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Abstract: Remote sensing technology currently facilitates the monitoring of crop development,
enabling detailed analysis and monitoring throughout the crop’s growing stages. This research
analyzed the winter wheat growth dynamics of experimental plots at the Lakehead University
Agricultural Research Station, Thunder Bay, Canada using high spatial and temporal resolution
remote sensing images. The spectral signatures for five growing stages were prepared. NIR reflectance
increased during the growing stages and decreased at the senescence, indicating healthy vegetation.
The space–time cube provided valuable insight into how canopy height changed over time. The
effect of nitrogen treatments on wheat did not directly influence the plant count (spring/autumn),
and height and volume at maturity. However, the green and dry weights were different at several
treatments. Winter wheat yield was predicted using the XGBoost algorithm, and moderate results
were obtained. The study explored different techniques for analyzing winter wheat growth dynamics
and identified their usefulness in smart agriculture.

Keywords: precision agriculture; winter wheat; spectral signatures; space–time cube; yield estimation;
XGBoost algorithm

1. Introduction

Agriculture faces many challenges worldwide due to climate change [1]. The changing
climate significantly influences global agricultural production, increasing uncertainties and
potential impacts on rainfed crop production [2]. Hence, accurate information and timely
crop growth forecasts are vital for informed decision-making [3]. The changing climate
could also be used favorably by expanding cropping options and increasing yield, although
crop production is rainfed. Agriculture makes an essential contribution to the economy
of Northwestern Ontario (NWO). However, NWO has a short growing season often chal-
lenged by the changing and unpredictable weather—temperature and precipitation [3]. The
region has an opportunity to transfer agriculture practices through advances in sensors and
machine learning. The Lakehead University Agriculture Research Station (LUARS) tests
different crops under various growing conditions, their fertilizer requirements, and other
influencing factors to introduce optimal situations to farmers. One of the testing crops that
undergoes analysis of various nitrogen concentrations is winter wheat (Triticum aestivum).

Winter wheat (Triticum aestivum) is a genus within the family of Poaceae [4]. It is
an annual or winter annual grass of medium height, with flat leaf blades and a terminal
floral spike consisting of perfect flowers [4]. Winter wheat is cultivated in areas with
severe winters. Moreover, they only produce spikes after undergoing a cold treatment
known as vernalization. As a result, winter wheat is sown in autumn and harvested
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in the following summer [4]. This crop cycle is fundamental to improving agricultural
production and efficiency and is a subjective decision. Hence, Ontario farmers use Ontario’s
Optimum Winter Wheat Planting Date map to select the optimum planting dates for winter
wheat [5]. Axillary stems with leaves characterize the vegetative stages of this plant [6].
From germination to ripening, winter wheat encompasses ten distinct growth stages [6].
Hence, understanding the various growth stages of winter wheat is crucial for making
informed and cost-effective management decisions, including the application of growth-
regulating nutrients and phytopharmaceutical products such as herbicides, fungicides,
and insecticides, which have application intervals labelled based on the cereal’s growth
stages [6].

Modern agriculture faces a series of challenges that revolve around monitoring crop
conditions through the observation and measurement of variables such as soil condition,
plant health, the impact of fertilizers and pesticides, irrigation, and crop yield [7]. The
traditional field survey methods are time-consuming, laborious and time-limited, and pose
significant considerations for crop producers [8]. These issues can more easily be addressed
through the implementation of remote sensing techniques, including multispectral images
to generate accurate biophysical indicator maps throughout various crop development
cycles [7,9–11]. Multispectral images capture several distinct spectral bands, often outside
the visible spectrum, allowing for a detailed analysis of various aspects of the environment.
Remote sensing enables farmers and agricultural producers to minimize inputs and max-
imize cost-to-benefit ratios by utilizing modern technologies instead of traditional field
approaches [7]. Therefore, once the decision is made to seed winter wheat, remote sensing
technology can get precise information about the growth dynamics and, thus, produce
regional guidelines for agricultural practices and crop management [11].

