].

Table 2. Mode-specific shifting rates [%] to AAM (modal shift and acceptance).

Bicycle Car Public Transport Total

0.43 3.24 1.08 4.75
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It should be noted that the estimation is subject to uncertainties, primarily due to the
absence of air taxis in the current transport system. The calculation heavily relies on various
assumptions that cannot be empirically validated at this stage. The estimated shifting rates,
obtained from the mobility data (refer to Section 3.1), serve as the basis for the subsequent
demand estimation.

The number of inhabitants for each prospective destination (refer to Table 1) is sourced
from [79]. Subsequently, the relative shares per destination are utilized to extrapolate the
sample findings of the mobility data evaluation to encompass the entire population of the
respective cities. The identification of potential air taxi users is outlined in Table 3.

The population for each potential destination (refer to Table 1) is extracted from [79].
Following this, the relative shares per destination are employed to extrapolate the sample
results from the mobility data evaluation, providing a comprehensive representation of the
entire population of the respective cities. The estimated demand of potential air taxi users
is presented in Table 3.

Table 3. Estimated demand for air taxi users (‘AAM’) based on mobility data. In total, 619 individuals
are assumed to travel with AAM on a daily basis in the current network (‘Total’).

City # Indv. Car Public Transport Bicycle AAM

rel. abs. AAM rel. abs. AAM rel. abs. AAM Total

Pirna 3481 0.73 2534 82.1 0.20 709 7.7 0.07 236 1.0 91
Radeberg 1266 0.70 887 28.8 0.25 312 3.4 0.05 65 0.3 32
Meißen 1141 0.63 719 23.3 0.30 347 3.7 0.07 74 0.3 27

Glashütte 268 0.93 250 8.1 0.07 17 0.2 0 0 0 8
Wilsdruff 480 0.84 404 13.1 0.16 75 0.8 0 0 0 14

Ottend./Okr. 280 0.94 262 8.5 0 0 0 0.06 17 0.1 9
Leipzig 15,309 0.48 7390 239.5 0.52 7918 85.5 0 0 0 325

Altenberg 190 1.00 190 6.2 0 0 0 0 0 0 6
Kreischa 87 0.91 79 2.6 0.09 7 0.1 0 0 0 3

Moritzburg 159 0.82 130 4.2 0.05 7 0.1 0.09 14 0.1 4
Dippoldisw. 254 0.80 203 6.6 0.20 50 0.6 0 0 0 7
Neustadt/S 189 0.89 168 5.5 0.11 21 0.2 0 0 0 6
Chemnitz 3695 0.59 2173 70.4 0.41 1521 16.4 0 0 0 87

619

The first column in Table 3 corresponds to destinations connected with Dresden
through AAM in this case study. The second column extrapolates the number of individuals
traveling on each respective connection. For instance, Pirna has 38,681 inhabitants [79]
and, by considering a relative share of nine percent derived from the mobility data (refer to
Table 1), this results in 3481 individuals commuting between Dresden and Pirna, utilizing
various modes of transportation. By using the modal split data provided in the mobility
data (relative values per mode of transportation in Table 3), it becomes feasible to allocate
the number of individuals (second column) to a specific mode of transportation (depicted as
absolute values per mode of transportation in Table 3). The resultant count of individuals per
mode of transportation is then multiplied by the previously estimated shifting rates (refer to
Table 2), disclosing the number of individuals making the transition from the corresponding
mode of transportation to an air taxi (AAM column per means of transportation). This
process is executed for each destination, culminating in a total of AAM individuals shifting
to air taxis daily (Pirna<->Dresden: 91 individuals per day). Moreover, Figure 4 provides
a visual representation of this process using data from the Pirna–Dresden connection. It
illustrates the extent of modal shift for each mode of transportation by depicting the mode-
specific shifting rates outlined in Table 2. The direction of travel is not yet determined.
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Figure 4. Modal distribution of travelers for the connection between Pirna and Dresden.

To address this challenge, it is assumed that the traffic demand is mainly driven by
commuting activities. This is supported by [80], which provides such flows for specific
regions in Germany. Particularly for commuters in Dresden, it reveals that 62% of com-
muters travel from suburban areas to Dresden and 38% of them from Dresden to suburban
areas. This commuter behavior results in typical peak hours, as shown in Figure 5. The
figure is approximated based on [72] and contains a distribution of all trips (all modes of
transportation) in Dresden, represented by the black line (corresponding relative shares
are summarized by Table A1). The other lines express the number of commuters traveling
to Dresden (blue) and from Dresden (dashed blue). The green area shows the assumed
operational time of air taxis, assumed to be from 6:00 a.m. to 10:00 p.m. due to a potential
night flight restriction.
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Figure 5. Share of total trips during the day (black, undirected, all means of transport) and number of
individuals directed traveling to (blue, solid) and from Dresden per air taxi (blue, dashed).

Figure 6 illustrates the number of air taxi users according to their departures and
destinations. Figure 6 left describes the distribution of individuals who are traveling
to Dresden according to their departure locations and the time of the day, and Figure 6
right visualizes the equal context for the other direction of traveling (from Dresden to
suburban areas). Both figures show the typical peak times during the day in the morning
and afternoon hours. These time periods are the most significant ones for the determination
of the required number of air taxis. In addition, the mission profile of AAM is also affecting
the air taxi traffic flow. The mission profile (see Figure 2) includes the turnaround time, the
flight time, and possible holding times, which altogether influence the possible utilization
rate of an air taxi. If there is a schedule, such uncertainties can be reduced and delays can
be minimized.
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Figure 6. Number of air taxi users coming to and departing from Dresden, distributed by locations.

Given the impact of population size on demand, it is reasonable to anticipate a signifi-
cant portion of air taxi travel demand between Leipzig and Dresden.

3.3. Air Taxi Flight Performance

Additional information regarding air taxis are essential for accurately determining
the required fleet size, complementing the previously estimated demand potential for
air taxi services (refer to Section 3.2). It is assumed that the air taxis are certified for
passenger operation and authorized to fly, as detailed in Section 2.2. The GCD within
the case study network ranges from 11.9 to 99.9 km. Table 4 summarizes all relevant
data necessary for performance modeling, elaborated upon in the subsequent sections
of this contribution. It should be noted that these values are idealized, as real flight
conditions and the corresponding capabilities that the aircraft must demonstrate during
the certification process remain unclear. Typically, performance modeling varies based on
meteorological conditions (such as wind speed and direction, temperature, and air density)
and equipment age.

Further details on air taxis are crucial for precise fleet size determination, supple-
menting the earlier assessed demand potential for air taxi services (see Section 3.2). It
is presupposed that the air taxis are certified for passenger operations and possess the
necessary flight authorization, as elaborated in Section 2.2. The GCD within the case study
network ranges from 11.9 km to 99.9 km. All pertinent data essential for performance
modeling is consolidated in Table 4, presented in the subsequent sections of this paper.

The range of the air taxi is limited by the characteristics of its battery (energy density
E∗), which provides a specific amount of energy. As explained in Section 2.2, approximately
one-third of the MTOM is attributed to the battery mass. The study conducted by [5]
examines the MTOM of each air taxi category, as well as the payload (PL) of each aircraft,
which contains a total of 22 air taxi (11 Vectored Thrust, eight Lift and Cruise, and four Mul-
ticopter). By multiplying the MTOM by 0.33, the battery mass can be determined, which
can then be converted into a total amount of energy (E) by assuming an energy density of
E∗ = 200 W h kg−1. The usable amount of energy (Euse) can be estimated using Equation (1),
which takes into account a depth of discharge (DoD) of 0.8 to ensure that the reserve energy
(20% of the total amount of energy) is available, as well as the introduction of a battery
efficiency factor (ηbattery) assumed to be 0.95 to account for heating losses in the battery.

Euse = E∗ ·mbattery · ηbattery · DoD (1)
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Table 4. Summarized parameters for air taxi performance modeling.

Parameter Designation Vect. Thrust Lift and Cruise Multicopter

Cruise speed Vcruise [m s−1] 72 40 24
Max. Take-Off

Mass MTOM [kg] 2200 1600 900

Payload PL [kg] 400 300 100
Battery mass mbattery [kg] 730 530 300
Battery mass

ratio
mbattery
MTOM [-] 0.33

Energy density E∗ [W h kg−1] 200
Total energy E [kW h] 146 106 60

Battery
efficiency ηbattery [-] 0.95

Depth of
discharge DoD [-] 0.8

Efficiency
during hover ηhover [-] 0.70 0.75 0.8

Efficiency
during cruise ηcruise [-] 0.8 0.7 0.6

Efficiency
during transition ηtrans [-] 0.65 0.7 -

Usable energy Euse [kW h] 110.96 80.56 45.6
Disc Loading DL [N m−2] 1354.98 832.70 59.03
Air density ρ [kg m−3] 1.225

Rotor rotation
speed vh [m s−1] 23.52 18.44 4.91

Rate of Climb RoC [m s−1] 5
Tilt angle Θ [°] 82 90 -

Total disc area A [m2] 8 9.4 74.8
Wing surface S [m2] 11 11 -

Solidity σ [-] 4.41 3.06 -
Rotor tip speed Vtip [m s−1] 187
Drag coefficient CD [-] 0.039 0.061 0.098

Rotor drag
coefficient Cd [-] 0.0015

Rotor diameter drotor [m] 1.3 1.0 2.3
Number of

rotors n [-] 6 12 18

Number of
blades per rotor N [-] 5 2 2

Lift-to-Drag
ratio cruise ( L

D )cruise [-] 16 13 4

The performance modeling equations are presented in [31], based on [81–83], but used
in this contribution with some modifications to account for the specific flight mission profile
presented in Figure 2 (elimination of the horizontal climb segment). The final equations
used to calculate the power requirements for each flight segment are briefly summarized in
the subsequent sections.
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3.3.1. Taxi

The taxi segments can be performed either as ground or hover taxi (GT and HT),
depending on the availability of equipped landing gear. According to Patterson [84], the
power requirement for a ground taxi (PGT) can be estimated using Equation (2), and it
depends on the power assumed for the cruise segment.

