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Abstract: Many reactions are carried out in solvent mixtures, mainly because of practical reasons. For
example, E2 eliminations are favored over SN2 substitutions in aqueous organic solvents because
the bases are desolvated. This example raises the question: how do we chose binary solvents to
favor reaction outcomes? This important question is deceptively simple because it requires that we
understand the details of all interactions within the system. Solvatochromism (solvent-dependent
color change of a substance) has contributed a great deal to answer this difficult question, because it
gives information on the interactions between solvents, solute-solvent, and presumably transition
state-solvent. This wealth of information is achieved by simple spectroscopic measurements of
selected (solvatochromic) substances, or probes. An important outcome of solvatochromism is that
the probe solvation layer composition is almost always different from that of bulk mixed solvent. In
principle, this difference can be exploited to “tune” the composition of solvent mixture to favor the
reaction outcome. This minireview addresses the use of solvatochromic probes to quantify solute-
solvent interactions, leading to a better understanding of the complex effects of solvent mixtures
on chemical phenomena. Because of their extensive use in chemistry, we focus on binary mixtures
containing protic-, and protic-dipolar aprotic solvents.

Keywords: binary solvent mixtures; solvatochromism; solvatochromic probes; solvation models;
ester hydrolysis; biopolymer dissolution

1. Reasons for Using Mixed Solvents in Chemistry

Solvent mixtures are extensively employed in chemistry for practical reasons. For
example, the solubilities of inorganic bases, such as KOH, and other electrolytes in alcohols
are enhanced in presence of water [1,2]. Cellulose that is insoluble in water is, however,
readily soluble in some aqueous electrolyte solutions [3], water-DMSO mixtures [4], and
mixtures of ionic liquids-molecular solvents (ILs-MSs) [5–8]. In the latter example, cellulose
dissolution is attributed to the disruption of the strong hydrogen-bonding (H-bonding)
between the hydroxyl groups of the anhydroglucose units, as well as to the hydrophobic
interactions between cellulose chains, as shown in Figure 1a (IL-DMSO). Consequently,
addition of protic non-solvents to solutions of cellulose in IL-MS causes biopolymer precip-
itation because the non-solvent efficiently solvates the ions of the IL (Figure 1b).

In addition to enhanced biopolymer solubility, the use of mixed solvents also causes
noticeable changes in the physicochemical properties, such as a reduction in viscosity,
leading to better heat and mass transfer, as shown by Figure 2a,c.

Liquids 2024, 4, 73–94. https://doi.org/10.3390/liquids4010003 https://www.mdpi.com/journal/liquids

https://doi.org/10.3390/liquids4010003
https://doi.org/10.3390/liquids4010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/liquids
https://www.mdpi.com
https://orcid.org/0000-0003-1683-5953
https://orcid.org/0000-0001-6087-4357
https://orcid.org/0000-0002-2164-5268
https://doi.org/10.3390/liquids4010003
https://www.mdpi.com/journal/liquids
https://www.mdpi.com/article/10.3390/liquids4010003?type=check_update&version=2


Liquids 2024, 4 74

Liquids 2024, 4, FOR PEER REVIEW 2 
 

 

 
(a) 

 
(b) 

Figure 1. (a) A simplified scheme for cellulose dissolution in ionic liquid-DMSO. The biopolymer 
dissolution is attributed to interactions of its hydroxyl groups with the ions of the ionic liquid and 
the dipole of DMSO. Reproduced with permission from [9]. (b) Effects of the addition of a protic 
non-solvent (such as water or ethanol) on the dissolution of cellulose IL-dipolar solvent. Addition 
of the non-solvent leads to cellulose precipitation. Reprinted with permission from [7]. 
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dissolution is attributed to interactions of its hydroxyl groups with the ions of the ionic liquid and
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Figure 2. (a) Dependence of the viscosity (η) of PEG 400 - DMSO on the mole fraction of PEG 400 at 
different temperatures: ◼, 25 °C; ●, 30 °C; ▲, 35 °C; ▼, 40 °C; ⧫, 45 °C; ◄, 50 °C. Reprinted with 
permission from [10]. (b) Viscosities of BuMeImCl-DMF (1-butyl-3-methylimidazolium chloride- 
N,N-Dimethylformamide) mixtures as a function of mole fraction of DMF: ■, 30 °C; □, 35 °C; ●, 40 
°C; ○, 45 °C; ▲, 50 °C; △, 55 °C; ▼, 60 °C; ∇, 65 °C; ♦, 70 °C; ◊, 75 °C; ★, 80 °C. Reprinted with 
permission from [11]. (c) Effects of increasing the mole fraction of DMSO (χS) on the viscosity of 
cotton cellulose in binary mixtures of DMSO with the ILs AlMeImCl (1-allyl-3-methylimidazolium 
chloride) and BuMeImCl. The insert is the logarithm-linear plot of the reduced viscosity ratio versus 
DMSO mole fraction at 25 °C Reprinted with permission from [12]. 
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be answered in a straightforward manner. Consider, for example, the fact that most 
physicochemical properties of binary mixtures are not ideal. That is, the property of the 
binary mixture does not vary in a simple way as a function of binary solvent composition, 
as shown in Figure 3a–c.  
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2. A Rationale for Effects of Mixed Solvents on Chemical Phenomena