Remote sensing has widely been used in winter wheat studies in different parts of the
world. For instance, Liu et al. [12] identified winter wheat from other crops at different
growth stages (seeding–tillering, overwintering, reviving, jointing–heading, and flowering–
maturing) using the Google Earth Engine and the random forest classification algorithm.
Leaf Area Index (LAI) and leaf chlorophyll content are essential indicators of crop health.
Haboudane et al. [13] used an object-tracking algorithm to predict the health of winter
wheat. Another study showed different models that successfully correlated winter wheat,
chlorophyll content and yield using multispectral images acquired from drones and other
field measurements under different water treatments [13]. Many studies estimate the
yield for large agricultural areas based on low or moderate spatial resolution satellite
imagery [14,15]. Regional climate and soil conditions also affect crop growth dynamics and,
thus, limit the application of existing models to NWO winter wheat cultivations. Hence,
developing a method to evaluate the growth dynamics over different stages at high spatial
resolution images is essential.

Satellite remote sensing has become an effective way to make yield predictions due to
data availability, cost (for free or for low cost), efficiency, wide spatial coverage, and short
operational cycles [16]. However, these free satellite images are in low spatial resolution
and do not provide the fine details of crop growth dynamics. In contrast, a combination
of high spatial resolution data and the space–time cube (STC) is a novel method that can
be incorporated into crop growth analysis. The space–time cube organizes data into a
three-dimensional structure where two dimensions represent space latitude and longitude,
and the third represents time [17]. This approach enables the visualization and analysis
of spatial and temporal patterns in the data. The cube and its content are automatically
generated from a database [17]. STC can be used to visualize and analyze the spatiotemporal
data of winter wheat, especially heights, helping to understand patterns and trends in
the data [18]. The use of the STC has proven to be a highly beneficial tool in agriculture.
Krishnan et al. [19] explained the use of the space–time cube for the quick and efficient
analysis of wheat cultivation data in India, facilitating the identification of spatiotemporal
patterns in agricultural production. This was particularly useful in understanding changes
in wheat production over time and across different regions of the country, which, in turn,
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could contribute to enhancing agricultural management strategies and increasing wheat
production in the future. However, this is a novel technology and there are very limited
studies that utilize STC in agriculture.

Cereals are vital for national food security worldwide, and information on early crop
production is essential for planning emergency response and food aid initiatives [20].
Estimating production requires considering both area and yield. Various sensors with a
range of spatial and temporal resolutions have been used worldwide to estimate yield. Saad
Ei Imanni et al. [20] indicated several other studies that have successfully used vegetation
indices derived from remote sensing data such as Enhanced Vegetation Index (EVI), Green
Normalized Difference Vegetation Index (GNDVI), and Weighted Difference Vegetation
Index (WDVI) for crop yield monitoring and forecasting. In that study, a temporal series
of six remote sensing indices and Multiple Linear Regression (MLR) methods were used
for the real-time estimation of winter wheat yield using the Google Earth Engine (GEE)
platform [20].

Accurate predictions of winter wheat yields are crucial in production plans desired
by farmers and for international wheat trade [16]. Cheng et al. [16], in their study, used
multispectral and hyperspectral data to predict winter wheat yield, and concluded that
multispectral data had greater potential in estimating winter wheat yield. Liu et al. [21]
evaluated strategies to estimate crop yields using multispectral (MS) and hyperspectral
(HS) images derived from an unmanned aerial vehicle (UAV) at unique and multiple
growth stages of winter wheat. They constructed a simple linear regression model based on
the unique growth stages of germination, tillering, flowering, filling, and ripening, and a
multiple regression model that combined these five growth stages to estimate winter wheat
yield using 36 vegetation indices [21]. Finally, the study indicated that multiple vegetation
indices are effective tools for researchers in breeding to estimate winter wheat yield [21].
Since the amount of yield is changing due to climate conditions and wheat varieties, it is
necessary to test a yield estimation method using remote sensing for NWO.

The aim of this study was to analyze the growth pattern of winter wheat over time
using high spatial and temporal resolution multispectral data. The specific objectives were
as follows: (1) to analyze spectral signatures of winter wheat at different growing stages;
(2) to assess the average height of different plots based on various nitrogen treatments;
(3) to analyze changes in winter wheat canopy volume over time; and (4) to estimate the
yield using machine learning algorithm (XGBoost).