PGT = 0.1 · Pcruise (2)

The power requirement for a HT (PHT) depends on the disc loading (DL) (Equation (3))
and is estimated by Equation (4). For simplification, it is expressed as the power for a
stationary hover flight (PH).

DL =
W
A

=
m · g

nrotor · 2πr2
rotor

(3)

PHT = PH =
W

ηhover
·
√

DL
2ρ

(4)

3.3.2. Vertical Take-Off

The power for the vertical take-off (PTO) depends on the power to hover (PH), the rate
of climb (RoC), and the rotor rotation speed (vh) (Equation (5)).

PTO = PH ·

RoC
2vh

+

√(
RoC
2vh

)2
+ 1

 (5)

3.3.3. Transition

The transition segment is specific to Vectored Thrust and Lift and Cruise aircraft, as they
necessitate a transformation from vertical to horizontal flight configurations in preparation
for the subsequent horizontal phase after take-off (and vice versa before vertical landing).
The power required for this transition, denoted as PTrans, is expressed as the summation of
three power components (as detailed in Equation (6)), where V∞ represents the targeted
velocity attained by the air taxi following the transition phase. Following Figure 2, it is
assumed that the air taxi reaches its designated cruise altitude, executes the transition
maneuver, and subsequently commences acceleration until the desired cruise speed is
attained. Notably, the initial value of V∞ is set to zero, signifying the air taxi’s initiation
of acceleration from a standstill (short stationary hover flight) to achieve its designated
cruise speed.

PTrans = Pinduced + Pdrag, rotor + Pdrag, aircraft (6)

Pinduced =
W

ηtrans · sin(Θtilt)
·

√√√√−V2
∞

2
+

√(
V2

∞
2

)2

+

(
W

sin(Θtilt) · 2ρA

)2
(7)

σ =
blade area

rotor disc area
=

N · c · rrotor

π · r2
rotor

· n =
N · c

π · rrotor
· n (8)

Pdrag, rotor = ρAV3
tip ·

(
σCd

8
· (1 + 4.6µ2)

)
(9)

Pdrag, aircraft = 0.5ρV3
∞CDS (10)
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3.3.4. Cruise

The power for the cruise (Pcruise) is the result of a lift and weight balancing by assuming
that the drag equals thrust.

Pcruise =
T ·Vcruise

ηcruise
=

W ·Vcruise(
L
D

)
cruise

· ηcruise

(11)

3.3.5. Vertical Landing

The determination of power required for vertical landing (PVD) follows a comparable
methodology to that employed for vertical take-off, with the sole distinction being the
consideration of a negative rate of climb (RoC).

PVD = PH ·

RoCLD

2vh
+

√(
RoCLD

2vh

)2
+ 1

 (12)

3.3.6. Energy Requirement

The energy consumption Es of an air taxi depends on the power Ps and time ts the
vehicle spends in each flight segment s (Equation (13)).

Es = Ps · ts (13)

Assumed durations ts per flight segment s are shown in Table 5. The duration for
the vertical segments corresponds to a cruise altitude of 150 m and the RoC of 5 m s−1 (or
−5 m s−1 in case of vertical landing). It has to be mentioned that the transition has to be
performed twice (after vertical take-off and before vertical landing) for Vectored Thrust and
Lift and Cruise air taxis with a duration of 20 s each.

Table 5. Assumed durations ts per flight segment s.

Taxi Vertical Take-Off Transition Vertical Landing

30 s 30 s 20 s 30 s

The duration of the cruise phase depends on the distance (GCD) between depar-
ture and destination minus the distance and time required for acceleration (from zero to
cruise speed) and deceleration (from cruise speed to zero). Following the kinematics from
Equations (14) and (15), the acceleration a is required.

s =
v2

2a
(14)

and
t =

v
a

. (15)

The acceleration data are from the Sophisticated Aircraft Performance Model (SOPHIA)
for conventional small aircraft at the climb-acceleration phase [85]. Hereby, the mean accel-
eration value (a = 2.2 m s−2 ) is assumed for Vectored Thrust air taxi, a = 1.54 m s−2 for Lift
and Cruise air taxi (70% of the mean), and a = 1.1 m s−2 for Multicopter (50% of the mean)
(commonly used cars: 1.7 m s−2 up to 4.5 m s−2). Deceleration values are chosen according
to [86], where various values are determined for different aircraft at landing: Vectored
Thrust a = −0.6 m s−2, Lift and Cruise a = −0.5 m s−2, and Multicopter a = −0.4 m s−2.
The resulting values for distances and times for reaching the cruise speed (and zero in
case of deceleration) are presented by Table 6. Practically, this means that the distances
from Table 1 have to be reduced by the distances listed in Table 6 to obtain the remaining
distance, on which aircraft travel with cruise speed.
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Table 6. Resulting distances and times for corresponding acceleration and deceleration values per air
taxi category.

Air Taxi Cruise Acceleration Deceleration
Category Speed [m s−1] Distance [m] Time [s] Distance [m] Time [s]

Vectored Thrust 72 1177 33 4320 120
Lift and Cruise 40 519 26 1600 80

Multicopter 24 262 22 720 60

The total amount of energy for the whole flight mission (Etot) is expressed by
Equation (16) by summing up the single energy requirements per flight segment s.

Etot =
n

∑
s=1

Es =
n

∑
s=1

Ps · ts (16)

Additionally, it is important to note that the power requirements for each flight
segment depend on the mass of the air taxi, necessitating the consideration of passengers
as payload. For the subsequent performance modeling, the MTOM is taken into account.

3.3.7. Range

According to [87] the maximum range for electric flight can be estimated by using
Equation (17), which depends on the energy density of the battery (E∗), the gravity g, the
lift-to-drag ration ( L

D ), and the battery mass ratio (assumed with one third).

R = E∗ · ηtot ·
1
g
· L

D
·

mbattery

maircraft
. (17)

Assuming an energy density of 200 W h kg−1 and a total system efficiency of 0.65
along the propulsion path, the computed results for maximum range per air taxi category
are 250 km for Vectored Thrust, 200 km for Lift and Cruise, and 60 km for Multicopter. It is
important to note that these ranges do not account for the energy consumption during the
vertical segments. As a result, the anticipated maximum ranges are likely to be reduced, as
demonstrated in Section 5.

4. Flight Scheduling and Aircraft Assignment Model

An optimization model for flight planning and scheduling is highly suitable for
assessing air taxi productivity and daily utilization, aiding in determining the optimal
aircraft count for a given schedule. Measuring productivity involves analyzing operational
times from completed flights within the schedule, and addresses a Flight Scheduling
Problem. Complexities like vertical take-off and landing impact productivity, managed
effectively by the optimization model. This ensures efficient utilization and scheduling to
meet diverse demands and enhance overall operational efficiency.

We define the problem as a modified version of the Heterogeneous Vehicle Routing
Problem with Time Windows (HVRPTW), where each air taxi may possess distinct fleet
properties and is assigned a route between time-window-constrained flights. Moreover,
we introduce the concept of Soft Time Windows (STW) in terms of AAM, allowing for
deviations from the intended scheduled departure times at added costs within the objective
function. This empowers the solver to find a flight schedule that minimizes deviations
from scheduled departure times based on traffic demand and enhances the management of
air taxi utilization with greater flexibility.

The model has been previously presented by us in work on airline disruption manage-
ment [88,89] and has now been adapted and extended to meet the requirements of AAM.
We have omitted modeling of connecting passengers between flights and have opted for a
less restrictive flight scheduling approach, allowing wider hard time window limits and
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more intense use of accepted delay. Furthermore, the model includes repositioning and
battery charging time calculation. The following constraints are additionally considered:

• Variables: flight schedule (departure and arrival times) with integrated air taxi alloca-
tion: which air taxi is assigned to which flight.

• Logical and valid flight schedule: no overlapping flights for an air taxi, sufficient
turnaround time, time for repositioning, and a sufficient remaining battery energy
level for the subsequent flight.

• Always sufficient available space at vertiports, along with immediately accessible and
uninterrupted battery charging facilitated by the provided power supply. Upon arrival
at the vertiport, passengers are ready for departure, thus no delays are anticipated.

• Route restrictions exist by air taxi range and capacity (refer later in the text to the
corresponding parameters depicted in Figure 9).

• A standard ground time is estimated, which is used to prepare the aircraft for the
flight and allows for passenger boarding and deboarding (later in text in Figure 10).
This time can be utilized for battery charging.

• Reliable air taxis without failures; no maintenance units due to extended planning
horizon, can be abstracted via allocated time slots per air taxi.

• No new incoming requests are allowed into the system; otherwise, the calculation
must be restarted.

4.1. Mathematical Formulation

The model consists of a set of unique air taxis V and a set of scheduled flights N
including a dummy depot 0 representing the start and end of a route. The subset C ⊂ N
only includes flights and forms the directed graph G = (V, C).

The set of ground arcs A ⊆ N × N contains the connections between flights. Each
flight i has a flight duration Fik, specific operating costs CNik and ground event costs CEijk
for air taxi k (cf. Figure 7). A flight i is limited by a non-negative hard TW [Ai, Bi], where Ai
is the scheduled departure and Bi latest possible arrival time. The actual departure time si
and arrival time ei if the flight must lie within these limits. To allow for arrival delays, Bi
should be set high to a problem-specific maximum acceptable delay duration.

