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Abstract: In situations where animal models (AMs) are necessary, as in the field of neuroscience, a
strong culture of care must be supported and established. The pivotal question remains: how can
we uphold a robust “culture of care”? In the multifaceted domain of neuroscience research, AMs
traverse a spectrum shaped by conflicting viewpoints, anthropocentrism and pathocentrism, where
established scientific norms intersect with ethical deliberations. Anthropocentrism, representative
of conventional scientific approaches, may prioritize scientific goals potentially to the detriment of
animal welfare. Conversely, pathocentrism places significant importance on the ethical treatment
and well-being of AMs. This divergence of approach prompts the imperative development of a
robust culture of care framework within research institutions, advocating for animal welfare, ethical
responsibility, and adherence to regulatory standards. In this review, we refer to a European view
of animal care, discussing internationally valid concepts that find rebuttal in the current European
legislation. This review meticulously analyzes the many facets of the culture of care, particularly for
neuroscience studies involving AMs, illustrating the principles, practices, and collaborations critical
to overcoming ethical expectations. This commitment increases credibility and builds trust in the
public and research spheres, underscoring the critical importance of a culture of care in the ethics of
neuroscience research.
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1. Introduction

Exploring the human brain and nervous system (NS) represents one of scientific in-
quiry’s most intricate and promising frontiers [1–3]. In this area, neuroscience research often
relies on animal models (AMs) to unravel the complexities of neural function, behavior, and
disease mechanisms [3–5]. However, ethical considerations surrounding using AMs in re-
search have attracted increasing public and research community attention [6,7]. To navigate
this moral landscape effectively, institutions engaged in research using AMs must adhere
to a comprehensive culture of care framework [8]. The concept of a “culture of care” within
the context of utilizing animals in scientific research pertains to the organizational environ-
ment that fosters continuous improvement in various aspects: animal care and welfare, the
well-being of staff engaged in the animal care and use program, scientific quality, openness,
and transparency [9]. While European Directive 2010/63/EU on protecting animals for
scientific purposes does not explicitly mention “culture of care,” it underscores the impor-
tance of fostering a “climate of care” within animal welfare bodies (AWBs), as indicated in
Recital 31 [9]. Although not expressly stated in the directive, guidance documents from
the European Commission, member states, and stakeholders refer to the significance of a
culture of care. For instance, the Education and Training Framework promotes a “Culture
of Care” among staff at all levels. Additionally, guidance on inspections and enforcement
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incorporates the concept of a culture of care, offering insights into factors influencing its
determination and leveraging inspectors or inspections to promote it. A culture of care
transcends mere compliance with legal requirements [9]. It encompasses an organizational
culture that values and supports compassionate and respectful behavior towards animals
and colleagues. Everyone involved in animal studies, from those directly conducting re-
search to animal facility management, planners, engineers, biologists, chemists, statisticians,
project leaders, and senior leaders, is responsible for cultivating a culture that emphasizes
ethical practices and continuous improvement [9–12]. Within this context, addressing the
expectations of the public, who rightly advocate for ethical animal treatment, and meeting
the stringent ethical standards set by the research community become imperative for these
institutions [13]. This review explores the multifaceted dimensions within a culture of care
framework [14,15]. Specifically tailored to neuroscience research involving animal subjects,
this review delineates the principles, practices, and collaborations essential to meeting and
exceeding the ethical expectations of the public and the research community [6,7].

From transparent communication to continuous improvement, welfare-centric prac-
tices, and collaborative education, this review delves into the intricacies of fostering ethical
excellence within neuroscience research [16].

1.1. Ethical Considerations: Prioritizing Animal Welfare and Scientific Progress

The interface between animal welfare and research necessitates a delicate balance
between scientific progress and ethical responsibility [16,17]. Animal welfare refers to the
appropriate condition of a species based on science and ethics. It encompasses multifaceted
considerations, from the initial stages of experimental design to the implementation of
procedures and the overall well-being of animal subjects [18,19]. Ensuring animal welfare
involves providing optimal living conditions that mimic natural environments tailored
to the species’ behavioral and physiological needs [10,19]. Enrichment strategies, such as
cognitive stimulation and social interactions, are integrated into housing environments
to promote mental well-being and prevent boredom or distress [11,16,20]. The PREPARE
Guidelines (https://norecopa.no/prepare, accessed on 15 December 2023) are pivotal to
guiding researchers toward a meticulous and ethically sound approach [21]. They em-
phasize not only the scientific rigor but also the ethical responsibilities towards animal
subjects [18,22,23]. These guidelines advocate for reducing animals used in experiments,
refining procedures to minimize pain or distress, and replacing new alternative models
(NAMs) wherever feasible [24,25]. Researchers navigate ethical considerations by con-
tinually refining methodologies and embracing innovative technologies to reduce the
reliance on AMs [13,22,26]. Techniques such as non-invasive imaging or in vitro models
offer alternatives that minimize the need for animal subjects, promoting ethical practices
while advancing scientific knowledge [19,20]. Moreover, fostering a culture of care within
research centers should be an institutional commitment to the ethical treatment of ani-
mals [10,14,27–29]. This involves comprehensive training for researchers, veterinarians,
and support staff, ensuring they understand and adhere to ethical animal handling and ex-
perimentation guidelines [30,31]. The ethical landscape within research involving animals
encapsulates a collective commitment to upholding rigorous scientific standards while
prioritizing the welfare of sentient beings [10,19].