2. Materials and Methods
2.1. Study Area and Data

The research was conducted at the Lakehead Agriculture Research Station (LUARS)
in Thunder Bay, Ontario, Canada (48◦18′18′ ′ N, 89◦23′17′ ′ W). LUARS is the regional
agriculture research station that mainly focuses on diversifying the agricultural industry in
NWO through small plot research and extension.

LUARS is interested in analyzing different growth stages of winter wheat spectrally
and advising regional farmers. The total extent of the study area was 1528 m2. There
were 60 experimental plots of 4.5 m2 (Figure 1). They were treated with different nitrogen
content before seeding. However, this is considered a scoping study, and we will repeat the
same study next year to confirm the results.

Remote sensing images were acquired using a Remotely Piloted Aircraft System
(RPAS or drone) regularly over the growing season (12 May 2023 to 10 August 2023). The
RPAS (DJI M300) was equipped with the Micasense RedEdge Mx multispectral camera
(MicaSense, Inc., Seattle, USA) [22], which provides blue, green, red, RedEdge and Near-
Infrared (NIR) bands at very high spatial resolution (sensor dimensions = 1280 × 960 px).
The details about the central wavelengths and bandwidths of the sensor can be seen in
(Table 1).
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Figure 1. The study area map (part of Lakehead University Agricultural Research Station). The winter
wheat plots are represented with red polygons and are numbered according to different nitrogen
treatments.

Table 1. Central wavelength and bandwidth data for each sensor (Adapted from: https://support.
micasense.com/hc/en-us/articles/360011389334-RedEdge-MX-Integration-Guide, accessed on 23
November 2023).

Band Name Center Wavelength (NM) Bandwidth (NM)

Blue 475 32
Green 560 27
Red 668 14

Red Edge 717 12
NIR 842 57

Images were acquired ten times between 12 May 2023 and 10 August 2023. The
imaging period covers various winter wheat growth stages, including the heading, flow-
ering, milk, dough, and ripening stages [6]. Initially, the RPAS was flown at 60 m above
ground, but later, it was 30 m above ground to get 4 cm spatial resolution. The images were
processed with the specialized software Pix4DMapper (version 4.9) [23] and generated
orthomosaics, Digital Elevation Models (DEMs) and Digital Surface Models (DSMs) of the
study area (Figure 2).

https://support.micasense.com/hc/en-us/articles/360011389334-RedEdge-MX-Integration-Guide
https://support.micasense.com/hc/en-us/articles/360011389334-RedEdge-MX-Integration-Guide
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Figure 2. The overall workflow of the project.

2.2. Spectral Signatures of Winter Wheat at Different Growing Stages

Random points (2000) were generated within winter wheat plots, and spectral values
for each band over time were extracted (Figure 2). Finally, the spectral profiles were
generated and analyzed according to different growing stages (Table 2). Additionally,
photographs taken in the field were used to compare them with the spectral variability of
each stage.

Table 2. Different growing stages correspond to a visual guide to winter wheat staging in Ontario [6]
and the corresponding images.

Stages Image Date

Heading 12 and 26 May 2023

Flowering 8, 16, 23 June 2023

Milk 4 and 12 July 2023

Dough 20 July 2023

Ripening 29 July and 10 August 2023

2.3. Analysis of Winter Wheat Height Variation over Time

A Canopy Height Model (CHM) represents the height of winter wheat canopies above
ground, and it can be generated using Equation (1):

CHM = DSM − DEM (1)

where DSM: Digital Surface Model and DEM: Digital Elevation Model.
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CHMs for all imaging dates were created by using Equation (1). Then, the correspond-
ing CHM values for each random point over time were extracted.