How do we explain these interesting and very useful effects of binary solvent mix-
tures on diverse chemical phenomena? While deceptively simple, this question cannot be
answered in a straightforward manner. Consider, for example, the fact that most physic-
ochemical properties of binary mixtures are not ideal. That is, the property of the binary
mixture does not vary in a simple way as a function of binary solvent composition, as
shown in Figure 3a–c.

The reason behind this non-ideality is clearly the interactions between components of
the binary solvent mixture. To a first approximation, one expects that the composition of
the solvation layer of a dissolved substance (which we will refer to as “probe”) should be the
same as that of bulk binary mixture. Consequently, the same explanations given for bulk
binary mixtures should apply to the solvation layers of the dissolved probes. This simple
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view, however, does not hold in most cases because probe-solvent nonspecific and specific
interactions were not taken into consideration. These interactions change the composition
of the solvation layers relative to bulk solvent mixtures, as shown below.
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The composition of the solvation layer of a probe may deviate from that of an (already
non-ideal) bulk solvent mixture due to the so-called “preferential solvation” of the probe
by one component of the mixture (Figure 4). In principle, this phenomenon includes con-
tributions from probe-independent “dielectric enrichment”, and probe-solvent interactions.
The first mechanism is operative in mixtures of nonpolar/low polar solvents, such as
cyclohexane-THF (Tetrahydrofuran). It denotes enrichment of the probe solvation layer
(relative to that of bulk solvent mixture) by the component of larger dielectric constant (or
relative permittivity), due to non-specific probe dipole-solvent dipole interactions [14–16].
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of two solvents (A, B), and the “mixed” solvent A-B, whose formation is discussed below. The parts
of the lower line represent from the left: ideal solvation, i.e., the composition of the probe solvation
layer is the same as that of bulk solvent mixture; preferential solvation by the solvents (A, A-B);
preferential solvation by the solvents (B, A-B).

The second solvation mechanism is dominant in protic solvents (such as aqueous
alcohols) and their mixtures with strongly dipolar solvents (water-DMSO, alcohol-DMF,
etc.). It is essentially due to solute-solvent H-bonding and hydrophobic interactions. One
additional complication is that solvent-solvent H-bonding generates an additional or
“mixed” solvent species that should be considered. For example, in mixtures of water (W)
and alcohol (ROH), and W-DMSO, we have in solution both the parent and the mixed
solvents, HOH. . .O(H)R and HOH. . .O(H)=S(CH3)2 [17]; this turns analysis of the solvation
data more complex. In summary, most significant consequence of preferential solvation
is that compositions of the solvation layers of most probes are different from those of
the corresponding bulk solvent mixtures; these composition differences are probe-, and
temperature-dependent [18,19].

How do we calculate the “effective” (or local) composition of the solvation layer of
a probe? Several techniques were employed to solve this problem, including FTIR [20],
resonance Raman spectroscopy [21], and X-ray diffraction (for solvated crystals) [22]. It is
our view that the most useful approach is to use solvatochromic indicators as models for
the compounds of interest, e.g., reactants. Solvatochromic probes are substances whose
absorption or emission spectra are sensitively dependent on the solvent or the composition
of solvent mixtures (Figure 5). The reason for solvatochromism is that the energy difference
between the probe’s ground and excited states is sensitively affected by probe-solvent
interactions, leading to medium-dependent values of λmax, and hence a change in solution
color. For most probes, the solvatochomism is negative, meaning there is a hypsochromic
shift of the longest wavelength absorption band with increasing medium polarity. The
reason is that solvents stabilize the zwitterionic ground state much more than the diradical
excited state (see Figure 6 for light-induced transition of the probe t-Bu5RB). The latter
corresponds to a so-called FranckCondon excited state, because the time scale of the
electronic excitation (ca. 10−15 s) is much shorter than that required for the solvent molecule
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to reorient in order to stabilize the probe’s excited state. The energy of this transition
furnishes the solvatochromic property of interest, vide infra.
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This approach was advanced thanks to the work of professor C. Reichardt, initially
under the supervision of professor K. Dimroth at Marburg university [26,27]. The experi-
mental part is relatively simple: register the UV-Vis spectrum of a solvatochromic probe →
calculate the value of λmax of a specific peak (the longest wavelength, due to intermolecular
charge-transfer within the probe) → use the value of λmax to calculate the desired property,
or descriptor, of the solvent or solvent mixture. The power of solvatochromism is that it can
be employed to calculate the overall (or empirical) solvent polarity scale, ET (in kcal/mol),
as well as the individual solvent descriptors that contribute to ET, namely solvent Lewis
acidity (SA), solvent Lewis basicity (SB), solvent dipolarity (SD), and solvent polarizability
(SP), where S refers to solvent. Other abbreviations that were employed for designating
these descriptors include SdP and SP for solvent dipolarity and polarizability, respectively.
For consistency, however, we use two letters to designate each solvent descriptor.
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Equation (1) shows the relationship of these solvent descriptors:

ET(probe) = ET(probe)0 + aSA + bSB + dSD + pSP (1)

where ET(probe)0 corresponds to gas phase, the descriptors (SA, SB, SD, SP) are those
defined above, and (a, b, d, and p) are the corresponding regression coefficients. Figure 7
shows some solvatochromic probes used to calculate the descriptors of Equation (1). In the
Taft–Kamlet–Abboud approach, similar solvatochromic parameters and different symbols
were employed to describe probe–solvent interactions, α, β, and π* for solvent Lewis acidity,
Lewis basicity, and (combined) dipolarity/polarizability [28]. The signs of the coefficients
in Equation (1) indicate whether the property of the solvent considered increases (positive
sign) or decreases (negative sign) the empirical solvent polarity [29].
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3. A Model for the Solvation of Probes

A solvation model is required to calculate the local concentration of the species in the
solvating layer of the probe. For simplicity, we consider a W-ROH mixture, containing
a certain water mole fraction, χW. We address the question of preferential solvation by
using a series of exchange equilibria between the solvent species in the bulk binary mixture



Liquids 2024, 4 81

and those in the probe solvation layer. Any realistic model should consider, therefore,
the exchange of the three solvents (W, ROH, and W-ROH) between the bulk solvent and
the probe solvation layer, where the equilibria involving the mixed solvent are given by
Equations (2)–(4):

ROH + W ⇌ ROH − W (2)

Probe(ROH)m + m (ROH − W) ⇌ Probe(ROH − W)m + m ROH (3)

Probe(W)m + m (ROH − W) ⇌ Probe(ROH − W)m + m W (4)

Note that (m) is not the solvation number of the probe; it represents the number of
solvent molecules whose exchange in the probe solvation layer affects its solvatochromism;
usually, the value of (m) is close to unity. For example, for the solvation of WB in mixtures
of water with 4 alcohols (methanol, 1-propanol, 2-propanol, and 2-methylethanol), the
calculated values of (m) range from 1.06 to 1.70 [30]. With this proviso (meaning of (m)),
addressing the important point of probe-dependent volume of the solvation layer is not
required for the analysis shown below. Additionally, using this model, one should be
able to calculate the probe-induced preferential solvation, as expressed by the fractiona-
tion factor (φ) ,which represents the equilibrium constant for solvent exchange between
the bulk binary mixture and the probe solvation layer. This model has been elaborated;
Equations (5)–(7) are for W-ROH, where (Bk) refers to bulk solvent:

φW/ROH =
xProbe

W /xProbe
ROH(

xBk;Effective
W /xBk;Effective

ROH

)m (5)

φROH−W/ROH =
xProbe

ROH−W/xProbe
ROH(

xBk;Effective
ROH−W /xBk;Effective

ROH

)m (6)

φROH−W/W =
xProbe

ROH−W/xProbe
W(

xBk;Effective
ROH−W /xBk;Effective

W

)m (7)

In Equation (5), φW/ROH describes the preference of (W) for the probe solvation layer
relative to bulk solvent mixture. Values of φW/ROH > 1 indicate that the probe solvation
layer is richer in (W) than the bulk solvent; the inverse is true for φW/ROH < 1. In absence
of preferential solvation, φW/ROH is unity, indicating that solvent composition in the probe
solvation layer is the same as that of the bulk solvent. The same line of reasoning applies to
φROH-W/ROH (mixed solvent displaces ROH) and φROH-W/W (mixed solvent displaces W),
as depicted in Equations (6) and (7).