An STW for flight i tolerates a deviation from the scheduled arrival time of this flight
SIBTi, but charges delays with costs in the objective function. The STW is described
by the scheduled departure Ai and SIBTi in the interval [Ai, SIBTi]. Thus, STWs start
simultaneously with hard TWs, but are closed earlier (SIBTi ≤ Bi) to measure the delay
from scheduled times. If the actual arrival time ei of flight i exceeds SIBTi, arrival delay
occurs and is calculated by the variable dARR

i (cf. Figure 8).
A ground event has the duration of Tij, consisting of a turnaround time and/or a

repositioning flight, including additional specific turnaround time, if the destination of
flight i is not equal to the departure of flight j. This value should always be parameterized to
be sufficiently large to allow for a minimum ground time for air taxi pre-flight preparation.
Furthermore, there exists a parameter CFk which describes fixed costs for the deployment
of an aircraft to solve the problem. Thus, in case of sufficiently high costs, the number
of required aircraft can be reduced until the necessary minimum. The binary decision
variable xijk decides whether air taxi k connects two flights i and j via arc (ij).

Each vehicle k is equipped with an electric drive, which draws energy from a battery
with a capacity of BCk. This battery discharges during a vehicle rotation, and the current
state of charge is measured before each flight i, expressed as bik. Each vertiport has
infrastructure for charging the vehicle before flight i, with a charging amount of zik and a
constant charging power of Pcharge.
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Notation

Sets:
N set of flights with depot
C set of flights
V set of air taxi
A set of arcs
Parameters:
CEijk edge cost, ground event
CNik node cost, flight event
CARR cost rate arrival delay
AAM

ij 1 if flight j can be a successor of i,
0 otherwise

AAK
ik 1 if flight j can be served by vehicle k,

0 otherwise
Fik flight time of i with k
Tij ground time between i and j
CFk fix cost for using vehicle k
Ai,Bi open/close fix time window
Ai,SIBTi open/close soft time window
Pcharge battery charging performance
BCk battery capacity of vehicle k
M BigM, very large number
Variables:
xijk binary variable: 1 if flights i and j are served

by vehicle k in this order, and 0 otherwise
dARR

i arrival delay of flight i
si start time of flight
ei end time of flight
vk time vehicle k returned to depot
hdarri help variable for delay
wij wait time before serving flight j
bik battery status of vehicle k before charging in i
zik battery charge of vehicle k before departure of i

k = 1

k = 2

08:00 09:00 10:00 11:00 12:00

Flight 1

Flight 2

Flight i

Flight j

CN3,k=2

CN2,k=1

CE0,j,k=2

CE2,j,k=1

CEi,j,k=2

Figure 7. Schematic representation of four flights to be planned (Flight1, Flight2, i, j) as a timetable
and two air taxi vehicles (magenta k = 1, green k = 2). Flights are connected with arcs (dashed:
feasible connections, solid colored arrows: selected connection) which form a vehicle rotation and
also consider turnaround and repositioning internally. CN represents flight operation costs and CE
represents all costs associated with the linkage of two flights to an air taxi. Flight2 cannot be serviced
by air taxi k = 2 due to a capacity constraint.
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min ∑
k∈V

∑
(ij)∈A,i≥1

(CNik + CEijk)xijk+ ∑
i∈C

+dARR
i CARR + ∑

(0j)∈A,j≥1
x0jkCFk (18)

s.t. ∑
k∈V

∑
i∈N ,AAM

ij =1

xijk = 1 ∀j ∈ C (19)

∑
(ij)∈A

xijk = 0 ∀k ∈ V , ∀i ∈ C, AAK
ik = 0 (20)

∑
i∈N ,AAM

iu =1

xiuk − ∑
j∈N ,aAM

uj =1

xujk = 0 ∀u ∈ C, ∀k ∈ V (21)

∑
j∈N ,aAM

0j =1

x0jk ≤ 1 ∀k ∈ V (22)

Ai ≤ si ≤ Bi ∀i ∈ N (23)

Ai ≤ ei ≤ Bi ∀i ∈ N (24)

ei = si + Fik + zik ∀i ∈ N , i ≥ 1, ∀k ∈ V (25)

ei + hdarri − dARR
i = SIBTi ∀i ∈ C (26)

ej − ei + (1− xijk)M ≥ Fjk + Tij + wij + zjk/Pcharge ∀(ij) ∈ A, i, j ≥ 1, ∀k ∈ V (27)

ej − vk + (1− x0jk)M ≥ Fjk + T0j + w0j + z0k/Pcharge ∀j ∈ N , aAM
0j ≥ 1, ∀k ∈ V (28)

b0k = BCk ∀k ∈ V (29)

bjk ≤ bik + zik − CNik − CEijk + (1− xijk M) ∀(ij) ∈ A∀k ∈ V (30)

bjk ≥ bik + zik − CNik − CEijk − (1− xijk M) ∀(ij) ∈ A∀k ∈ V (31)

bik + zik ≤ BCk ∀i ∈ C, ∀k ∈ V (32)

bik, zik ≥ 0 ∀i ∈ C, ∀k ∈ V (33)

xijk ∈
{

0, 1
}

∀i, j ∈ N , ∀k ∈ V (34)

The objective Function (18) minimizes the total cost of ground and flight operations,
the costs of arrival delay, and fix costs for each used air taxi (by leaving the depot). Direct
operating costs related to the dummy depot are excluded.

Equation (19) guarantees that each flight is served once. The adjacency matrix AAK
ik

encodes the range, capacity, and other restrictions of the air taxis used, as well as any other
relevant constraints for a specified flight. Herewith, Equation (20) avoids all flight-vehicle
assignments that are undesired by the user-defined configuration. This formulation can
also be used to link planned maintenance events to a specific air taxi.

By Equation (21), the flow conditions and in Equation (22) the maximum number
of available air taxi is ensured. The Equations (23)–(25) provide the time restrictions
of the flights, where the start and end of a flight must be within its fixed time window.
Equation (25) takes care of this for calculating the arrival time of the flight at the destination.

Equation (26) measures the delay duration dARR
i per STW. This value is incorporated

into the objective function along with the cost factor CARR. The Equations (27) and (28)
ensure the correct computation of start and wait times and include flight, turnaround,
repositioning, waiting and battery charging time. Equations (29)–(33) are essential for both
the battery state of charge and the charging process at each individual station. Equation (29)
ensures that each air taxi starts with its battery capacity, and Equations (30) and (31) calcu-
late the exact battery states. The battery capacity constraints in Equation (32) ensure that
battery charging must not exceed the battery capacity and Equation (33) expresses that
the current battery states must be positive. Finally, the statement in (34) restricts xijk to
binary conditions.

The objective Function (18) weighs various costs together. The costs CNik and CEijk
represent flight operational costs, representing the consumption of electric energy in kW h
of each air taxi k in the simplest case. The delay cost rate CARR occurs only if a flight is
delayed and is independent of operational costs. However, the value of the fixed costs CFk
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per air taxi k determines the number of air taxis used, and in extreme cases, with very high
fixed costs CFk, only one air taxi will be used for all flights, resulting in massive delays.
Since weighing these fixed costs is difficult without knowledge of investment costs for the
network, we omit the third part of the objective Function (18) in subsequent discussions
and instead calculate, for each scenario, the average delay per flight for a given number of
available air taxis k ∈ V , which we evaluate under the criterion of Pareto-optimality.
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Figure 8. Two flights, i and j, are assigned to air taxi k. The light blue box represents the scheduled
times based on the desired departure times, while the dark blue box represents the actual times. Fik
and Fjk describe the flight time, and Tijk aggregates the necessary duration for a turnaround time
between the vertiports ‘DRS’ and ‘PIR’ and the duration for repositioning between ‘PIR’ and ‘RAD’
(yellow), which is the departure location for flight j. Repositioning requires recharging of the battery
(green), which means that flight j lands in ‘DRS’ with an arrival delay of dARR

j compared to the
scheduled landing time SIBTj if flight j (STW).

4.2. Heuristic Solver

Large optimization problems are computationally complex and challenging to solve
using exact algorithms. Heuristics are useful when dealing with problems that involve
a large number of variables or constraints. Although these methods do not guarantee
an optimal solution, they can often provide solutions that are close to optimal in a much
shorter amount of time. For the best fit in aircraft count, the criterion of global optimality
in delay and operational cost is not necessarily required to be met due to uncertainties in
the model input. To tackle the problem, we implement the mathematical model described
in Section 4.1 in the Java-based Optaplanner v8.36.0 framework [90], which employs
a combination of construction heuristics and local optimization approaches. The tool
iteratively refines candidate solutions S until a satisfactory solution is found or a stopping
criterion is reached. Starting from the current solution, the tool can be configured to allow a
candidate solution to bypass local optima by accepting temporarily worse solution scores.

Our decision to opt for OptaPlanner arises from its adaptability to flight schedules
and other problems, its customizable evaluation function, its open-source nature, and its
extensive customization capabilities for improvement strategies. Since determining the best
optimization approach is beyond the scope (see Section 7.2), we are using default settings
(Construction heuristic First, Fit, Metaheuristic Tabu Search). Through testing on flight
scheduling instances, these settings improved solutions by less than 1% in approximately
one hour. This indicates that this approach remains a practical choice for real-world
issues without necessitating extensive optimization efforts on the solver approach itself.
The solution time varies with problem size, and solution quality depends on complexity,
particularly in generating feasible solutions via neighborhood search.