1.2. Ethical Paradigms: Anthropocentrism and Pathocentrism Examined

In the dynamic landscape of scientific research, AM utilization navigates a spectrum in-
fluenced by opposing perspectives, anthropocentrism and pathocentrism, where traditional
scientific paradigms clash with ethical considerations [32,33]. Anthropocentrism, often
reflective of traditional scientific practices, might prioritize achieving scientific objectives at
the potential expense of animal welfare [34–36]. It ensures that the animals involved are
treated ethically and compassionately throughout the research process, acknowledging
their capacity to experience emotions and sensations [34–36]. Pathocentrism in scien-
tific research ensures ethical standards and yields more reliable and translatable results.

https://norecopa.no/prepare
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Within a pathocentric framework, researchers embracing animal experimentation must
initially assess its indispensability [37–40]. Can valuable insights be derived from robust
meta-analyses, probabilistic computational tools, or NAMs [41]? However, it is crucial to
acknowledge that scientific inquiry frequently demands exploration beyond cellular or
molecular levels, necessitating more intricate investigations [38–42]. When the trajectory
of research mandates animal experimentation, the paramount concern for the researcher
becomes prioritizing the welfare of these subjects [38–42]. By emphasizing the well-being
of AMs, researchers reduce confounding factors such as stress-induced responses that
might skew experimental outcomes [38–43]. Moreover, ethical research practices often
contribute to better animal health, reducing variables that might interfere with neurological
studies [37,42]. Adopting pathocentrism does not necessarily hinder scientific progress;
instead, it encourages researchers to refine methodologies, explore alternative approaches,
and create enriched environments for AMs [37,42]. Pathocentrism and the culture of care
shape the ethical landscape of using AMs in scientific research [44,45]. Pathocentrism, by
recognizing the intrinsic value and conscious nature of AMs, advocates for their ethical
treatment, emphasizing the reduction in distress and promoting their overall well-being
throughout the research process [44,45]. This ethical standpoint aligns with the culture of
care, fostering an environment where researchers prioritize animal welfare by implement-
ing refined methodologies, providing enriched environments, and continuously evaluating
protocols to minimize discomfort and stress for the AMs involved [44,45]. The culture of
care embodies a collective commitment within research institutions to uphold stringent
ethical standards, training researchers in handling and fostering an ethos that values the
ethical treatment of animal subjects [39,42]. Pathocentrism and the culture of care estab-
lish an ethical framework that advances scientific knowledge in the research community,
acknowledging their intrinsic value and promoting ethical responsibility [42,46,47].

1.3. Synergizing Ethical Compasses: Comparing the Five Freedoms and the Five Domains

The five freedoms framework embodies essential principles guiding ethical treatment
of animals involved in scientific studies [48,49]. Freedom from hunger and thirst, dis-
comfort, pain, and distress, and the ability to express natural behaviors hold profound
implications in experiments [48,49]. AMs must have access to fresh water and a diet that
maintains health and vigor, meeting their nutritional needs [50]. AMs should have a suit-
able environment that offers shelter and living conditions that avoid discomfort [50–52].
This includes appropriate resting areas, protection from adverse weather, and clean living
spaces [50–52]. Measures should be in place to prevent or rapidly diagnose and treat injuries
or diseases to minimize suffering [50–52]. AMs should have sufficient space and suitable
conditions to exhibit natural behaviors characteristic of their species [50–52]. This includes
providing opportunities for social interactions, exploration, and activities that allow them
to express their innate behaviors [50–52]. The environment and handling should not induce
mental suffering or distress in AMs [50–52]. Integrating these principles into a broader
culture of care within research institutions elevates their significance [27,28]. The culture of
care fosters an environment where these freedoms become embedded in the institutional
ethos, influencing the practices and behaviors of researchers and staff [13,28]. It emphasizes
creating enriched environments that cater to the animals’ needs, refining methodologies to
minimize distress and prioritizing their welfare throughout the research process [14,29].
This approach ensures that research upholds ethical standards, minimizing potential suf-
fering for AMs while fostering a commitment to responsible and compassionate scientific
inquiry [14,29].

In 1994, Professor David Mellor and Dr. Cam Reid introduced a novel model, trans-
forming the established five freedoms into “five domains” to systematically assess and
grade the severity of welfare compromise in various aspects: nutrition, environment,
health, behavior, and mental state/experiences [53–55]. This approach distinguishes be-
tween the physical and functional factors affecting an animal’s welfare and the overall
mental state arising from these factors [53,55]. Widely embraced over the past two decades,
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this paradigm has become a valuable tool for evaluating the welfare impacts of research
procedures, pest control methods, and other animal life interventions [53–55].

While both the five freedoms and five domains frameworks share the same core
elements, the latter delves more deeply into the mental state of animals, recognizing that
an emotion or subjective experience may accompany every physical aspect influencing
welfare [53–55]. This nuanced exploration reinforces that emotional needs are as significant
as physical needs for animals (Figure 1)

Encyclopedia 2024, 4, FOR PEER REVIEW 4 
 

 

In 1994, Professor David Mellor and Dr. Cam Reid introduced a novel model, trans-
forming the established five freedoms into “five domains” to systematically assess and 
grade the severity of welfare compromise in various aspects: nutrition, environment, 
health, behavior, and mental state/experiences [53–55]. This approach distinguishes be-
tween the physical and functional factors affecting an animal’s welfare and the overall 
mental state arising from these factors [53,55]. Widely embraced over the past two dec-
ades, this paradigm has become a valuable tool for evaluating the welfare impacts of re-
search procedures, pest control methods, and other animal life interventions [53–55]. 