The use of 1:1 stoichiometry for ROH-W is an assumption that has been employed
elsewhere [31–37]. Mixed solvents with a stoichiometry other than 1:1 can be regarded, to
a good approximation, as mixtures of the 1:1 structure plus excess of a pure solvent. We
stress that taking into account the presence of mixed solvents is more than a practical and
convenient assumption; the presence of such species has been successfully employed in
fitting results of spectroscopic techniques that are particularly suitable to determine the
stoichiometry and association constant of solvents, e.g., NMR [38–40] and FTIR [41–43].
The observed solvatochromic property, such as the ET

Obs(probe), can be then calculated by
iteration from Equations (8) and (9):

Eobs
T = xProbe

W EW
T + xProbe

ROH EROH
T + xProbe

ROH−WEROH−W
T (8)

Eobs
T =

(
xBk;Effective

ROH

)m
EROH

T +φW/ROH

(
xBk;Effective

W

)m
EW

T +φROH−W/ROH

(
xBk;Effective

ROH−W

)m
EROH−W

T(
xBk;Effective

ROH

)m
+φW/ROH

(
xBk;Effective

W

)m
+φROH−W/ROH

(
xBk;Effective

ROH−W

)m (9)
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where (m), xBk;Effective
ROH , xBk;Effective

W , and xBk;Effective
ROH−W refer to the number of molecules in the

probe solvation layer that affects its solvatochromic response, and effective mole fractions
of the appropriate species in bulk mixed solvent, respectively. Note that these effective mole
fractions differ from the analytical or starting mole fractions due to the formation of the
mixed solvent, e.g., ROH-W. The input data to solve these equations include Eobs

T , EW
T , EROH

T ,
and xEffective

Species , along with initial estimates of (m), EROH−W
T and the appropriate solvent

fractionation factors. The values of xBk;Effective
ROH , xBk;Effective

W , and xBk;Effective
ROH−W are calculated

from the dependence of a physical property (e.g., density on solution composition) by using
the association model discussed by Katz et al. [44–46]; a list of the association constants of
W-ROH has been published [47].

Figures 8 and 9 show the dependence of the effective concentrations of solvent species
on the analytical mole fractions of the two solvents.

By using data such as those shown in Figure 8, and Equations (8) and (9), one can cal-
culate the dependence of a solvatochromic property (e.g., solvent polarity or ET(probe)) as a
function of binary solvent composition at a fixed temperature, or at a series of temperatures
(referred to as thermo-solvatochromism), as shown in Figure 9.

The preceding discussion shows that it is relatively simple to calculate medium de-
scriptors (e.g., SA and SB) for pure and mixed solvents; the use of the appropriate solvation
model permits calculation of the composition of the solvation layers of the solvatochromic
probes dissolved therein. Although there are a large number of solvatochromic probes that
are employed to calculate the solvent descriptors, the results are consistent when different
probes were employed. This is demonstrated by application of Equation (1) to a series of
ILs, where the calculated empirical solvent polarities using the RB (Reichardt betaine—2,6-
diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate) probe correlate linearly with the
calculated values, based on the 4 descriptors (SA, SB, SD, SP), which were calculated using
different solvatochromic probes (Figure 10). Values of φ were also calculated at different
temperatures, showing the effect of temperature on the composition of the probe solvation
layer (thermo-solvatochromism).
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Figure 8. (a) Species distribution for MeOH–W, 1-PrOH–W and 2-PrOH–W mixtures at 25 °C. W 
(); ROH (, , ); and ROH–W (, , ). Reprinted with permission from [48]. (b) Species 
distribution for EtOH/W, 2-Me-2-PrOH (2-methyl-2-propanol)/W and MeOEtOH (2-methoxy-
ethanol)/W mixtures, respectively, at 25 °C: W (), ROH (, , ), and ROH–W (, , ). Re-
printed from [30]. (c) Dependence of species distribution for IL-W binary mixtures on the length of 
R of AlRImCl (1-ally-3-methylimidazoilium chloride), at 25 °C, where R = methyl, 1-butyl, and 1-
hexyl, respectively. The symbols employed are , ,  for IL, W, and the IL-W 1:1 complex, respec-
tively. Reprinted with permission from [49]. 

Figure 8. (a) Species distribution for MeOH–W, 1-PrOH–W and 2-PrOH–W mixtures at 25 ◦C. W (♦);
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ROH (•, ▲, ▼); and ROH–W (#, △, ▽). Reprinted with permission from [48]. (b) Species distribu-
tion for EtOH/W, 2-Me-2-PrOH (2-methyl-2-propanol)/W and MeOEtOH (2-methoxyethanol)/W
mixtures, respectively, at 25 ◦C: W (■), ROH (•, ▲, ▼), and ROH–W (#, △, ▽). Reprinted from [30].
(c) Dependence of species distribution for IL-W binary mixtures on the length of R of AlRImCl
(1-ally-3-methylimidazoilium chloride), at 25 ◦C, where R = methyl, 1-butyl, and 1-hexyl, respectively.
The symbols employed are #, ■, ▲ for IL, W, and the IL-W 1:1 complex, respectively. Reprinted with
permission from [49].
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Figure 9. (a) Dependence of solvent polarity scale, ET(probe), on analytical, χW
Analytical (open