Depending on the departure and destination of flights in a solution S, repositionings
and, if necessary, rechargings are inserted. The evaluation of the solution is implemented
using an EasyScoreCalculator, where the HardScore HScS of the solution S ensures
compliance with the adjacency AAK

ik of flights to air taxis and tries to avoid delays above
30 min (see pseudocode in Algorithm 1, lines 8 and 28). The SoftScore SSc evaluates
cost according to Equation (18) with CNik, CEijk and delay from dARR

i (lines 26 and 34).
Two differences occur comparing the MILP from Section 4.1 and Algorithm 1: In the
MILP formulation, the turnaround time Tijk is independent of the charging duration.
However, this time could be used for charging, mathematically formulated by an additional
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BigM formulation, albeit at the expense of increasing its complexity. This is performed in
Algorithm 1 by Line 19, while the battery’s capacity limit is not exceeded. Further, ground
idle time until the next scheduled flight can be utilized for recharging (lines 31–32).

Algorithm 1 Algorithm to calculate the score of a given AAM flight schedule solution.

Require: A solution S as list of air taxis k ∈ V and their assigned flights i ∈ C.
1: HSc← 0, SSc← 0
2: for each air taxi k in V do
3: Flightsetk ← list of flights assigned to k
4: if |Flightsetk| > 0 then
5: preFl ← null, bk ← battery capacity BCk of k
6: for each curFl in Flightsetk do
7: if k is not qualified to fly curFl then
8: HSc← HSc− 1
9: end if

10: if preFl = null then
11: preFl ← curFl
12: preFl.actualDepTime← curFl.scheduledDepTime
13: preFl.actualArrTime← preFl.actualDepTime +FpreFl,k
14: bk ← bk − CNpreFl,k battery charging state
15: else
16: TpreFl,curFl,k ← turnaround + repositioning time between preFl and curFl for k
17: preFl.actualArrTime← preFl.actualArrTime +TpreFl,curFl,k
18: c← CEpreFl,curFl,k + CNcurFl,k (energy consumption)
19: zk ← max(charge during turnaround, c) , bk + zk ≤ BCk
20: bk ← bk + zk − c
21: tcharge

k ← charging time required to recharge z units of battery

22: curFl.actualDepTime←max(curFl.actualDepTime+tcharge
k , curFl.scheduledDepTime)

23: curFl.actualArrTime← curFl.actualDepTime +FcurFl,k
24: dARR

curFl ← curFl.actualArrTime −curFl.scheduledArrTime (delay)
25: if dARR

curFl > 0 then
26: SSc← SSc− (dARR

curFl) (delay cost)
27: if dARR

curFl > 30 min then
28: HSc← HSc− 1
29: end if
30: else
31: zk = min(−dARR

curFl · P, BCk − bk)
32: bk ← bk + zk (recharge during idle)
33: end if
34: SSc← SSc− c (energy consumption)
35: preFl ← flight with the same parameters as curFl
36: end if
37: end for
38: end if
39: end for
40: return (HSc, SSc)

5. Model Parameters for Flight Performance
5.1. Power Requirements

The computation of energy consumption for a flight entails determining the necessary
power for each air taxi category and flight segment s. This is accomplished by employing
the equations and assumptions for segment durations ts outlined in Section 3.3. The
resultant power requirements under MTOM conditions are presented in Table 7.
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Table 7. Derived power requirements [kW] per air taxi category and flight segment according to
Section 3.3.

Segment s Vectored Thrust Lift and Cruise Multicopter

Hovertaxi 725.07 385.82 54.17
Vertical take-off 806.23 441.67 88.38

Transition 1647.64 1025.46 -
Cruise 121.40 68.99 88.29

Vertical landing 651.07 337.03 33.20
Groundtaxi 12.14 6.90 8.83

5.2. Energy Consumption

By incorporating the time durations ts outlined in Table 5 and the required power
from Table 7 into Equation (13), we ascertain the required energy for each flight segment
s, consolidated in Table A2. Here, the energy demands for vertical take-off and landing,
as well as for transition, are summarized depending on different assumed durations for
the vertical segments. For Multicopter air taxi, the energy demands solely encompass
vertical segments, as they do not undergo a transition phase. The cruise phase is addressed
separately in Table A3 due to its dependence on distance and time factors specific to flights
and particular routes.

Table A3 provides the energy consumption for the cruise phase per air taxi category,
depending on the destination. In this context, the cruise distance denotes the travel
distance covered while the air taxi operates at its cruise speed (derived by subtracting
the acceleration and deceleration distances from the values in Table 6). Additionally, the
total horizontal duration also accounts for the duration of acceleration and deceleration
at cruise altitude (as presented in Table 6). This cumulative duration contributes to the
overall energy consumption, calculated by multiplying the total horizontal duration by the
corresponding power requirement obtained from Table 7.

Table 8 summarizes the total energy consumption and time duration for the whole
flight mission and each air taxi category according to Figure 2, assuming a duration of 30 s
for each take-off and landing phase, cf. Table A2. At this point, the energy consumption has
to be compared to the assumed usable energy values per air taxi category shown in Table 4.
Notably, the Multicopter is limited to short distances, such as Neustadt/S., since Chemnitz
and Leipzig exceed its usable energy capacity. Conversely, the other air taxi categories face
no challenges and can be assigned to all specified routes within the use case network from
an energy perspective.

Table 8. Total energy consumption and duration for whole flight mission per air taxi category
depending on the destinations.

Destination Vectored Thrust Lift and Cruise Multicopter

Total Energy
Demand [kWh]

Total Duration
[min]

Total Energy
Demand [kWh]

Total Duration
[min]

Total Energy
Demand [kWh]

Total Duration
[min]

Kreischa 44.8 6.7 27.9 8.5 14.7 10.9
Moritzburg 45.1 6.9 28.2 8.8 15.4 11.4
Wilsdruff 45.7 7.2 28.8 9.3 16.7 12.3

Ottendorf-Okr. 46.9 7.8 30.1 10.4 19.4 14.1
Pirna 47.3 8.0 30.5 10.8 20.3 14.8

Dippoldisw. 47.6 8.1 30.8 11.0 20.8 15.1
Meißen 49.6 9.1 32.9 12.8 25.3 18.2

Glashütte 49.7 9.1 32.9 12.9 25.4 18.2
Altenberg 54.1 11.3 37.4 16.8 35.0 24.8

Neustadt/S. 54.9 11.7 38.2 17.5 36.8 25.9
Chemnitz 68.3 18.3 51.9 29.4 66.0 45.8

Leipzig 86.0 27.1 70.0 45.2 104.6 72.1
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5.3. Air Taxi Payload over Range

Due to the divergence between the achievable energy and the corresponding energy
demand based on the destination, this section outlines the maximum range for all air
taxi categories. As detailed in Table A2, the energy requirements for all flight segments
(excluding the cruise phase) are elucidated under MTOM conditions. With a vertical
duration of 30 s, the total energy consumption per air taxi category can be concisely
summarized as:

6.04 kW h + 15.87 kW h + 14.59 kW h + 0.10 kW h = 36.6 kW h for Vectored Thrust, (35)

3.22 kW h + 9.38 kW h + 8.51 kW h + 0.06 kW h = 21.16 kW h for Li f t and Cruise, and (36)

0.45 kW h + 0.74 kW h + 0.28 kW h + 0.07 kW h = 1.54 kW h for Multicopter. (37)

By subtracting these values from the corresponding usable energies (based on a specific
energy density of 200 W h kg−1), the usable amounts of energy for cruise flight per air taxi
category are obtained:

110.96 kW h− 36.6 kW h = 74.36 kW h for Vectored Thrust, (38)

80.56 kW h− 21.16 kW h = 59.4 kW h for Li f t and Cruise, and (39)

45.6 kW h− 1.54 kW h = 44.06 kW h for Multicopter. (40)

Multiplying these values with the estimated power requirements (refer to Table 7)
per air taxi category for the cruise phase enables the calculation of the time required to
consume this energy, corresponding to the total duration of the cruise flight. These time
durations need to be adjusted by the durations of acceleration and deceleration (refer to
Table 6) to estimate the time during which the air taxis maintain a constant speed:

74.36 kW h
121.40 kW

· 3600 s h−1 − 33 s− 120 s = 2052 s for Vectored Thrust, (41)

59.4 kW h
68.99 kW

· 3600 s h−1 − 26 s− 80 s = 2994 s for Li f t and Cruise, and (42)

44.06 kW h
88.29 kW

· 3600 s h−1 − 22 s− 60 s = 1715 s for Multicopter. (43)

Multiplying these times with the corresponding cruise speeds and considering the
distances for acceleration and deceleration delivers the maximum range of each air taxi
category under MTOM conditions (see Table 6):

2052 s · 72 m s−1 + 1177 m + 4320 m = 153 km for Vectored Thrust, (44)

2994 s · 40 m s−1 + 519 m + 1600 m = 122 km for Li f t and Cruise, and (45)

1715 s · 24 m s−1 + 262 m + 720 m = 42 km for Multicopter. (46)

The mass of the air taxi affects the power requirements for the different flight segments.
In principle, the power requirements decrease the lower the air taxi mass which, in turn,
depends on the load factor (number of passengers carried). This also results in higher
maximum ranges, which is shown by the solid lines in Figure 9. Additionally, the entire
calculation is also conducted for a specific energy density value of 250 W h kg−1. In this
case, the maximum range increases as shown by the dashed lines in Figure 9. Generally,
the diagram indicates possible flight distances depending on the used payload.
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Figure 9. Payload-range diagram per air taxi category for an energy density of 200 W h kg−1 (solid
lines) and an increased energy density of 250 W h kg−1 (dashed).