Space–Time Cube

A space–time cube is a powerful conceptual and analytical tool used in Geographic
Information Systems (GIS) to visualize and analyze spatiotemporal data. By utilizing a
space–time cube, spatiotemporal data can be analyzed in the form of time series analysis,
the integrated analysis of spatial and temporal patterns, and 2D and 3D visualization
techniques. In each location-defined cube container, the count of observations for that
container in that time period and any summary field variable or statistic is calculated. The
trend of container values over time at each location is measured using the Mann–Kendall
statistic [18]. Figure 3 illustrates the structure of a space–time cube for defined locations,
which simultaneously represents three dimensions of space (x, y, z) and one dimension
of time (t), enabling analysts to explore and understand how phenomena change both in
space and time. Within the cube, data attributes are assigned to the spatial and temporal
dimensions [18].
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Figure 3. The structure of the space–time cube for defined locations (adapted from https://www.esri.
com, accessed on 29 November 2023).

The time series of CHM values for random points were binned for a ten-day interval
and the STC was created.

The height variation of each plot over time was analyzed. The time series clustering,
which identifies the locations in the space–time cube that are most similar, was tested.
The temporal series were created based on three criteria: values consistent over time,
simultaneous growth trends increasing or decreasing, and similar repetitive patterns. The
repeated patterns were detected through functional data analysis using a Fourier family [24].
Also, STC was checked for emerging hot spots to see whether there was a sudden growth
of plots within that period.

https://www.esri.com
https://www.esri.com
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2.4. Statistical Analysis of Winter Wheat Growth Pattern

A statistical analysis of winter wheat’s canopy volume at the ripening stage, the no.
of plants that emerged in spring, and the green and dry weights after harvesting was
conducted concerning each plot’s nitrogen content. First, the data were cleaned for errors
and outliers. At this stage, outliers were noted and deleted manually in MS Excel 2021.
Then, an exploratory data analysis (EDA) was conducted using scatter plots, histograms,
box plots, and normal Q-Q plots. This was designed for preliminary investigations on
data to discover patterns, detect anomalies, test hypotheses, and validate assumptions
using summary statistics and graphical representations [25]. Hence, outliers were further
detected and removed manually based on box plots. Once the EDA was completed, an
appropriate statistical test was selected to examine the homogeneity of variances between
treatments and the collected data. Table 3 shows the description of different treatments.

Table 3. The description of different treatments for each plot and the components. The location of
each plot is available in Figure 1.

Treatments Nitrogen Content Plots

T1 No nitrogen 411, 208, 112, 304
T2 30 kg/ha at seeding and 90 kg/ha in early spring 410, 105, 210, 312
T3 120 kg/ha 412,314, 209, 108
T4 120 kg/ha (Entec Soil Nitrogen) 211, 408, 115, 306
T5 120 kg/ha (Urea SuperU) 409, 202, 113, 310
T6 100 kg/ha (Urea SuperU) 214, 414, 101, 308
T7 90 kg/ha (Urea) and 30 kg/ha (Entec Soil Nitrogen) 212, 414, 101, 308
T8 90 kg/ha (Urea) and 60 kg/ha (Entec Soil Nitrogen) 415, 204, 114, 311
T9 90 kg/ha (Urea) and 90 kg/ha (Entec Soil Nitrogen) 206, 405, 313, 103

T10 90 kg/ha (Urea) and 30 kg/ha (SuperU) 203, 401, 315, 106
T11 60 kg/ha (Urea) and 60 kg/ha (SuperU) 215, 413, 104, 307
T12 30 kg/ha (Urea) and 90 kg/ha (SuperU) 213, 407, 102, 305
T13 40 kg/ha, 40 kg/ha (Entec Soil Nitrogen) and 40 kg/ha (SuperU) 207, 403, 111, 301
T14 160 kg/ha (Urea) 416, 215, 303, 109
T15 120 kg/ha (treated with nitrogen stabilizer) 201, 404, 107, 309

2.5. Estimating Winter Wheat Yield Using Remote Sensing

Machine learning algorithms and remote sensing have opened a new era of preci-
sion agriculture, especially in estimating crop yield over linear regression algorithms.
Among various algorithms, the XGBoost (Extreme Gradient Boost) machine learning algo-
rithm is well-known for providing better solutions regardless of the data types [26]. This
study tested linear regression and the XGBoost algorithm to predict the crop yield using
remote sensing.