symbols), and “effective”, χW
Effective (solid symbols) χW for MeOH-W mixtures at 25 ◦C. Reprinted

with permission from [48]. (b) Dependence of the empirical solvent polarity parameter ET(MePMBr2)
on the mole fraction of water, χW, at 25 ◦C, for mixtures of water with ILs. The straight lines
connecting the polarities of the pure solvents are theoretical, plotted merely to depict the ideal
solvation of the probe by the binary mixtures. Reprinted from [49].
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4. Selected Examples of the Application of Solvatochromism to Understand Medium
Effects on Chemical Phenomena

One of the most important applications is that the probes employed, when properly
selected, can be used as models. Because most of these probes are dipolar or zwitterionic,
and have varying hydrophilic/hydrophobic character, it should not be difficult to select
the probes that are expected to match the reaction of interest. For a comprehensive list of
solvatochromic probes, see references [19,25,27]. Consequently, the information obtained
from the solvatochromic probe can be employed to understand the effects of medium
composition on diverse chemical phenomena and processes.

Selected examples show the importance of the last phrase. Consider the following
question: What is the medium effect on a chemical phenomenon of increasing probe
hydrophobicity in a solvent mixture? An example is shown for the solvation in DMSO-W
and 1-PrOH-W of 4 probes (Figure 11). Two of these are hydrophilic, 4- (pyridinium-1-
yl)phenolate and 2-(pyridinium-1-yl)phenolate (p-CB and o-CB, respectively)); the other
two (RB and o-RB, 2,4-dimethyl-6-(2,4,6-triphenylpyridinium-1-yl)phenolate) have more
elaborate, hydrophobic structures (Figure 7); the corresponding values of φ are shown
in Table 1 [25]. The straight lines in Figure 11 represent the case where there is no probe-
induced preferential solvation, i.e., the composition of the probe solvation layer is equal
to that of bulk solvent mixture. It is clear that this is not case; the deviation increases as a
function of increasing probe hydrophobicity (RB is practically insoluble in water). Usually,
more hydrophobic probes show more deviation from linearity [18].

With one exception (o-CB in DMSO-W), all values for φW/S are <1, showing that the or-
ganic solvents displace water from the probe solvation layer. All values of φMixed solvent/solvent
(mixed solvents displacing pure solvents) are > 1, i.e., the complex solvents are more ef-
ficient than the parent ones. As expected, the calculated empirical polarity of the mixed
solvent is greater than that of pure DMSO or 1-PrOH, because the mixed solvent contains
(more polar) water molecules. The reason for the efficiency of the mixed solvent is that
probe−solvent interactions include H-bonding to the probe phenolate oxygen, as well
as hydrophobic interactions. Thus, 1-PrOH/W has more sites for hydrogen-bond dona-
tion/acceptance than water or 1-PrOH, while it is also capable of solvating the probe by
the hydrophobic effect due to the organic “end” of the solvent. A similar reasoning can be
advanced for the efficiency of DMSO/W relative to W and DMSO. All φSolvent-W are larger
for 1-PrOH/W than DMSO/W, and for p-RB than p-CB or o-CB. The first result underlines
the importance of H-bonding to solvation, whereas the second one is in agreement with
the dependence of preferential solvation (hence, the values of φ) on the hydrophobicity of
the probe [51].
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Table 1. Solvatochromism of p-RB, p-CB, and o-CB in binary mixtures of W-DMSO and W-1-PrOH at
25 ◦C. Reprinted with permission from [25].

Solvatochromism in Water/Dimethyl Sulfoxide

m φ(W/DMSO) φ(DMSO-W/DMSO) φ(DMSO-W/W) ET(DMSO) ET(W) ET(W/
DMSO) χ2; b R2; b

p-RB 1.32 0.49 3.29 6.71 45.3 (+0.2) a 63.1 (0) a 49.1 0.029 0.994

p-CB 0.80 0.80 1.70 2.12 58.4 (−0.4) a 77.9 (+0.2) a 67.9 0.034 0.999

o-CB 0.90 1.41 2.40 1.67 59.1 (−0.2) a 75.8 (+0.2) a 63.9 0.067 0.997

Solvatochromism in Water/1-Propanol

m φ (W/1-PrOH)
φ

(1-PrOH-W/1-PrOH)
φ (1-PrOH-W/W) ET(1-PrOH) ET(W) ET(1-PrOH/W) χ2 R2

p-RB 1.40 0.44 66.92 152.09 50.9 (+0.2) a 59.1 (+0.01) a 52.5 0.0023 0.999

p-CB 1.22 0.23 9.81 42.65 67.2 (+0.1) a 77.7 (0) a 74.0 0.006 0.999

o-CB 1.37 0.34 13.71 40.32 67.6 (+0.4) a 76.1 (−0.5) a 71.9 0.004 0.999
a—The numbers within parentheses refer to [calculated ET(probe) from Equation (9)− experimentally determined
ET(probe)]. b—The terms χ2 and R2 have their usual (statistical) meaning as measure of the goodness of fit.