While both the five freedoms and five domains frameworks share the same core ele-
ments, the latter delves more deeply into the mental state of animals, recognizing that an 
emotion or subjective experience may accompany every physical aspect influencing wel-
fare [53–55]. This nuanced exploration reinforces that emotional needs are as significant 
as physical needs for animals (Figure 1) 

 
Figure 1. Comparison of five freedoms and five domains versus one another. 

A notable strength of the five domains framework lies in its clarity, emphasizing that 
merely alleviating negative physical or mental states does not necessarily guarantee pos-
itive welfare; it may, at best, achieve a neutral state. True good welfare for animals goes 
beyond the mere resolution of negatives [53,55]. 

Ensuring animals lead a “good life” involves providing opportunities for positive 
experiences, including anticipation, satisfaction, and satiation. Caretakers must create en-
vironments that encourage animals to engage in rewarding behaviors [53,55]. This shift in 
perspective forms the foundation of the five domains model, which integrates positive 
welfare states into its assessment, extending beyond the traditional focus on minimizing 
negatives [53,55]. 

Therefore, the five domains model serves as a comprehensive evaluation tool for as-
sessing the welfare of individuals or groups of animals, prioritizing mental well-being and 
emphasizing the importance of facilitating positive experiences, thus expanding our con-
siderations beyond the original five freedoms [53,55]. 

2. The Culture of Care 
In the early 2000s, researchers introduced the concept of a “culture of care” regarding 

AMs [27,29]. This concept, borrowed from the health and patient care field, has gained 
significant importance since European Directive 2010/63/EU and the subsequent publica-
tion of the working document on Animal Welfare Bodies and National Committees to ful-
fill the requirements under the Directive in 2021 [56]. The concept of culture of care en-
capsulates not only the conduct and behavior of individuals but also the underlying prin-
ciples and guiding beliefs upheld by institutions [14,28,29]. These elements collectively 

Figure 1. Comparison of five freedoms and five domains versus one another.

A notable strength of the five domains framework lies in its clarity, emphasizing
that merely alleviating negative physical or mental states does not necessarily guarantee
positive welfare; it may, at best, achieve a neutral state. True good welfare for animals goes
beyond the mere resolution of negatives [53,55].

Ensuring animals lead a “good life” involves providing opportunities for positive
experiences, including anticipation, satisfaction, and satiation. Caretakers must create
environments that encourage animals to engage in rewarding behaviors [53,55]. This shift
in perspective forms the foundation of the five domains model, which integrates positive
welfare states into its assessment, extending beyond the traditional focus on minimizing
negatives [53,55].

Therefore, the five domains model serves as a comprehensive evaluation tool for
assessing the welfare of individuals or groups of animals, prioritizing mental well-being
and emphasizing the importance of facilitating positive experiences, thus expanding our
considerations beyond the original five freedoms [53,55].

2. The Culture of Care

In the early 2000s, researchers introduced the concept of a “culture of care” regarding
AMs [27,29]. This concept, borrowed from the health and patient care field, has gained sig-
nificant importance since European Directive 2010/63/EU and the subsequent publication
of the working document on Animal Welfare Bodies and National Committees to fulfill the
requirements under the Directive in 2021 [56]. The concept of culture of care encapsulates
not only the conduct and behavior of individuals but also the underlying principles and
guiding beliefs upheld by institutions [14,28,29]. These elements collectively influence the
successful implementation of replacement, reduction, and refinement (3Rs) and the ethical
treatment of animals in research settings [42,57]. this framework emphasizes comprehen-
sive protocols to ensure optimal living conditions, tailored care, and enrichment strategies
that cater to the species’ behavioral and physiological needs [51,58–60]. The culture of care
does not merely advocate for ethical standards [51,58–60]. However, it fosters a collective
responsibility within research institutions, promoting continuous refinement of methodolo-
gies and exploring innovative technologies to minimize reliance on AMs [51,58–60]. The
concept of culture of care includes not only the conduct and behavior of individuals but
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also the underlying principles and guiding beliefs upheld by institutions [27,28]. These
elements collectively influence the successful implementation of the 3Rs and the ethical
treatment of AMs in research settings [42,57]. Individual behaviors and institutional values
are crucial to shaping practices that prioritize reducing, refining, and replacing animal use,
promoting a humane approach to scientific research [51,58–60].

2.1. Embracing Ethical Excellence: Cultivating a “Culture of Care” in Animal Research

Research facilities should go beyond legal obligations to ensure kindness and respect
for animals and employees [28].

Essential practices include constant animal welfare monitoring, administering anal-
gesics and anesthetics, and minimizing the use of animals whenever possible [10]. Further-
more, transparent data sharing and results foster a culture of scientific collaboration and
accountability [58,61].

The culture of care not only addresses ethical considerations but also reflects positively
on the quality of the scientific results obtained, ensuring that the gathered information is
reliable and pertinent [58,61].