As shown in Table 4, vegetation indices (VIs) were calculated for images at the end of
the flowering stage (12 July 2023), the dough stage (20 July 2023) and the beginning of the
ripening stage (29 July 2023). These VIs were selected based on their ability to detect the
chlorophyll content, canopy moisture and greenness. It is well-known that the dough stage
reflects the yield better in remote sensing images; therefore, this study selected the images
before and after the dough stage for analysis.
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Table 4. Different vegetation indices calculated for three images (12,20 and 29 July 2023).

Vegetation Index Equation Reference

Difference Vegetation Index DVI = G − B [27]

Modified Chlorophyll Absorption in Reflectance Index MCARI = [(RE − R) − 0.2 × (RE − G)] × (RE/R) [28]

Green Chlorophyll Index GCI = (NIR/G) − 1 [29]

Rededge Chlorophyll Index RECI = (NIR/RE) − 1 [29]

Normalized Difference Vegetation Index NDVI = (NIR − R)/(NIR + R) [30]

Green Normalized Difference Vegetation Index GNDVI = (NIR − G)/(NIR + G) [31]

Rededge Normalized Difference Vegetation Index NDRE = (NIR − RE)/(NIR + RE) [32]

Two-band Enhanced Vegetation Index EVI2 = 2.5 × [(NIR − R)/(NIR + 2.4 × R + 1)] [33]

Note: B = blue; G = green band, R = Red, RE = RedEdge, and NIR = Near-Infrared bands.

The average VIs for each field plot were calculated based on “Zonal Statistics”. The
correlation between green fresh weight of harvest and the indices were analyzed. The
VIs with the highest correlation were tested for linear regression. After that, XGBoost
algorithm was used to predict the winter wheat yield for this season. The xgboost package
in R software 4.1.2 [34] was used with GCI and DVI for 12 July and 20 July images and
RECI, NDVI, and NDRE for 20 July image as predictor variables. Since there were 60 green
weight data points (corresponds to 60 plots in the study area), 70% of them were used to
train the model and the remaining were used for cross validation. The model was initially
trained 100 times as a tree booster with eta = 0.09; gamma = 10; max_depth = 10; and
sub_sample = 0.5. After few iterations, the optimal model was created with nine rounds.
The cross-validation results found the optimal parameters for the XGBoost model.

3. Results
3.1. Spectral Profiles

Figure 4 shows the spectral signatures for each growth stage. NIR values increased
from heading to the flowering stages and slightly decreased at the milk stage. The lowest
NIR values were at the ripening stage. Red Edge values were highest at the dough and
ripening stages. The lowest green values were at the flowering stage.

3.2. Analysis of Witner Wheat Hight Variation over Time

The STC allowed the observation of the canopy height variation over time. Figure 5
shows the average height variation. The height values were reduced from 16 May 2023
to mid-June and then gradually increased till early August. There were some errors with
the data acquired on 8 June 2023 and it was reflected in the graph as a negative value in
mid-June. Winter wheat had already been harvested by the last day of photography.

3.2.1. Times Series Clustering

Field plots were grouped into categories with similar heights over time using time
series clustering tool (Figure 6). They were separated into five categories (similar in height
variation over time). Figure 6 shows a direct comparison of winter wheat plots based on
their nitrogen content (T1 to T15) and height variations. It is observed that the different
treatments applied to the plots did not directly influence the variation in the height of
winter wheat over time. For example, the plots with “T4” treatment clustered with three
and five plots and found an isolated one as well. The heights of plots with no nitrogen
treatments (112, 208, 304, 411) were similar to two or three neighboring plots, which had
different treatments (Figure 6).
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3.2.2. Local Outlier Analysis

Local cluster–outlier analysis was done to identify significant clusters and outliers in
terms of canopy height over time. However, these plots had no significant high–high or
high–low clusters; instead, multiple types of statically significant clusters were identified
over time. For instance, once, a plot was a low–high outlier, and in another period, it was a
part of the high–high cluster. There were no uniform clustering patterns during the period.
When considering the entire cube, there were six high–low outliers, 60 low–low cluster and
253 not significant cubes. The highest number of high–low outliers were from 1–11 June
2023, mainly due to the inaccurate CHM value on the 8 June 2023 dataset.