Likewise, for the solvation of the same probe in a series of structurally related solvents
(e.g., alcohols) the fractionation factors, hence the compositions of the probe solvation
layer are sensitively dependent on the hydrophobicity of ROH, as shown in Table 2, for the
solvation of a hydrophobic- (WB; 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl)-phenolate;
pKa = 4.78) and a hydrophilic probe (QB; 1-methylquinolinium-8-olate; pKa = 6.80), at
25 ◦C [23,52].

Table 2 shows that values of φ are probe-dependent, being larger for WB than for
QB in any W-ROH mixture. Additionally, the values φROH-W/ROH and φROH-W/W increase
on going from MeOH to 1-PrOH. If H-bonding to the phenolate oxygen of WB was the
dominant probe-solvent interaction, then the expected order of φROH-W/ROH and φROH-W/W
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should have been QB (stronger base) > WB (weaker base); this is not the case. We conclude
that solute-solvent hydrophobic interactions dominate the solvation of these probes. This
also agrees with the dependence of φ on the hydrophobicity (or log P) of the alcohol (MeOH
to 1-PrOH). Similar results were observed for the solvation of a series of merocyanine probes
(see Figure 7), in binary mixture of W-ROH (MeOH, 1-PrOH) and W-MS (MeCN and
DMSO) where the values of φ increase on going from MePMBr2 (less hydrophobic probe)
to OcPMBr2 (2,6-dibromo-4-[(E)-2-(1-octylpyridinium-4-yl)ethenyl]; more hydrophobic
probe) in every binary mixture, and from methanol to 1-PrOH for the same probe [23]. This
type of information cannot be easily obtained by other approaches and is important, e.g.,
for choosing the appropriate solvent mixture for a certain application.

As in the experimental determination of the activation energy of reactions, solvation
was studied as a function of temperature. An example for the dependence of ET(probe) on
T is shown in Figure 12, for the solvation of QB and MePMBr2 in alkoxy-alcohols [53].
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Figure 12. Dependence of the empirical solvent polarity on temperature, for the solvation of WB (a),
QB (b), and MePMBr2 (c) in aqueous alcohols. Reprinted with permission from [53].

Plots (not shown) of ET(probe)Solvent versus T gave excellent straight lines, the negative
slopes of which are given by ∆ET(probe)Solvent/∆T (in kcal mol−1 K−1). These were
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calculated for pure solvents; the order is |∆ET(probe)ROH| > |∆ET(probe)W|, reflecting
the greater effect of temperature on the structure of ROH. Consequently, H-bonding of water
with the probe ground state is less susceptible to temperature increases than ROH. Values
of ∆ET(probe)Solvent for 50 ◦C intervals (∆ET(10 ◦C)–(∆ET(60 ◦C) for WB and MePMBr2
in mixtures of water and 9 alcohols and alkoxy-alcohols were calculated, which range
between 2.1 and 3.7 kcal mol−1. This is a sizeable energy, relative to the activation energies
of many reactions (ca. 10–12 kcal/mol). This underlines the importance of studying thermo-
solvatochromism to quantify the contribution of temperature-induced changes in solvation
to the energetics of reactions in solution, a quantity that cannot be calculated, e.g., from
rate data.

An example that shows the usefulness of solvatochromic probes as models for chemi-
cal reactions is the pH-independent hydrolysis of esters, including the hydrophobic 2,4-
dinitrophenyl carbonate [54], the relatively hydrophilic 4-nitrophenyl chloroformate (cal-
culated log P = 1.66), and the very hydrophobic ester 4-nitrophenyl heptafluorobutyrate
(calculated log P = 4.02) [55]; all reactions were studied in W-MeCN mixtures (see Scheme 1).
These reactions show a complex dependence of reaction rate constants on water concentra-
tion, as shown in the left-hand parts of Figures 13 and 14.
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Because addition of MeCN to water induces a series of structural changes in the
medium that depends on binary solvent composition [56–58], we carried out a “proton-
inventory” study to probe the structures of the corresponding transition states [59]. Our
results showed that the complex dependence of reaction rate constants and activation pa-
rameters on [H2O] is not due to changes in the number of water molecules in the transition
states. It reflects, however, the effects of acetonitrile-water interactions on solvation of
reactants and transition states. We therefore expected that the dependence of kinetic data
on [W] should be similar to that of model solvatochromic probes, as clearly illustrated by
Figures 13 and 14. Note that these hydrolysis reactions are particularly suitable to test
the potential of using solvatochromic probes as models for chemical phenomena, because
complicating acid or base catalysis play no role.
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Table 2. Results for the solvation of WB and QB in water-alcohol mixtures at 25 ◦C [30].