The culture of care includes several aspects essential to ensuring research and ethical
animal welfare, namely, animal welfare, ethical framework, education and training, col-
laboration and transparency, health monitoring and environmental control, enrichment
programs, and communication [27–29], which are further detailed below:

• Animal welfare: Animal welfare precedes research objectives or convenience. It
involves the provision of adequate housing, veterinary care, and attention to the
physical and psychological needs of animals [19,45,62]. Knowledge about AMs to be
acquired includes information about the species and the different strains, focusing
on transgenic ones [19,45,62]. Adopting score sheets can help identify these signs of
distress early, facilitating prompt intervention [63–65]. Several models are available
in the bibliography (e.g., [25,66–68]). It is essential to customize models to fit specific
needs based on the type of research and animal model being used.

• Ethical framework: The culture of care should be actively implemented daily, not just
as an abstract concept [16,35,45]. Establishing a robust ethical framework involves
defining clear guidelines and policies that promote respect, kindness, and ethical
treatment of animals [7,39,42]. This includes exceeding minimal legal requirements
and ensuring compliance with ethical standards in all research activities [7,39,42].

• Education and training: To ensure proper animal care, all personnel must receive adequate
training as described in the referred normative (European Directive 2010/63/EU) [69].
This helps maintain high morale, skill development, and compliance with best practices in
animal welfare [27,49,69]. All personnel working with laboratory animals must acquire the
information and updates essential to embracing the culture of care carefully, including those
who perform procedures on animals (Function A), those who design the experimental
study (Function B), those who take care of the animals (Function C), and those who
euthanize the animals (Function D) [27,49,69]. Everyone needs to be well versed in current
regulations; the specific animal model they are working with; and all strategies to ensure
animal welfare, starting with the 3Rs principle [16,17]. A comprehensive knowledge of
the animal model, encompassing its characteristics and limitations, and careful analysis
of the relevant literature can guide efforts towards replacement and reduction [17]. This
knowledge empowers people to consider an NAM that is more suitable and informative
for all or part of the study [27,49,69].

• Collaboration and transparency: In AM studies, transparency concerns the accurate
sharing of the results and the chosen experimental methods, including the selection,
care, and use of laboratory animals [70–72]. Detailed information on experiment
design, ethical procedures adopted, and animal welfare monitoring should be pro-
vided [70–72]. Transparency and effective communication also include disclosing
any limitations or challenges encountered during the research study [70–72]. This
honest approach fosters a deeper comprehension of the studies conducted and facil-
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itates mutual learning among researchers [70–72]. Collaboration and transparency
play pivotal roles in establishing a robust knowledge base in neuroscience, ensuring
that research is ethically grounded and that results are beneficial for the progress of
science and medicine. Clarity in communication is equally important, not only among
researchers [70–72].

• Health monitoring and environmental control: Monitoring the health of animal
colonies is crucial to obtaining reliable scientific data [31]. It helps prevent variables in
experimental designs and safeguards personnel health [31,69,73]. All animal facilities
must have a periodic health monitoring program for pathogens [69,73]. Health con-
trols can be either direct or indirect: tests on the animals themselves, their products,
the environment in which they live, and the personnel involved in their manage-
ment [69]. Effective research requires proper planning with established timelines and
a clear list of pathogens. The Federation of European Laboratory Animal Science
Associations (FELASA) guidelines and standardized health reports aid information
exchange among cooperating labs [56,69,73]. Daily observations made by staff are cru-
cial, in addition to routine health surveillance, assays, sampling, and testing [69,74,75].
Environmental control is also essential to ensuring animal health. Monitoring envi-
ronmental parameters such as temperature, humidity, and ventilation carefully and
regularly helps prevent the spread of diseases [75].

Equally crucial in this field is the training and ongoing education of colony care
and management staff. A deep understanding of the health status enables the staff to be
vigilant in recognizing any signs of disease in animals. Moreover, it heightens attention
to procedures to prevent contact with zoonotic agents or the development of laboratory
animal allergies [22].

A proactive approach is paramount in an animal facility. Health monitoring pro-
tocols must continually be improved based on the latest research and advancements in
veterinary medicine. Feeding and watering are crucial for the well-being of laboratory ani-
mals. It is necessary to provide them with a well-balanced diet and clean water [31,69,73].
High-quality feeds are now available, optimizing most species’ growth, maintenance, and
reproduction [31,69,73]. Feed types include natural, purified ingredients and chemically
formulated options. It is essential to use certified diets that meet contaminant concentra-
tions below predetermined levels [31,69,73]. For example, the nutritional requirements of
pregnant and lactating females differ from those of adult males [76]. Moreover, it is essential
to consider whether the animals are conventional, specific pathogen-free (SPF), or germ-free
(GF), as supplementation of vitamins, especially K and B, may be necessary. Therefore, feed
formulations must be tailored to meet the biological needs of the animals [31,69,73].

Water must be clean and easily accessible, and different watering methods must
be carefully and regularly maintained to prevent contamination [31,69,73]. Changes in
drinking habits can indicate potential health or stress problems in animals [35,77,78].
Regularly monitoring animal body weight and water intake ensures their health and
well-being [35,77–80]. Finally, it should not be forgotten that the feeding and watering of
laboratory animals are regulated by ethical and regulatory guidelines designed to ensure
animal welfare (European Recommendations 526/2007) [77].

• Enrichment programs: Environmental and social enrichment are crucial to ensuring
the welfare of laboratory animals [81–83]. Programs should be customized based on
the specific needs and behaviors of the species involved while complying with appli-
cable regulations and ethical principles. Providing adequate space and complexity is
essential to allowing animals to express normal species-specific behaviors [81–84].