3.3. Statistical Analysis of Winter Wheat Growth Pattern

Four types of graphs were examined to check the presence of outliers and the data nor-
mality. The statistical analysis results determined the data normality for several variables.
From Figures 7–11, the scatter plot shows the degree of scatter of variables concerning the
order of data entry. The horizontal axis “Index” represents the order in which the points
appear in the data file. For example, in Figure 7a, data points are not trended or patterned
with the order of the entry, and the degree of scatter is consistent. According to the box
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plot, there were no outliers in the plant count in autumn. The Shapiro–Wilk normality
test results were not statistically significant. Hence, data were normally distributed. This
was also evident in the Normal Q–Q plot. An ANOVA test was conducted to evaluate the
homogeneity of variance between the plant count in autumn and the treatments applied.
The result showed that the variance is not statistically significant, implying no difference
between the number of plants in autumn and the different treatments applied (Figure 7b).
When looking at individual treatments, there were outliers for T2, T4 and T10. Other data
were normally distributed without (Figure 7a).
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The Flinger test was applied to determine the homogeneity of variance between plant
counts in spring and the treatments applied to each plot. The results showed that the
variance is not statistically significant, suggesting no difference between the number of
plants in spring and the different treatments applied.

Figure 9 shows the EDA of canopy volume (m3) at the dough stage, assuming that
they were almost ready to harvest. Data were normally distributed (Figure 9a) and ANOVA
results were not statistically significant (Figure 9b), indicating no difference between the
volume of plants per plot and the different treatments applied.

The EDA results for each plot’s green fresh weight (g/plot) and dry weight (g/plot)
did not show any outliers, and the data were normally distributed (Figures 10 and 11).
When the ANOVA test was performed on green weight, the results revealed that the
homogeneity of variance between green weight data and treatments in each plot presented
a significant difference (Figure 10b). This was confirmed by conducting the Tukey test,
which determined that the difference was only between treatments T8/T4 and T8/T10,
as seen in the graph in (Figure 10b). For the dry weight analysis, the ANOVA results
presented significant differences and then (Figure 11b) the Tukey test was applied, and,
as seen in (Figure 11b), it was determined that there was a difference between treatments
T8/T4 and T8/T10.

3.4. Yield Estimation

The correlation between green weight and vegetation indices was considered to select
the most suitable indices for further calculations. All indices with a correlation greater
than 0.4 were selected for three dates (Table 5). However, the linear regression model
between those VIs and green weight was not statistically significant, and none of the
model parameters were also statistically significant, contributing to explaining the yield in
each plot.

Table 5. The selected vegetation indices for green weight prediction in three days.

12 July 2023 20 July 2023 29 July 2023

GCI, DVI GCI, RECI, NDVI, NDRE, DVI MCARI, GNDVI, NDRE
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The XGBoost model was iterated to obtain the optimal model parameters. The param-
eter gamma controls the overfitting, and the optimal value found for this study was four;
max_depth controls the depth of the booster tree, and the optimal value was six. The ideal
number of rounds was nine. Default values were used for the remaining parameters.

The XGBoost model received moderate results. The R-square values between predicted
and validation green weight samples were 0.5, and the Root Mean Square Error (RMSE)
was 70 g for all plots, which means 1.67 g per plot of 4.5 m2. The spatial distribution of the
winter wheat yield map captured the spatial variation within plots, although there were
some underestimations. For example, Figure 12a shows how the remote sensing image
varied the spectral reflectance in the dough stage, and Figure 12b shows how the variation
was captured by the XGBoost algorithm. The areas with higher NIR values showed low
yield prediction. This is obvious from the spectral signature of crops; at the ripening stage,
NIR values are lower, and green reflectance is high.
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4. Discussion

The study used remote sensing techniques to evaluate 60 experimental winter wheat
plots for their growth dynamics. Remotely sensed data were acquired from Micasense
RedEdge MX camera with five spectral bands over five growing stages.