ROH Log P Kassociation (L·mol−1) φW/ROH φROH-W/ROH φROH-W/W

WB

MeOH −0.77 173.3 0.601 2.212 3.681

EtOH −0.31 28 0.554 11.482 20.727

1-PrOH 0.25 12.3 0.265 149.208 563.049

2-PrOH 0.05 8.1 0.551 192.625 349.592

2-Me-2-PrOH 0.35 7.0 0.484 111.267 229.890

MeO-EtOH −0.77 32.1 0.479 5.659 11.814

QB

MeOH −0.77 173.3 0.381 1.172 3.076

EtOH −0.31 28 0.349 5.053 14.479

1-PrOH 0.25 12.3 0.305 29.599 97.046

2-PrOH 0.05 8.1 0.428 26.418 61.724

2-Me-2-PrOH 0.35 7.0 0.364 21.713 59.651

MeO-EtOH −0.77 32.1 0.341 4.855 14.238
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Figure 13. (A) Dependence of log (kobs), the observed rate constant on χw, the mole fraction of
water in aqueous acetonitrile, at different temperatures. The points are experimental, and the
solid sigmoidal lines were calculated by a fourth power polynomial dependence of log (kobs) o χw.
(B) Dependence of the empirical solvent polarity ET(RB) on χw. The solid curve was calculated from
a fifth power polynomial dependence of ET(RB) on χw. Reprinted with permission from [54].

Another example of the application of solvatochromic probes to elucidate chemical
reactions is retro-DielsAlder reaction (RDA) of anthracene-9,10-dione in aqueous solutions
(Scheme 2). The RDA reaction proceeds exceptionally fast in water compared to organic
solvents (Figure 15a) because this solvent greatly accelerates pericyclic reactions through
H-bonding, which stabilizes the activated complex. [60]. Figure 15b shows that this reaction
has the Gibbs energy of activation clearly governed by the polarity of the solvent.
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We end this discussion by showing how the results of solvatochromism can be em-
ployed to determine the relative importance of solvent descriptors to cellulose dissolution.
First, solvatochromism of WB was studied in several IL-DMSO mixtures, at χDMSO = 0.6
and 40 ◦C [61]. This study generated an equation showing the dependence of ET(WB) on
solvent descriptors SA, SB, SD and SP. In a later study, microcrystalline cellulose (MCC)
was dissolved in these binary mixtures and the mass of dissolved MCC (expressed as
%m) was correlated with the same solvent descriptors, calculated from the solvatochromic
study [5], see Equations (10) and (11):

ET(WB) = 54.61 + 2.77 SA + 0.61 SB − 1.06 VM + 0.41 ƒ(n) → Based on solvatochromism in 13 IL-DMSO mixtures; R2 = 0.939 (10)

MCC-m% = 9.49 + 3.01 SA + 6.88 SB − 2.99 VM + 2.427 ƒ(n) → Based on MCC dissolution in 11 IL-DMSO mixtures; R2 = 0.902 (11)

where SA and SB are those defined above, VM and ƒ(n) are the molar volume of the neat IL,
and the LorentzLorenz refractive index function; these were employed instead of SD and SP,
as explained elsewhere [61]. The signs of the regression coefficients in both equations are
the same. That is, solvatochromism and MCC dissolution are enhanced by solvent Lewis
acidity, Lewis basicity and polarizability; the inverse is true for the molar volume of the IL.
The different relative importance of SA/SB in both cases can be explained because MCC is a
H-bond acceptor and donor, whereas the probes are only H-bond acceptors. The relevant
point, however, is that two very different chemical process can be similarly correlated with
the same set of solvent descriptors. This agreement can be fruitfully employed, e.g., for
screening possible candidates as solvents for cellulose and other biopolymers.
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Figure 15. (a) First-order rate constant (×106 s−1; 40 ◦C) of the RDA reaction of anthracene-9,10-dione
in aqueous solutions versus the mole fraction of organic cosolvent: MeOH (2), EtOH (#), 1-PrOH
(△), t-BuOH (▽), formamide (•), acetonitrile (■), 1-cyclohexyl-2-pyrrolidinone (×), urea (+), and
glucose (⊕). (b) Correlation between the Gibbs free energy of activation of the RDA reaction of
anthracene-9,10-dione and the solvatochromic parameter ET(RB) of the solvents. Reprinted with
permission from [60].