Air Taxi Turnaround

The turnaround is necessary to prepare the air taxi for the next flight. According to
Section 2.2, aircraft handling processes for air taxi operations are reduced to a passenger-
centric path, recharging, and minor MRO tasks.

In case there is no recharging required (e.g., the battery capacity is still sufficient for the
subsequent flight), the turnaround duration is determined by the duration of de-boarding
and boarding. Hence, this is dependent on the passenger capacity and the resulting time
each passenger needs to disembark and embark on the air taxi. In [42], this duration is
assumed by one minute per passenger, which leads to turnaround durations of 13 min for
Vectored Thrust, 11 min for Lift and Cruise, and 7 min for Multicopter. The complete durations
are visualized per air taxi category in Figure 10. The chosen colors reflect the corresponding
air taxi categories as in Figure 9.
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Vectored Thrust: 13 Min

Figure 10. Turnaround time Tijk per air taxi category, excluding flight-dependent battery charging times.

The recharging can be the most time-consuming phase during turnaround and is
on the critical path. In [42], different applications for restoring the battery capacity are
examined (plug-in charging, battery swapping, and underbody charging technology). Here,
the used approach for estimating the charging time tcharge is approximated by dividing the
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amount of energy to be recharged E [kW h] by the charging power Ptcharge provided by the
infrastructure (Equation (47)):

tcharge =
E

Pcharge . (47)

6. Results

This section evaluates the network performance and determines the necessary number
of air taxis (Section 6.1) to meet the requirements of the use case presented in Section 3.1.
Additionally, it explores the impact of specific parameters in Section 6.2 (such as turnaround
and charging time, demand) on the optimal fleet size and the resulting delay.

6.1. Fleet Sizing Based on Flight Scheduling
6.1.1. Average Delay in the Standard Demand Scenario

For the case study with the demand outlined in Section 3.1, we identified a total
of 388 flights by aggregating passengers with the same departure time, destination, and
considering available seat capacity. The problem is solved with the approach described in
Section 4.2. In the absence of a distinct stopping criterion for the local search heuristic, we
limited the computation time to a maximum of 6 h per individual model run. Additionally,
the solver is authorized to finish if the objective function value was not improved within
a 2 h timeframe. Our computational infrastructure is powered by a 12-core Intel Xeon
Gold 6136 CPU, resulting in an approximate solution generation and evaluation velocity of
90,200 possible solutions per second. We use an acceptance threshold of 4 min delay per
flight, aligning with common metrics in airport capacity design [91].

The schedule depicted in Figure 11 provides a snapshot of the complete schedule
with 32 aircraft. This solution is selected based on the best balance between the number
of required air taxis and the resultant average delay. In instances with fewer air taxis,
the delay situation worsens (as indicated by red bars in Figure 11). Conversely, a higher
number of aircraft leads to a consistent improvement in the situation. Typically, flight delays
accumulate in the afternoon due to increased demand compared to the morning/noon,
along with cascading effects in downstream schedules. In this context, a delay is defined
as a variance from the scheduled times compared to the intended arrival time based on
traffic demand. It should be perceived as a deviation from the ideal flight schedule rather
than passenger disruptions during flight operations. Additionally, the schedule reveals
frequent battery recharges (green bars), interspersed with aircraft repositionings (yellow
bars). In general, a total energy consumption of 17,200 kW h for all flights is expected,
which corresponds to approximately 44 kW h per flight.

Figure 12 shows the correlation between the average flight delay and the number of
available vehicles, resulting in a Pareto frontier. Between 20 and 30 air taxis, there is a
significant drop in the average delay. The findings reveal that by utilizing a fleet of 32 air
taxis, the requirement of an acceptable delay threshold is met, resulting in a total delay
of 980 min and an average delay of 2.5 min per flight. To maintain an average delay of no
more than 1 min per flight, a minimum of 35 air taxis is necessary, while a negligible delay
averaging 0.1 min per flight necessitates at least 46 air taxis. These findings underscore that
tolerating a delay can lead to an almost 25% reduction in the number of air taxis compared
to a delay-free scenario. The impact of this slight delay on the flight schedule is minimal
due to its minor ratio compared to the flight duration. Consequently, aircraft utilization
and network productivity are higher compared to the no-delay solution (6.9 flight hours
per day and air taxi compared to 4.9 flight hours at no delay with 46 air taxis). These results
assume an uninterrupted flight operation and thus represent the lower limit of required air
taxis. An additional buffer should be planned for disruptions and maintenance.
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Figure 11. A total of 18 air taxis out of a schedule with 32 vehicles: some minor delays (red) at
the peaks in traffic demand, and frequent battery recharging (green bars), as well as infrequent
repositionings (yellow bars) are observed.
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Figure 12. Standard demand scenario: average delay per flight as a function of the number of air
taxis serving 388 flights per day.

For evaluating termination criteria and computation time, Figure 13 illustrates the
convergence of the objective value as a function of time for the case of now 37 air taxis.
This case represents the most computationally intensive calculation among the scenarios
in Figure 12. Here, the best objective value was finally found after 3.5 h, approximately
2.5 h before the time limit. From the curve in Figure 13, it can be observed that the solver
already found a good solution after approximately 50 min. This corresponds to less than
14% of the available computation time and 24% of the actually needed time. From this
point on, the average delay only marginally changes from the value of 247 min total delay
to 215 min in the final solution (0.6 min per flight). This implies that further extensive
solution search is improbable to significantly improve the delay situation. Thus, the local
optimality of the solution appears to be sufficient, especially when considering the absolute
differences in solution quality, particularly when uncertainties from the scenario setting are
considered. All other scenarios from Figure 12 required less computation time to converge.
On average across all scenarios, the required computation time, evaluated based on the
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last improvement in the found score, is 1.65 h, with the observation that a few air taxis
contribute to the fastest convergence of the score due to less complexity.

0 50 100 150 200 250 300 350
Calculation time [min]

1.00

1.05

1.10

1.15

1.20

1.25

1.30

To
ta

ls
co

re
of

so
lu

ti
on

[-
]

×106

Figure 13. Calculation time for flight schedule with 37 air taxis in the standard demand scenario,
with black markers indicating improvements to the current best solution score (delay and operations
cost) and a red line representing the user-defined time limit; a total of 0.6 min of delay per flight
were measured.

6.1.2. Best Solution Characteristics (32 Air Taxi)

Based on the analysis in Figure 12, we find that the network runs well with an average
delay of under 4 min per flight using only 32 air taxis. This solution is selected as the
best one, meeting the delay target while minimizing the number of air taxis required. The
histogram in Figure 14 displays delay frequency based on this solution. Out of 388 flights,
79 depart after their preferred time, with around 24% of those having delays of less than
5 min—a level acceptable to customers. Conversely, about 6% of flights encounter delays of
at least 15 min, which might reduce network appeal (≥30% min: 0.8%). While an outlier
reached 107 min of delay, very high delays are rare. Introducing more air taxis decreases
high delays but increases the number of shorter ones. Delays exceeding 30 min can be
completely avoided with a minimum of 34 air taxis (longest delay: 28 min).
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Figure 14. Distribution of flight delay in the best solution with 32 air taxis. One flight with 107 min
delay is excluded from this figure.

In scenarios where flight schedules involve an air taxi count definitively avoid any
delay (≥60) and allow increased flexibility in flight scheduling, an optimal fleet mix has
been identified for this network. This fleet is comprised 10% Vectored Thrust aircraft, 50%
Lift and Cruise aircraft, and the remaining 40% are Multicopter aircraft. This allocation takes
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into account factors such as demand, available seating capacity, and flight performance,
with a primary focus on cruising speed and disregarding initial investment costs. Notably,
flight performance considerations prioritize available seating capacity over cruising speed.
This emphasis is evident in the average flight duration per aircraft, as detailed in Table 9.
The fleet distribution exhibits significant diversity, with Multicopters predominantly serving
shorter flights, resulting in lower daily utilization rates (productive flight time proportion).
Multicopters excel in frequent short trips, aligning well with urban mobility requirements.
On the other hand, Lift and Cruise vehicles demonstrate efficiency in long-distance travel,
aligning with the regional transportation focus of our network. These conclusions are
specific to the network under consideration and may vary for different distances and
demand patterns.

Given a charging power of Pcharge = 150 kW, a total of 746 recharge events were
observed across the entire flight schedule, with an average duration of 10.2 min. Recharg-
ing events can be classified into three categories: (a) recharging during the turnaround
period, (b) standard recharging after the turnaround to meet energy requirements before
the flight, and (c) recharging during ground idle phases until the next scheduled flight.
With these distinctions, 407 merged charging sessions were identified, demonstrating an
average duration of 18 min. As the cumulative charging duration nearly matches the actual
flight durations, battery recharging plays a significant role in the daily operations of air
taxis. Thus, enhancing the charging power Ptcharge beyond the assumed 150 kW would
substantially enhance productivity (cf. Section 6.2.2). Furthermore, a total of 59 reposition-
ing flights, serving as empty flights between destinations and departures, were found in
the schedule, with an average duration of 8 min (mostly observed in the Dresden–Pirna
route). In this case, repositioning flights account for approximately 13% of all executed
flights. These arise from the network structure and distribution of the demand together
with prioritizing a less aircraft count, substantially limit the productivity of air taxis. How-
ever, since repositioning also contributes to the overall charging duration, reductions are
desired. For instance, centralizing operations within the network through traffic bundling
or increasing the availability of air taxis can effectively reduce the necessity for reposition-
ing (see Section 6.1.3). Finally, based on this network, demand and accepting 4 min delay
per flight, the 32 air taxi transport in total 37,765 passenger kilometers (pkm) of demand
(1180 pkm per air taxi).