Enrichment programs should grant some control over the surroundings to minimize
stress-related behaviors, like stereotypies. Social enrichment is crucial; isolation should
only be for health and experimental reasons [81–85]. Varying the diet and mode of feeding,
hiding food, and involving animals in training activities are ways to offer environmental
enrichment (EE) [81–85]. Humans can also be part of ecological enrichment, particularly for
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rats, by stimulating them cognitively and creating a bond with handlers [81–85]. Positive
interactions with animals can contribute to their emotional well-being, benefiting the overall
outcome of experimental procedures [81–85].

• Communication: To have a successful team, it is essential to have individuals inclined
towards communication and collaboration while having clearly defined roles [59,86,87].
This is essential to ensuring animal welfare and generate reliable scientific results that
can be easily reproduced and translated to humans [27,87].

Personnel include animal facility technicians, researchers, a designed veterinarian, an
animal welfare responsible, and other members of the animal welfare body [30].

European Directive 2010/63/EU also highlights the importance of communication,
especially transparency, as these principles are essential to fostering sustainable scientific
progress and establishing an open dialogue between science and society [69].

Harmonizing procedures and cultivating a culture of care that serves as a common
thread throughout the animals’ lifespan and the entire study period is also beneficial to
establishing international scientific collaborations [59,86,87].

Moreover, effective communication channels are imperative to disseminate and re-
inforce good laboratory animal practices (GLAPs) across research teams. Open dialogue,
training sessions, and regular forums enable the sharing of experiences, challenges, and
successful strategies [59,86,87]. This cultivates a shared understanding of ethical principles,
ensuring that everyone comprehensively embraces and implements GLAPs within their re-
spective roles [59,86,87]. Furthermore, dissemination is pivotal to extending these practices
beyond institutional boundaries [59,86,87]. Encouraging publication and participation in
conferences and contributing to training programs ensure that the broader scientific com-
munity remains updated on evolving GLAPs [59,86,87]. This enriches collective knowledge
and fosters a global commitment to ethical animal research [59,86,87].

A concerted effort to foster collaboration, effective communication, and widespread
dissemination of GLAPs solidifies a culture of care. It promotes a unified commitment
among all stakeholders towards ethical standards, advancing research while prioritizing
the animals’ well-being [59,86,87].

2.2. Challenges and Strategies in Implementing a Culture of Care in Animal Facilities

Implementing a robust culture of care encounters multifaceted challenges [27–29].
Limited funding often hampers the acquisition of crucial resources, such as state-of-the-art
equipment, adequate staffing, and essential facility upgrades imperative for optimal animal
care [27–29]. This financial shortfall further impedes the execution of enrichment programs
and advanced veterinary care initiatives [27–29]. Moreover, while comprehensive training
for staff, researchers, and technicians remains vital to upholding high animal welfare stan-
dards, high turnover rates or limited access to specialized training resources undermines
the consistent delivery of such programs [86,88,89]. Balancing scientific pursuits with
ethical considerations poses another significant challenge in research settings, requiring
meticulous planning and monitoring, particularly in long-term studies or invasive proce-
dures [86,88,89]. Striking compliance with stringent regulatory requirements and ethical
standards demands rigorous oversight, meticulous record keeping, and frequent audits,
which becomes labor-intensive when managing various research programs [86,88,89]. Eth-
ical dilemmas often arise in experimental designs that demand alignment with animal
welfare principles and necessitate ongoing ethical reviews and consultations [86,88,89].
Technological limitations still tether specific research fields’ reliance on AMs, delaying the
transition to NAMs despite available advancements [90–92]. Instituting a culture of care
also hinges on overcoming a cultural shift and obtaining stakeholder buy-in, demanding
a paradigm shift in mindset and practices across all levels [86,88,89]. Addressing these
challenges requires a concerted effort to allocate adequate resources, foster continuous edu-
cation, promote interdisciplinary collaboration, and establish transparent communication
channels to navigate and mitigate these impediments effectively [86,88,89].
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3. Bridging Animal Models with a Culture of Care in Neuroscience

The culture of care is integral to using AMs in neuroscience research. It revolves around
ethical considerations, ensuring the welfare of animals utilized in scientific studies [27–29].
In neuroscience, where AMs are crucial to understanding complex brain functions, the cul-
ture of care emphasizes humane treatment, minimizing discomfort and promoting animal
well-being throughout the research process [27,28]. By prioritizing ethical animal han-
dling, providing enriched environments, and considering the animals’ physiological and
behavioral needs, the culture of care supports using AMs in neuroscience while upholding
ethical standards [27–29]. This approach aligns with regulatory compliance and enhances
the credibility and reliability of neuroscience research outcomes, emphasizing researchers’
ethical responsibility toward their animal subjects [27–29]. Hence, fostering a culture of
care in neuroscience research ensures that scientific knowledge is pursued responsibly
and compassionately while leveraging the indispensable role of AMs in advancing our
understanding of the brain and neurological disorders [27–29]. However, we cannot but
be honest with ourselves and point out how, within scientific institutions, resistance to
change is deeply rooted. The prospect of doing things differently, particularly in terms of
embracing a culture of care, poses a formidable challenge. Researchers are rewarded with
publications and funding, and shifting paradigms requires a willingness to endure down-
time for labs and a potential decrease in productivity as new approaches are integrated.
The path toward a “culture of care” is fraught with disruption and storms of resistance and
demands extensive planning, consensus building, and adept change management. Recidi-
vism, or the tendency to revert to familiar practices, is a common hurdle that necessitates
delicate handling. Surprisingly, the difficulties inherent in this transformative process often
go unmentioned in academic papers, where the status quo is implicitly favored. Embracing
a “culture of care” signifies a departure from the conventional, urging for a paradigm shift
involving extensive animal habituation to handling, procedures, and positive reinforcement
training. It compels scientists to delve into the lived experiences of the animals, prioritizing
their well-being over the convenience of established laboratory norms.