5. Conclusions

Solvent mixtures are extensively employed in chemistry for practical reasons. Their
use leads to enhanced solubilities, increased rate constants, etc. These beneficial effects call
for a clear understanding of solvent effects on chemical phenomena. This understanding
is, however, hindered by two complications: (i) The dependencies of the physicochemical
properties of the binary mixtures on its composition are usually not ideal, and (ii) The
compositions of the solvation layers of the solutes are almost always different from those of the
bulk solvents. The reasons for the latter differences are combinations of dielectric enrichment
and, more importantly, H-bonding and solute-solvent hydrophobic interactions. This intricate
situation has been greatly simplified by using solvatochromic probes as models for the reaction
or process under consideration. By applying appropriate solvation models, the study of these
probes furnishes a set of solvent-exchange equilibrium constants (φ) that permits calculation
of the effective (or local) composition of the solvatochromic probe. If the latter is a good
model for the reaction or process under consideration, one can access information (about the
composition of the solvation layer) that is inaccessible by other techniques. To our view, this
represents a practical solution for a complex problem. Theoretical calculations will certainly
enhance our understanding of solvation, because they permit, inter alia, calculation of the
UV-Vis spectra of probes in mixed solvents [62], and prediction of solvatochromism [63].

A list of all abbreviations employed is given below. The structures of the solva-
tochromic probes discussed are shown in Figure 7.
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Abbreviations and Acronyms

AlMeImCl 1-Allyl-3-methylimidazolium chloride
BuMeImCl 1-(1-butyl)-3-methylimidazolium chloride
BuPMBr2 2,6-dibromo-4-[(E)-2-(1-butylpyridinium-4-yl)ethenyl]
t-Bu5RB 2,6-bis[4-(t-butyl)phenyl]-4-{2,4,6-tris[4-(t-butyl)phenyl]pyridinium-1-yl}phenolate
t-BuOH tert-Butanol
o-CB 2-(pyridinium-1-yl)phenolate
p-CB 4- (pyridinium-1-yl)phenolate
DMANF 2-(N,N-dimethylamino)-7-nitrofluorene
DMF N,N-Dimethylformamide
DMSO Dimethyl sulfoxide
DNPC 2,4-dinitrophenyl carbonate
DTBSB o,o’-di-tert-butylstilbazolium betaine
ET (probe) Empirical solvent polarity scale using a specific probe
EtOH Ethanol
FePhen [FeII(1,10-phenanthroline)2(CN)2]
HxPMBr2 2,6-Dibromo-4-[(E)-2-(1-hexylpyridinium-4-yl)ethenyl]
IL Ionic liquid

Log P
Partition coefficient between two partially immiscible solvents, usually n-octanol
and water

MCC Microcrystalline cellulose
MeCN Acetonitrile
MeOEtOH 2-Methoxyethanol
MeOH Methanol
MePMBr2 2,6-Dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl]
2-Me-2-PrOH 2-Methyl-2-propanol
MeNI 1-Methyl-5-nitroindoline
MS Molecular solvent
NPFB 4-Nitrophenyl chloroformate
NHFB 4-Nitrophenyl heptafluorobutyrate
NI 5-Nitroindoline
OcPMBr2 2,6-Dibromo-4-[(E)-2-(1-octylpyridinium-4-yl)ethenyl]
PEG Polyethylene glycol
1-PrOH 1-Propanol
QB 1-Methylquinolinium-8-olate

RB (or p-RB)
Reichardt betaine, dye number 30 in a list of solvatochromic dyes;
2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate.

o-RB 2,4-dimethyl-6-(2,4,6-triphenylpyridinium-1-yl)phenolate,
RDA Retro-Diels—Alder reaction
SA Solvent Lewis acidity; calculated from solvatochromic data
SB Solvent Lewis Basicity; calculated from solvatochromic data
SD Solvent dipolarity; calculated from solvatochromic data
Solvatochromism Effect of the medium on the color of a solvatochromic probe
SP Solvent polarizability; calculated from solvatochromic data
TBSB o-tert-butylstilbazolium betaine
Thermo-solvatochromism Effect of temperature on solvatochromism
THF Tetrahydrofuran
WB Wolfbeis betaine; 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl)-phenolate

φ
Fractionation factor: Refers to solvent exchange equilibrium constant between
bulk solvent mixture and the solvation layer of the probe

χ Mole fraction
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