Table 9. Utilization of each fleet in the standard demand scenario, considering a total of 32 air taxis
serving the network from Section 3.1.

Vectored Thrust Lift and Cruise Multicopter

Use Share 10% 50% 40%
Avg. flight count per vehicle 9.3 10.6 14.5
Avg. vehicle utilization [h day−1] 5.5 8.4 5.3
Avg. recharge count per vehicle 8.6 10.5 16.3
Avg. recharge event (merged) [min] 35.6 26.5 10.2
Avg. duration of recharge [h vehicle−1] 5.1 4.6 2.8
Avg. reposition count per vehicle 2 1.5 3.5
Avg. duration of reposition [h vehicle−1] 0.43 0.28 0.4
Avg. distance per flight [km] 90 84 19
Avg. consumption per flight [kW h] 84 64 21
Avg. consumption per vehicle/day [kW h] 811 681 302

6.1.3. Effect of Repositioning Flights on Efficiency

In general, repositioning flights are the effect of the limited number of available
air taxis and have a notable impact on flight efficiency. These flights not only consume
additional time and aircraft resources, but also result in extra energy and maintenance costs,
potentially disrupting scheduling and introducing delays during the day of operations. In
the case of 32 air taxis and 59 repositioning flights, the energy consumption of 19,100 kW h
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represents approximately 110% of the required energy for operating only flights with
scheduled payload.

The relationship between repositioning flights and the number of air taxis is depicted
in Figure 15a. As the number of air taxis increases, both the number of repositioning
flights (in green) and their total flight time decrease (in blue), with the average duration
per repositioning flight dropping from approximately 9 min to 8 min. This has positive
implications for operational costs and provides a compelling argument for deploying a
higher number of aircraft. Increasing from 32 to 40 air taxis, for example, could save the
energy equivalent of 800 kW h. Despite the substantial quantity of air taxis, a significant
number of repositioning flights persist, primarily due to the trade-off involving delay costs
associated with peak periods in the flight schedule.

Additionally, Figure 15b illustrates the trend in the number and total duration of
charging events concerning the number of air taxis. The number of charging events (shown
in green) steadily decreases as the number of available aircraft increases, resulting in fewer
required repositioning flights. However, this effect is not observed in the total charging
time (indicated in blue). Instead, the total charging duration increases between 32 (highest
productivity by our definition) and 44 air taxis, and then slightly decreases afterward. On
average, the total charging time is 7484 min with a standard deviation of 126 min, which
is relatively low. Additionally, as the number of air taxis increases, there is a consistent
rise in the average charging time per charging event (without a separate illustration). This
demonstrates a tactical redistribution of the charging times and places. Importantly, the
seemingly longer charging duration does not negatively impact the objective function, and
consequently, it does not adversely affect productivity.
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(b) Charging events

Figure 15. Number and duration of repositioning flights and recharging events as a function of
available aircraft to serve the network from Section 3.1.

6.2. Parameter Study; Standard Demand Scenario, 32 Air Taxis

The optimization model involves several additional parameters, each with an impact
on network performance. This section evaluates these parameters in terms of overall
network efficiency and effectiveness, with a primary focus on ground time—specifically, the
duration of turnaround and charging. While improving flight speed and/or battery capacity
is a viable option, a significant increase in both factors is unlikely due to physical constraints.
This limitation diminishes their influence on the required vehicles for network optimization.

6.2.1. Turnaround Time

The assumed turnaround durations Tijk indicated in Figure 10 represent the ideal
state during flight operations. However, increased taxi durations, additional waiting
times for clearance, or uncertainties due to delayed start of the turnaround caused by
insufficient resources can significantly extend this duration. As illustrated in Figure 11,
the turnaround time is generally short when compared to other events like flying and
repositioning. Nonetheless, it is part of the rotations that already experience delays due to
tightly scheduled operations. To assess the influence of this uncertainty, the turnaround
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times Tijk are gradually increased during a sensitivity analysis spanning from a factor of
1.0 to 4.0.

It can be observed in Figure 16 that the average flight delay increases with higher
turnaround durations Tijk. Fundamentally, it becomes apparent that a slightly higher
duration Tijk initially has minimal impact on the average delay. This is attributed to
the permissible parallel charging during the turnaround, as charging occupies the most
portion of time. At a factor of approximately 1.3 for Tijk, the turnaround starts to become
predominant and exerts a more substantial influence on air taxi productivity.
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Figure 16. Averageflight delay trends with varying turnaround times Tijk between factor 1.0 and 4.0
and based on the scenario parameters from Section 3.1.

An operational realistic value for the turnaround time could involve doubling the
original assumption for Tijk, solely due to minor operational delays in passenger processing
on the day of operation. Under this scenario, assuming a consistent fleet size of 32 air taxis,
the average delay increases to 16 min—a sudden quadrupling beyond the designated delay
threshold. To avoid this and remain below the threshold, at least 37 air taxis are necessary
for the network. With higher factors applied to Tijk, the average delay significantly and
rapidly increases.

6.2.2. Charging Performance

Charging accounts for 55% of the total air time in the 32 air taxi solution (flight and
repositioning time). Notably, the charging duration for the Vectored Thrust is significantly
impacted by its substantial energy consumption and is disproportionately affected by high
energy consumption due to its mass. In fact, the charging time for Vectored Thrust amounts
to 926 min, and is nearly as long as its air time of 942 min. However, the charging power
of 150 kW is quite low and is already achieved with today’s car charging stations. This
is likely to be far exceeded in regular air taxi operations in the future. By increasing the
charging power Ptcharge up to 1000 kW, a reduced time required for charging and a higher
air taxi utilization can be assumed. Figure 17 shows this for the gradual improvement in
the charging power for the case of 32 available air taxis according to the best solution from
Figure 12.

It is apparent that the total charging duration (blue) decreases with increasing Ptcharge.
This decrease is not linear, as the solver can now use other options from the flight schedule
to better utilize idle times. Interestingly, at a Ptcharge of 450 kW and above, charging only
occurs during the turnaround phase. This can be seen from the orange line, which sums
all charging events other charging events excluding during turnaround and approaches
a duration of 0 at this charging power. This effect finally reduces delay, as charging is no
longer the critical path in the turnaround, and the charging stations are not occupied by air
taxis during idle times on the ground. This decrease in delay is also depicted by the red line
in Figure 17, demonstrating a decline from approximately 1700 min total delay to roughly
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a quarter, around 390 min of total delay, even when using the 400 kW charging power.
Notably, increasing the charging power beyond this point does not result in a significant
further delay reduction.
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Figure 17. Total delay and charging duration while increasing the charging power Ptcharge, best
solution with 32 air taxis.

A higher charging power naturally increases the possible air taxi productivity if a
higher accepted delay level is set. With the assumptions from Section 6.1 and an average
charging power of Ptcharge = 450 kW, 27 aircraft can also operate the existing flight schedule
at an average delay below 4 min per flight. The corresponding aircraft utilization is then
8.5 h air time per day.

The resulting flight schedule enables an estimation of the required charging points at
various locations within the network. Illustrated in Figure 18, the distribution is synchro-
nized with the timeline presented in Figure 11, progressing from left to right. Each data
point signifies a 5 min time slot, with its color denoting the number of parallel charging
activities (blue: at least one air taxi charge in this slot). As an outcome of network design,
charging predominantly occurs in the cities of Chemnitz, Dresden, and Leipzig. Dresden,
serving as the envisaged hub for traffic flows in the network, necessitates the highest
number of charging stations.
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Figure 18. Required parallel charging points for air taxis at respective stations in the network is based
on the assumed demand distribution throughout the day.

On average, the vertiport in Dresden requires 4.2 parallel charging points, with a
maximum demand of nine concurrent charging sessions at 15:00. Chemnitz averages 1.5
(max three) charging points, while Leipzig averages 2.4 (max five). Making sure there are
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enough parallel charging points in Dresden is very important to meet network needs and
avoid delay. Conversely, many other locations that are infrequently serviced experience
sparse charging activities. At several of these locations, such as Dippoldiswalde, the
installation of charging stations may be dispensable provided that the battery capacity is
sufficient for round-trip flights without intermediate charging.

6.3. Changes in Forecasted Demand

The preceding analysis assumes a standard scenario for demand, which, given the
forecasting period and the novelty of the transportation mode with limited prior experience,
remains uncertain. Consequently, various scenarios of altered demand are subsequently
considered to contextualize the earlier results. Demand is scaled from the standard scenario
and projected onto flight schedules, ranging from a 30% increase to a 30% reduction.
Throughout this scaling process, the fundamental network structure of the air taxi standard
network is preserved. As a result, connections with higher flight frequencies in the standard
scenario are more likely to receive additional flights in the case of higher-scaled demand,
while less frequented connections stand a higher chance of experiencing a reduction in
flights in the case of decreased demand.

Figure 19 illustrates the effects of modified demand scenarios on average flight delay
based on the number of available air taxis. The red curve corresponds to the standard
scenario from Figure 12, the green curves depict a reduction in traffic demand, and the blue
curves indicate an increase. The dashed line represents an approximation of the data using
a Savitzky–Golay filter for visualization.
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Figure 19. Impact of varying demand on average flight delay and required number of air taxis.