3.1. Comprehensive Perspectives in Neuroscience Research: Animal Models, Advances, and Ethical
Considerations

Throughout history, using AMs has been pivotal to advancing neuroscience. From
Galen’s pioneering anatomical studies to Pasteur’s and Bernard’s pivotal experiments,
AMs have elucidated neurological functions and disease mechanisms [93–95]. The 20th
century witnessed a paradigm shift with genetic modifications and refined studies on
genes and diseases, while technological strides like MRI transformed non-invasive brain
research [1,91,96,97]. Despite ethical considerations prompting the exploration of NAMs,
the historical contributions of AMs remain indispensable to shaping our understanding of
the brain [1,3,4,91,98].

Continued progress in genetic engineering, molecular biology, and neuroscience has
expanded the scope and precision of AMs [99]. Researchers now use genetically modified
animals to study specific genes’ roles in brain function and disease [100–102]. Neuroscience
researchers rely on sophisticated measurement tools and AMs as they grapple with the inher-
ent complexity of organisms [100–102]. While cell cultures shed light on cellular mechanisms,
organoids enable the study of cellular communication, synaptosomes aid in assessing synaptic
function, and organs-on-chips simulate motion–neural interaction, none of the above can
wholly emulate the intricacies of a peripheral nervous circuit, nuanced motor skills, or the com-
plexities inherent in behaviors and cognitive functions [1,3,4,91,98]. AMs are indispensable
tools for measuring and comprehensively studying these intricate aspects of the NS [103–105].
Integrating findings from these diverse models enhances our understanding of the brain and
neurological disorders, paving the way for potential treatments and interventions [106]. Fur-
thermore, there is an increasing emphasis on developing NAMs, such as organoids (miniature
organ-like structures grown in the lab) and computer simulations, to complement or replace
animal studies where feasible [107–109].
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Nevertheless, AMs remain fundamental in neuroscience research due to several ad-
vantages that current NAMs might not fully replicate [110]. Animal brains, especially in
mammals and primates, share structural and functional similarities with human brains,
enabling researchers to study complex behaviors and cognitive processes that simpler
models might not exhibit [104,110,111].

Many neurological diseases manifest differently in humans than in simpler models
or cell cultures. AMs allow for a closer representation of disease pathology, aiding in un-
derstanding disease mechanisms and testing potential treatments [111]. Mammalian AMs,
like mice and rats, share a significant portion of the genetic background of humans [112].
This genetic similarity makes them valuable for studying genetic factors underlying neu-
rological disorders [106]. AMs allow researchers to study behaviors related to memory,
learning, cognition, and social interactions in ways that might be challenging to replicate in
NAMs [106,112,113].

AMs offer the advantage of studying the brain in the context of a whole organism,
considering the brain’s interactions with other organ systems and the body [114]. Long-
term studies and interventions can be conducted in animals to observe developmental
changes, disease progression, and responses to therapeutic interventions over time, which
might be more challenging in AMs [114–116]. Regulatory agencies often require data from
animal studies before approving human clinical trials. Animal studies provide critical data
on treatments’ safety, efficacy, and potential side effects before human trials [117–119].

However, despite these advantages, there are ethical considerations, limitations, and
challenges associated with AMs, leading to the development and exploration of NAMs
in neuroscience. While NAMs [102], like cell cultures, organoids, computer simulations,
non-invasive diagnostic imaging, and human-based models, are advancing, they might not
fully encompass the complexity of the whole brain or exhibit certain behaviors or disease
phenotypes observed in AMs [102]. Hence, a combination of animal and NAMs is often
used to address questions in neuroscience [2] comprehensively.

Xenopus laevis, commonly known as the African clawed frog, represents a significant
model for studying developmental disorders due to its unique characteristics; their large
and externally developing embryos allow for the easy manipulation and observation of
neural development, offering insights into early neurodevelopmental processes [119].

Caenorhabditis elegans (C. elegans), a microscopic roundworm, is invaluable in neuro-
science due to its well-characterized NS comprising just 302 neurons, allowing for the
comprehensive mapping and understanding of neural circuits [120,121]. Its genetic ma-
nipulability and short lifecycle enable precise studies on neural development, synaptic
plasticity, and aging, offering insights into fundamental principles of neural function and
behavior [122].

Due to their unique advantages, Drosophila melanogaster (the fruit fly) and zebrafish
(Danio rerio) are essential models in neuroscience research [123,124]. Drosophila melanogaster
offers rapid generation times, genetic tractability, and a relatively simple NS, facilitating
studies on fundamental neurobiological processes like synaptic transmission and neural
circuitry [125]. With their transparent embryos and rapid external development, zebrafish
allow for the real-time observation of neural development, making them invaluable for
studying early neurodevelopmental events [126]. While these models provide crucial
insights into basic neural mechanisms, rats and mice remain the preferred species for
many neuroscience studies due to their closer genetic and physiological resemblance to
humans [1,57]. Their more complex NS, cognitive abilities, and similarity in pathology
make rats and mice superior models for studying complex behaviors, cognitive functions,
neurodegenerative diseases, and cellular bases of learning and memory, offering greater
translational relevance to human conditions [52,127]. Their established genetic tools, ease
of genetic manipulation, and extensive behavioral assays further enhance their importance
in neuroscience research [52,127] (Figure 2).
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several AMs, i.e., Drosophila melanogaster, zebrafish, Xenopus, and rodent, which are integral to
neuroscience research. These models bridge preclinical studies and clinical applications, enabling
the understanding of neural development, disease mechanisms, and therapeutic approaches. Their
collective contributions translate essential research findings from the laboratory into clinical advances,
offering promise for understanding neurological disorders and developing potential treatments.
(Created with BioRender.com. and adapted from [128].)