4.1. Spectral Profiles

The spectral profiles in different growth phases aligned with previous research, empha-
sizing the importance of Near-Infrared (NIR) reflectance in assessing vegetation health [35].
As winter wheat progressed through its growth stages (heading to flowering), an increase
in NIR reflectance was observed, indicative of an increase in biomass and vegetation cover.
According to Peng et al. [35], this reaffirms the relationship between NIR reflectance and
healthy vegetation, attributed to the biomass and vegetation cover of thriving plants. This
is the plant’s green-up, stem elongation, and green heading period. However, a decrease in
NIR was exhibited from the milk stage to the ripening stage. The milk stage begins after
the head completely emerges, and flowering starts from the middle and continues to the
top in yellow color [6]. Hence, NIR reflectance was reduced, while green and red (which
creates yellow) reflectance were slightly increased. The color changes were also evident in
the photographs related to each stage (Figure 4).

The analysis of the red band revealed an increase in reflectance as the wheat transi-
tioned from the flowering phase to maturity, which, according to Xie et al. [36], indicates
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the transition from high photosynthetic activity to full maturity. For instance, the plant
is brownish at the ripening stage with no or minimum photosynthesis activities, so the
red band reflected more. This increase in red band reflectance suggests changes in chloro-
phyll and leaf structure. As for the RedEdge band, a consistent increase in reflectance
was observed as the wheat transitioned from the flowering phase to maturity, which may
indicate vegetation maturation and the transition from high photosynthetic activity to full
maturity [37].

4.2. Analysis of Winter Wheat Height Variation over Time

The observed sudden height decrease in Figure 5 from May to June 13 was attributed to
the potential errors in image capturing on 8 June 2023. There were some issues with Ground
Control Points (GCPs) and, thus, canopy heights. As Tong Qingxi et al. [38] suggested in
their study, the STC provided helpful insight for monitoring and characterizing winter
wheat over time. For example, after 13 June 2023, the average winter wheat height gradually
increased until late July, which is the ripening period, as an indicator of successful growth.

The “Time Series Clustering” analysis partitions a collection of height values over
time into categories based on their similarities in height changes. Mostly, the neighboring
plots created clusters (similar in height) regardless of their nitrogen treatments. However,
some isolated plots (206, 210, 212) had relatively high nitrogen input, and their average
individual heights were higher than the surrounding plots. To the authors’ knowledge,
no study has tested winter wheat height variation over time using STC; however, Marino
et al. [36] tested the application of STC for the VI value variation over time for winter
wheat. They indicated STC’s effectiveness for monitoring winter wheat and assessing
vegetation traits.

The “Local Outlier Analysis” using STC highlights the height clusters and outliers in
space and time. No significant clusters were noted; instead, the height of plots alternated
from low–high clusters to high–high clusters, etc., over time due to various conditions.
Since the agriculture in NWO is rainfed, plants can grow fast during the rainy period,
satisfying the optimal growing conditions for winter wheat growing. Therefore, this tool
is useful for anomaly detection within plots and, thus, an excellent alternative for smart
agriculture practices. Moso et al. [39] emphasized how anomaly detection could improve
harvesting efficiency and crop health.

Although this study did not carry out an in-depth analysis of winter wheat height
versus different treatments, the usefulness of STC in the context of smart agriculture is clear.
In future studies, we suggest creating space–time cubes for individual plots to analyze in
situ height variations.