In Figure 19, it is shown that the average delay changes proportionally with an increase
or decrease in traffic when the number of air taxis remains constant. In the case of 32 air
taxis, which represent the optimal solution for the standard scenario, a 10% reduction
in flights already leads to a significant 60% reduction in delays. With even lower traffic
demand (−20%), the average delay decreases to only 0.4 min, representing a reduction of
over 90%. To meet the previous criterion of an average delay of 4 min per flight, the number
of air taxis in the system can be reduced: Assuming all other conditions remain constant, in
the case of a −10% reduction in traffic, only 30 air taxis are required (−20% traffic: 27 air
taxis, −30% traffic: 26 air taxis). This indicates that inferring the required number of air
taxis from the number of flights cannot be accurately achieved through a linear scaling
factor, even for a similar network. While this approach may yield accurate results for
smaller demand scaling factors, the error in estimating the required number of air taxis
increases with higher scaling factors, resulting in an underestimation of the necessary air
taxis. The primary reason for this discrepancy is the frequent need for repositioning flights
to meet demand, which, despite being a flight, still occupies the capacity of air taxis.
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In the case of an increase in forecasted traffic, a similar trend is observed in the
development of required air taxis. In this context, growth in demand results in an increased
number of necessary air taxis, even when the distances between the curves are noticeably
narrower (+10%: 33, +20%: 34, +30%: 37 air taxis). Consequently, the rate of increase in
the vehicle count is lower than in the case of decreasing demand, primarily attributed to
the solver having greater flexibility in adjusting flight schedules and avoiding the need
for repositioning flights. Consequently, the error in estimating the correct number of air
taxis based on traffic data using a linear factor is lower than in the case of conservative
traffic forecasts.

7. Discussion
7.1. Practical and Theoretical Implications

In the preceding sections, we investigated an air taxi network’s operational dynamics
under various fleet-sizing scenarios for Advanced Air Mobility (AAM). We created a
model to predict the number of air taxis required based on AAM demand, illustrating
its application in a specific case in Saxony. This section discusses the implications of our
findings, placing them in the context of prior studies and addressing our research questions.

In addition to predicting traffic demand for AAM, our primary focus lies in seamlessly
integrating daily flights and a predetermined quantity of air taxis into a comprehensive
flight schedule. The cornerstone of our investigation is our MILP optimization model,
designed to compute a cost-minimum flight schedule and air taxi assignment. Each air
taxi is categorized as one of three types: Vectored Thrust, Lift and Cruise, and Multicopter.
For each type, we detail flight performance, energy consumption, and process duration,
calculating a rotation plan for each air taxi of a given type, inclusive of repositioning flights
and battery charging times.

The model further introduces the capability to incorporate a planned delay into the
system. This planned delay, set at an acceptable 4 min per flight, remains imperceptible
to passengers during the day of operation. Instead, it serves as a metric measuring the
deviation from preferred departure times derived from initial demand data in comparison
to the actual flight schedule. While moderate delays have the potential to enhance system
efficiency and reduce the number of required air taxis, excessive delays deviate departure
times too significantly from the ideal, eliminating crucial time buffers from the schedule.
Aligning with established practices in airport capacity assessments, the considered 4 min
delay per flight ensures a balanced approach to system optimization.

Given the early stage of air taxi technology and the absence of regulatory approval
or operational experience, our study necessitated several key assumptions. A crucial
assumption involved the development of a streamlined air taxi demand network, focusing
on flights to and from Dresden—the epicenter of the network. This network is informed by
previous studies [5,74], utilizing current mobility data and a daily traffic pattern derived
from a survey on potential shifts to air taxis [29]. These findings are extrapolated to
encompass the entire population of specific locations within the network. Notably, the
assumed modal shift rates play a significant role in influencing the outcome as trips per
day, with other studies highlighting their dependence on future air taxi prices.

In addition, further assumptions were introduced, potentially exerting a significant
impact on the results. The assumption of uninterrupted flight operations, while aiding in
modeling, may oversimplify the practical complexities of travel. Uncertainties, including
specific assumptions related to aircraft performance, demand projections, and flight du-
rations, are context-dependent and may not universally hold true for all AAM scenarios.
These assumptions underscore the need for a nuanced understanding of the limitations
and contextual relevance of our study’s findings. In our work, we have demonstrated how
a change in parameters affects the outcome for the respective network.
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In the optimal solution for the defined standard of our case study with a specific
demand distribution and air taxi performance parameters, we achieve an average daily
utilization of approximately 6.9 flight hours per day of operation within the operational
timeframe from 6 a.m. to 10 p.m. (no nighttime operations, i.e., 16 h). Events of non-
availability, such as maintenance, must be factored in based on their duration. In the
context of an adequately sized fleet and an accepted average delay of 4 min per flight,
identified in the optimal solution, a notable portion (30%) of delay events is short-lived,
lasting less than 5 min. Instances of longer delays are rare, indicating that delays within
the accepted threshold minimally impact the resulting flight schedule. As the predefined
threshold for tolerated delay increases, the daily utilization of air taxis rises. Simulta-
neously, the integration of additional air taxis into the flight plan effectively mitigates
unacceptable delays.

The flight schedule inherently reflects the performance characteristics of the three cate-
gories of air taxis. Multicopters, despite having a comparable number of daily flights, exhibit
lower average distance and total consumption due to their limited battery capacity and
speed. Consequently, they are well-suited for short-distance operations within our network,
covering a maximum distance of approximately 30 km. This fleet is particularly suitable for
mobility in urban regions, where flight distances and charging times are correspondingly
low. While Multicopters complete more cycles due to their shorter range, Lift and Cruise
air taxis prove to be more efficient on longer routes and are accordingly assigned to such
routes. Vectored Thrust, although used less frequently due to higher energy consumption,
serves longer routes and could gain popularity with increasing demand due to their higher
seating capacity.

The flight schedule includes unintended repositioning flights with additional operat-
ing costs depending on the network, demand distribution, and the goal of maximizing air
taxi utilization. Their number decreases with a higher number of available air taxis, as more
air taxis allow for idle times at individual stations, eliminating the need for virtual delay.
Moreover, the schedule encompasses numerous charging events, which, with a 150 kW
charging power, are nearly as long as the flight operations themselves. Increasing the
charging power to around 450 kW results in shorter charging times, enhancing productivity
by up to 20%, equivalent to about 1.3 flight hours per air taxi per day. This productivity
increase primarily occurs during assumed turnaround times, making them a critical path.
The assumption here is that charging is performed at full power as soon as the air taxi
is on-site. While pre- and post-preparation tasks for charging could potentially impact
productivity, they are not considered at this stage and can be adjusted by increasing the
durations for ground activities, which inherently restrict charging.

Contrary to the hypothesis that uncertainty in demand estimation can be addressed
solely by scaling the number of air taxis based on daily utilization and available passenger
kilometers per air taxi, our findings do not confirm this approach. While effective for minor
variations (up to 10%) in demand, larger deviations result in an increasing error, leading to
an underestimation of the actual required number of air taxis.

7.2. Conclusions and Future Research

Our findings demonstrate the suitability of our approach in determining fleet size
according to demand. Essential parameters such as loading time, flight time, etc., can be
modeled and integrated into the evaluation function. Utilizing heuristics, qualitatively
excellent results can be achieved within acceptable computation times. In conclusion, our
results, coupled with insights from the parameter study, contribute to a comprehensive
understanding of the robustness and adaptability of AAM and air taxi networks under
various demand scenarios.

Given the novelty of this transportation mode, limited scientific literature focuses on
AAM demand and their networks. Existing studies diverge significantly, each highlight-
ing unique aspects, e.g., transport simulation with modeled air taxi agents [17,19,34,92].
Notably, there are no directly comparable studies known concerning demand estimation,
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fleet planning, and while accepting moderate flight delays for rural areas. Furthermore,
all known studies share a commonality in making specific assumptions regarding po-
tential demand and the technical characteristics of air taxis, with the modal shift rate
towards AAM being particularly uncertain [29]. Despite the divergent scopes of these
case studies, certain similarities, such as the average utilization of air taxis found, suggest
methodological robustness.

Moving forward, it is important to mention the need for a buffer to handle disruptions
or maintenance for practical implementation as a robust solution. There is a great oppor-
tunity to enhance the simulation model by incorporating knowledge from commercial
aviation flight traffic and delay statistics. Additionally, for a more comprehensive under-
standing, future research will explore additional demand scenarios beyond the current
scaled model. Examples include scenarios with uniformly distributed and symmetrically
shaped demand throughout the day or scenarios reflecting daily patterns and asymmetry.
However, increased detailing is anticipated to introduce more complexity and computa-
tional challenges in solving the optimization problem. A subsequent focus on identifying
suitable heuristics is expected to expedite solutions, particularly when experimenting
with various scenarios. Simultaneously, highly adaptable simulation-based approaches,
e.g., agent-based simulations, might generate similar solutions, and the preferred path for
generating these solutions needs to be scientifically explored.
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Appendix A

Appendix A.1

Table A1. Share of trips within specific hours during the day for suburban areas around Dresden
(black line in Figure 5).

Day Hour Relative Share of Trips

00:00–00:59 a.m. 0
01:00–01:59 a.m. 0.001
02:00–02:59 a.m. 0.001
03:00–03:59 a.m. 0.001 Night flight restriction
04:00–04:59 a.m. 0.0075
05:00–05:59 a.m. 0.025



Future Transp. 2024, 4 209

Table A1. Cont.