However, we must never forget that AMs require a mandatory focus on adherence to eth-
ical principles regarding reducing their numbers and exploring NAMs [129]. Indeed, the use-
fulness of these models for scientific research is closely linked to their welfare [57,101,127,129].
Ensuring the welfare of animals involved in research is an ethical responsibility and integral
to the quality and reliability of scientific results [100,101,129]. By providing optimal care,
minimizing stress, and meeting ethical standards, researchers ensure that the data collected
from these models are more reliable, consistent, and translatable to human health [100,101,129].
Ethical treatment of animals is in line with moral responsibility. It enhances the credibility
and validity of neuroscience research, promoting progress and respecting the dignity of the
creatures that contribute to our scientific exploration [130].

3.2. Advancing Neuroscience Responsibly: Exploring Alternative Methods within a Culture of Care

NAMs in neuroscience represents a pivotal shift in research paradigms, aiming to
minimize or eliminate the use of animals while retaining scientific rigor [27,30,33,91]. These
methods encompass diverse approaches, such as computer simulations, organoids, neural
networks, and advanced imaging techniques like fMRI and PET scans [131,132]. They
offer unique advantages, including cost effectiveness, reproducibility, and the ability to
accurately replicate specific neural functions or diseases [27,29,32,87]. Moreover, these
methods permit detailed and controlled investigations into cellular and molecular mecha-
nisms without ethical concerns about animal use [27,30,33,91]. Embracing such alternatives
is rooted in the culture of care, aligning with ethical principles by prioritizing the welfare
of animals and promoting a more humane approach to neuroscience research [27,30,33,91].
However, while these methods offer significant promise, they face challenges, such as
accurately replicating complex neural systems and further validation and refinement to
ensure their reliability and relevance in neuroscientific studies [27,30,33,91].

Various NAMs have been suggested to avoid AM use in neuroscience (Table 1):

- Computer models: Computer models in neuroscience serve as a transformative tool
for researchers and practitioners, providing a comprehensive platform for simulat-

BioRender.com
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ing intricate neural processes [132,133]. This simulation enables a deep exploration
of the behaviors of neurons, synaptic connections, and neural networks, shedding
light on how the brain processes information and generates complex behaviors. Be-
yond fundamental neuroscience, these computational models play a pivotal role in
drug discovery and development, with applications like computer-aided drug design
(CADD) predicting drug–receptor interactions and expediting the identification of
therapeutic compounds [134]. Moreover, these models contribute significantly to
understanding the underlying mechanisms of various neurological and psychiatric
disorders, offering insights into conditions such as epilepsy, Alzheimer’s disease, and
schizophrenia [135,136]. In diagnostics, advanced computational techniques analyze
neuroimaging data, employing machine learning algorithms to identify patterns in
brain scans and enhance diagnostic and prognostic capabilities [135,136]. Addition-
ally, computer models are integral to developing brain–machine interfaces, fostering
communication between the brain and external devices, with potential applications
in assisting individuals with paralysis [135,136]. These models also contribute to
cognitive modeling, helping unravel the intricacies of how the brain processes infor-
mation, learns, and makes decisions. In personalized medicine, computational models
analyze individual genetic, neuroimaging, and clinical data to predict responses to
specific treatments, paving the way for more tailored and effective therapeutic in-
terventions [135,136]. Furthermore, these models serve educational initiatives by
providing interactive and visual tools for learning, allowing students to explore com-
plex concepts and enhance their understanding of neural processes. In summary,
computer models in neuroscience represent a versatile and powerful toolbox, con-
tributing to advancements in drug development, the understanding of brain function
and disorders, and the improvement in diagnostic and therapeutic strategies [135,136].

- Cells and tissue cultures are vital components in neuroscience research, offering ver-
satile platforms for delving into the intricacies of the NS [137–139]. These in vitro
models serve many purposes, from studying fundamental aspects of neuronal func-
tion and communication to modeling neurological disorders. In the context of drug
screening and development, these cultures provide a controlled environment to assess
the effects of potential therapeutic compounds on neuronal cells [137–139]. Addition-
ally, they play a pivotal role in toxicology studies, allowing researchers to evaluate
the impact of various substances on neuronal health without resorting to animal
experimentation [137–139]. The application of these cultures extends to electrophys-
iological studies, offering insights into the electrical activity of neurons and their
networks [137–139]. Furthermore, neural stem cell-derived cultures contribute to
exploring neuroregeneration and repair mechanisms, providing valuable information
for developing strategies to promote neural recovery [137–139]. These in vitro models
also play a crucial role in investigating neurodevelopment, gene expression, and other
facets that collectively enhance our understanding of the complex workings of the
NS [137–139].