4.3. Statistical Analysis of Winter Wheat Growth Pattern

The statistical analysis of different factors revealed interesting insights into the effects
of nitrogen treatments in various quantities. Despite applying different nitrogen quantities,
no significant differences were observed in plant count during autumn and spring, nor
in wheat height and volume across different plots at maturity. This finding suggests a
consistent response of winter wheat to nitrogen treatments, indicating a level of uniformity
in its growth behavior. Although there were no statistically significant differences between
various treatments and volumes, the green and dry weight was statistically significant
in several plots. It is worth noting that these results align with previous studies, such
as that of Yue et al. [40], which emphasize the importance of nitrogen application in
influencing winter wheat yield and crop weight variation. Specifically, treatments T8/T4
and T8/T10 exhibited notable discrepancies, with T8 showing the lowest values and T4
and T10 showing the highest weights. These observations demonstrate an interaction
between nitrogen application and biomass production. Treatment T8 may have had a
detrimental effect on biomass production, while T4 and T10 appear to have had a positive
influence, as evidenced by the weights obtained. This highlights the importance of nitrogen
in the growth dynamics of winter wheat despite the absence of significant effects on other
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parameters [40]. However, the authors do not draw any conclusions as the study did not
consider the other influencing factors, such as a complete profile of soil nutrients and
moisture and weather.

4.4. Estimating Winter Wheat Yield

All possible combinations of the linear regression of green weight and predictors
did not show statistically significant results. Hence, linear regression modelling is not an
option for predicting winter wheat yield in this study. This might result in differences in
green weights corresponding to different treatments (Figure 9b). The other main concern is
that the study considered the average green weight and the VI values per plot. The green
weight and spectral values might vary spatially depending on the soil nutrient profile.
Hence, using sub-sampling plots (several sub plots within each plot) and analyzing the
spectral variations accordingly is recommended. The result obtained from the XGBoost
model yielded an R-square value of 0.5 and a Root Mean Squared Error (RMSE) of 1.67 g
per plot, indicating a reasonable level of predictive capability. The performance of the
XGBoost model in estimating winter wheat yield, as evidenced in this study, suggests a
moderate level of predictive ability, albeit with some discrepancies between predicted and
actual values. Rohit et al. [41] also employed the XGBoost algorithm for yield estimation
and highlighted the high accuracy in yield prediction. However, these studies cannot be
directly compared due to different environmental conditions. It is important to note that
discrepancies in model performance may stem from various factors, such as the unique
characteristics of the dataset and crop species considered, as well as the environmental
variables incorporated in each research framework.

5. Conclusions

The study analyzed the growth dynamics of winter wheat using high spatial and
temporal resolution optical images. The images were acquired from the Remotely Piloted
Aircraft System over the growth season, and field samples were collected. First, the
spectral signature of winter wheat for five growing stages (heading, flowering, milk, dough
and ripening) was created using spectral reflectance values for random points (2000) for
each growth stage. These profiles confirmed an increase in NIR reflectance with the crop’s
maturing phase, associated with an increase in biomass and vegetative cover and a decrease
as it reached senescence. Results were in agreement with the existing literature linking
NIR reflectance with the growth and health of vegetation. Then, a space–time cube (STC)
was created for average canopy heights over time. A measure of the change in winter
wheat height over time was carried out. Variations in winter wheat height at different
stages were identified, and it was determined that the use of different treatments could be
associated with these differences. However, it was not possible to ascertain which treatment
would be ideal for winter wheat growth due to the multiple plots treated similarly being
segregated into diverse growth categories as determined by the Time Series Clustering tool.
A decrease between 30 May and 13 June was observed due to possible image acquisition
errors. The statistical analysis of the number of winter wheat plants in autumn and spring or
volume and height at maturity revealed no statistically significant differences with various
nitrogen treatments. However, notable differences were discernible in both green and dry
weights. This suggests that nitrogen treatment did have an effect on biomass production in
winter wheat. Finally, winter wheat yield was estimated using XGBoost machine learning
algorithms with moderate results. Vegetation Indices (ten) were derived from images
acquired over three days during the dough and ripening stages. The most suitable indices
were used for the final modelling (correlation greater than 0.4 with the green weight of
winter wheat). The accuracy of the spatial distribution of the green weight map was 0.5,
and the Root Mean Square Error was 1.67 g per plot. The study recommended creating
space–time cubes for individual plots and testing XGBoost algorithms more rigorously
to train samples for yield prediction. However, in conclusion, this study demonstrated
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the usefulness of incorporating high spatial and temporal resolution optical images and
various analysis tools for monitoring the growth dynamics of winter wheat.
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