Day Hour Relative Share of Trips

06:00–06:59 a.m. 0.0625
07:00–07:59 a.m. 0.08
08:00–08:59 a.m. 0.065
09:00–09:59 a.m. 0.065
10:00–10:59 a.m. 0.06
11:00–11:59 a.m. 0.0535
12:00–12:59 p.m. 0.06
01:00–01:59 p.m. 0.0535
02:00–02:59 p.m. 0.075 Operation time
03:00–03:59 p.m. 0.01 (green area in Figure 5)
04:00–04:59 p.m. 0.09
05:00–05:59 p.m. 0.075
06:00–06:59 p.m. 0.05
07:00–07:59 p.m. 0.025
08:00–08:59 p.m. 0.0175
09:00–09:59 p.m. 0.015

10:00–10:59 p.m. 0.015 Night flight restriction
11:00–11:59 p.m. 0.005

Total 1.0000

Table A2. Energy consumption [kW h] per air taxi category and flight segment s.

Segment s Vectored Thrust Lift and Cruise Multicopter

Hovertaxi 6.04 3.22 0.45
Vertical take-off and Transition (30 s) 15.87 9.38 0.74
Vertical take-off and Transition (45 s) 19.23 11.22 1.10
Vertical take-off and Transition (60 s) 22.59 13.06 1.47
Vertical take-off and Transition (75 s) 25.95 14.90 1.84
Vertical take-off and Transition (90 s) 29.31 16.74 2.21
Transition and vertical landing (30 s) 14.59 8.51 0.28
Transition and vertical landing (30 s) 17.30 9.91 0.42
Transition and vertical landing (30 s) 20.02 11.31 0.55
Transition and vertical landing (30 s) 22.74 12.72 0.69
Transition and vertical landing (30 s) 25.46 14.12 0.83

Groundtaxi 0.10 0.06 0.07

Table A3. Total energy consumption for cruise segment depending on the destinations.

Destination Distance GCD Cruise
Distance

Cruise
Duration

Total
Horizontal
Duration

Energy
Consumption

[m] [m] [s] [s] [kWh]

Vectored Thrust
Kreischa 11,900 6403 89 242 8.15

Moritzburg 12,600 7103 99 251 8.48
Wilsdruff 13,900 8403 117 269 9.09
Radeberg 14,800 9303 129 282 9.51

Ottendorf-Okr. 16,500 11,003 153 306 10.30
Pirna 17,400 11,903 165 318 10.72

Dippoldisw. 17,900 12,403 172 325 10.96
Meißen 22,300 16,803 233 386 13.02

Glashütte 22,400 16,903 235 387 13.07
Altenberg 31,800 26,303 365 518 17.47

Neustadt/S. 33,500 28,003 389 542 18.26
Chemnitz 62,100 56,603 786 939 31.66

Leipzig 99,900 94,403 1,311 1464 49.39
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Table A3. Cont.

Destination Distance GCD Cruise
Distance

Cruise
Duration

Total
Horizontal
Duration

Energy
Consumption

[m] [m] [s] [s] [kWh]

Lift and Cruise
Kreischa 11,900 9781 245 350 6.72

Moritzburg 12,600 10,481 262 368 7.05
Wilsdruff 13,900 11,781 295 400 7.67
Radeberg 14,800 12,681 317 423 8.11

Ottendorf-Okr. 16,500 14,381 360 465 8.92
Pirna 17,400 15,281 382 488 9.35

Dippoldisw. 17,900 15,781 395 500 9.59
Meißen 22,300 20,181 505 610 11.70

Glashütte 22,400 20,281 507 613 11.75
Altenberg 31,800 29,681 742 848 16.25

Neustadt/S. 33,500 31,381 785 980 17.07
Chemnitz 62,100 59,981 1500 1605 30.77

Leipzig 99,900 97,781 2445 2550 48.88

Multicopter
Kreischa 11,900 10,918 455 537 13.16

Moritzburg 12,600 11,618 484 566 13.88
Wilsdruff 13,900 12,918 538 620 15.21
Radeberg 14,800 13,818 576 658 16.13

Ottendorf-Okr. 16,500 15,518 647 728 17.86
Pirna 17,400 16,418 684 766 18.78

Dippoldisw. 17,900 16,918 705 787 19.29
Meißen 22,300 21,318 888 970 23.79

Glashütte 22,400 21,418 892 974 23.89
Altenberg 31,800 30,818 1284 1366 33.50

Neustadt/S. 33,500 32,518 1355 1437 35.24
Chemnitz 62,100 561,118 2547 2628 64.46

Leipzig 99,900 98,918 4122 4203 103.09
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7. Teodorović, D.; Janić, M. Transportation Engineering: Theory, Practice, and Modeling, 2nd ed.; Butterworth-Heinemann: Cambridge,

UK, 2022.
8. Gerike, R.; Hubrich, S.; Ließke, F.; Wittig, S.; Wittwer, R. Sonderauswertung “Mobilität in Städten—SrV 2018”: Oberzentren

500.000 und mehr EW, Topografie Flach (“Mobility in Cities—SrV”: Tables for High-Order Cities of 500,000 and More Inhabitants
and with Flat Topography for the Year 2018). 2020. Available online: https://www.researchgate.net/publication/340273317_
Sonderauswertung_Mobilitat_in_Stadten_-_SrV_2018_Oberzentren_500000_und_mehr_EW_Topografie_flach_Mobility_in_
Cities_-_SrV_Tables_for_high-order_cities_of_500000_and_more_inhabitants_and_with_flat_topo (accessed on 11 January 2024).

9. Nobis, C.; Kuhnimhof, T.; Follmer, R.; Bäumer, M. Mobilität in Deutschland—MiD: Zeitreihenbericht 2002–2008–2017. 2019.
Available online: https://bmdv.bund.de/SharedDocs/DE/Anlage/G/mid-zeitreihenbericht-2002-2008-2017.pdf?__blob=
publicationFile (accessed on 10 January 2024).

10. Kumar, S.P.; Vinay, M.; Joshi, G.J. Transportation Planning: Principles, Practises and Policies, 2nd ed.; PHI Learning Private Limited:
Delhi, India, 2017.

11. Ben-Akiva, M.E.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand; Number 9 in MIT Press Series in
Transportation Studies; MIT Press: Cambridge, MA, USA, 1985.

https://civitas.eu/sites/default/files/UIC2
https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
.
http://doi.org/10.6084/m9.figshare.19314005.v1 (accessed on 10 January 2024)
http://dx.doi.org/10.13140/RG.2.2.27722.24000
http://dx.doi.org/10.13140/RG.2.2.24570.98245 (accessed on 11 January 2024)
http://dx.doi.org/10.13140/RG.2.2.24570.98245 (accessed on 11 January 2024)
http://dx.doi.org/10.1007/978-3-662-59693-7
https://www.researchgate.net/publication/340273317_Sonderauswertung_Mobilitat_in_Stadten_-_SrV_2018_Oberzentren_500000_und_mehr_EW_Topografie_flach_Mobility_in_Cities_-_SrV_Tables_for_high-order_cities_of_500000_and_more_inhabitants_and_with_flat_topo
https://www.researchgate.net/publication/340273317_Sonderauswertung_Mobilitat_in_Stadten_-_SrV_2018_Oberzentren_500000_und_mehr_EW_Topografie_flach_Mobility_in_Cities_-_SrV_Tables_for_high-order_cities_of_500000_and_more_inhabitants_and_with_flat_topo
https://www.researchgate.net/publication/340273317_Sonderauswertung_Mobilitat_in_Stadten_-_SrV_2018_Oberzentren_500000_und_mehr_EW_Topografie_flach_Mobility_in_Cities_-_SrV_Tables_for_high-order_cities_of_500000_and_more_inhabitants_and_with_flat_topo
https://bmdv.bund.de/SharedDocs/DE/Anlage/G/mid-zeitreihenbericht-2002-2008-2017.pdf?__blob=publicationFile
https://bmdv.bund.de/SharedDocs/DE/Anlage/G/mid-zeitreihenbericht-2002-2008-2017.pdf?__blob=publicationFile


Future Transp. 2024, 4 211

12. Golob, T.F.; Beckmann, M.J.; Zahavi, Y. A utility-theory travel demand model incorporating travel budgets. Transp. Res. Part
Methodol. 1981, 15, 375–389. [CrossRef]

13. Sun, X.; Wandelt, S.; Husemann, M.; Stumpf, E. Operational Considerations regarding On-Demand Air Mobility: A Literature
Review and Research Challenges. J. Adv. Transp. 2021, 2021, 3591034. [CrossRef]

14. Balac, M. The market potential of Urban Air Mobility in the USA: Analysis based on open-data. In Proceedings of the 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 1419–1424.
[CrossRef]

15. Justin, C.Y.; Payan, A.P.; Mavris, D. Demand modeling and operations optimization for advanced regional air mobility. In
Proceedings of the AIAA AVIATION 2021 FORUM, Virtual Event, 2–6 August 2021; p. 3179. [CrossRef]

16. Rajendran, S.; Srinivas, S.; Grimshaw, T. Predicting demand for air taxi urban aviation services using machine learning algorithms.
J. Air Transp. Manag. 2021, 92, 102043. [CrossRef]

17. Wu, Z.; Zhang, Y. Integrated Network Design and Demand Forecast for On-Demand Urban Air Mobility. Engineering 2021,
7, 473–487. [CrossRef]

18. Bulusu, V.; Onat, E.B.; Sengupta, R.; Yedavalli, P.; Macfarlane, J. A traffic demand analysis method for urban air mobility. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 6039–6047. [CrossRef]

19. Yedavalli, P.S.; Onat, E.; Peng, X.; Sengupta, R.; Waddell, P.; Bulusu, V.; Xue, M. Assessing the Value of Urban Air Mobility through
Metropolitan-Scale Microsimulation: A Case Study of the San Francisco Bay Area. In Proceedings of the AIAA AVIATION 2021
FORUM, Virtual Event, 2–6 August 2021; p. 2338. [CrossRef]
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