- Organoids, miniature three-dimensional tissue structures cultivated in vitro, repre-
sent a revolutionary tool in neuroscience research [140–142]. These self-organizing
structures, resembling simplified organs, offer a unique opportunity to study complex
aspects of brain development and function in a controlled environment [140–142]. In
neuroscience, organoids are employed to model various aspects of the brain, allowing
researchers to explore neuronal connectivity, synapse formation, and the development
of specific brain regions [140–142]. Furthermore, organoids derived from patient
cells enable the modeling of neurological disorders, providing insights into disease
mechanisms and potential therapeutic interventions [140–142]. Their application ex-
tends to drug testing, where organoids serve as a valuable platform for screening and
evaluating the efficacy of pharmaceutical compounds [140–142]. The ability to repro-
duce critical features of the brain’s architecture and functionality makes organoids
a powerful tool for advancing our understanding of neurobiology and addressing
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intricate questions related to brain development, diseases, and potential treatment
strategies [140–142].

Table 1. Summary of some types of NAMs and their contribution to research in the field of neuroscience.

NAMs Implication in Neuroscience Ref.

fMRI and PET
Detailed and controlled investigations into cellular and
molecular mechanisms without ethical concerns about animal
use.

[27,30,33–91,131]

Computer models

Transformative tool for researchers and practitioners providing
a comprehensive platform for simulating intricate neuronal
processes allowing for the following:

(a) Exploration of neurons, synaptic connections, and
neuronal network.

(b) Pivotal role in drug discovery.
(c) Significant contribution to understanding the mechanism

of neurological and psychiatric disorders.
(d) Analysis of neuroimaging data, employing machine

learning algorithms to identify patterns in brain scans.

[133–136]

Cells and tissue cultures

Used for studying fundamental aspects of neuronal function
and communication to model neurological disorders, allowing
for the following:

(a) Drug screening and development.
(b) Valuation of the impact of various substances on

neuronal health without resorting to animal
experimentation.

(c) Analysis of electrical activity of neurons.
(d) Exploration of neurodegeneration and repair

mechanisms, providing valuable information for
developing strategies to promote neuronal recover.

(e) Investigation of neurodevelopment and gene expression.

[137–139]

Organoids

Resembling simplified organs, they offer a unique opportunity
to study complex aspects of brain development and function in
a controlled environment, allowing for the following:

(a) Analysis of connectivity, synapse formation, and the
development of specific brain regions.

(b) Modeling of neurological disorders when they are
derived from patient cells.

(c) Provision of insights into disease mechanisms and
potential therapies.

(d) Evaluation of the efficacy of pharmaceutical compounds.

[140–142]

The culture of care within neuroscience embodies a foundational principle of ethi-
cal alignment, advocating for a conscientious approach in research practices to diminish
reliance on AMs [28,97]. It encourages scientists to contemplate the ethical ramifications
of their work and prioritize humane methodologies within neuroscience research [28,97].
Within this ethos, there is a robust emphasis on exploring and validating NAMs that
minimize or supplant AMs [28,97]. This culture actively nurtures an environment that
fosters innovation and supports the development of progressive techniques, like in vitro
studies, computer simulations, stem cell-derived models, and advanced imaging tech-
nologies [28,97]. Crucially, these alternatives demand rigorous validation and reliability,
ensuring they provide credible and accurate data equivalent to data obtained from tradi-
tional AMs [28,97]. Collaboration among researchers, institutions, and regulatory bodies is
encouraged, advocating for a collective effort to advance and integrate alternative meth-
ods [28,97]. Education and awareness initiatives within the scientific community are vital,
enlightening researchers about the availability and utility of these alternatives [28,97]. Fur-
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thermore, a core facet is a stringent adherence to regulatory guidelines, emphasizing that
ethical considerations and animal welfare are paramount, even when employing innovative
methodologies [28,97]. Ultimately, the culture of care strives for a lasting impact by foster-
ing a shift towards reduced animal use in neuroscience research, aligning with the ethical
responsibility to curtail animal suffering while advancing scientific knowledge [28,97].

4. Conclusions

While laboratory animals have significantly contributed to scientific neuroscience
research, numerous alternative methods and computational analyses are available. How-
ever, when an organic study of an animal is necessary to understand the complexity of
an organism fully, it is crucial to hunt the animal in the most humane way possible and
to provide proper care and treatment. In neuroscience, the culture of care is an essential
paradigm that intertwines ethical considerations, animal welfare, and scientific progress.
It emphasizes a conscientious approach toward research methodologies, advocating for
humane practices while exploring alternatives to traditional AMs [27–29]. Communica-
tion is the linchpin for fostering this culture, enabling collaboration among researchers,
institutions, and regulatory bodies to promote innovative techniques that minimize animal
use [27–29]. Moving forward, integrating a robust communication framework is crucial
for the future of neuroscience research [27–29]. Enhanced communication channels will
bridge gaps among stakeholders, facilitating the exchange of ideas, knowledge, and best
practices [97]. This concerted effort will lead to greater awareness and education within the
scientific community about the availability and utility of NAMs [97]. Moreover, transparent
communication aids in aligning research goals with ethical standards, ensuring that the pur-
suit of scientific excellence remains deeply intertwined with animal welfare. The prospects
of the culture of care and AMs in neuroscience hinge upon a collective commitment to open
dialogue and shared responsibility [27–29,97]. Embracing communication as a cornerstone
will propel scientific advancements while upholding ethical standards and ensuring the
welfare of AMs [143,144].
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