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Abstract: Many physical processes can be described via nonlinear second-order ordinary differential
equations and so, exact solutions to these equations are of interest as, aside from their accuracy, they
may reveal beforehand key properties of the system’s response. This work presents a method for
computing exact solutions of second-order nonlinear autonomous undamped ordinary differential
equations. The solutions are divided into nine cases, each depending on the initial conditions and
the system’s first integral. The exact solutions are constructed via a suitable parametrization of the
unknown function into a class of functions capable of representing its behavior. The solution is shown
to exist and be well-defined in all cases for a general nonlinear form of the differential equation.
Practical properties of the solution, such as its period, time to reach an extreme value or long-term
behavior, are obtained without the need of computing the solution in advance. Illustrative examples
considering different types of nonlinearity present in classical physical systems are used to further
validate the obtained exact solutions.
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1. Introduction

The present work is concerned with the exact solutions of second-order nonlinear
autonomous undamped ordinary differential equations. Many systems in nature can be
modeled using these types of differential equations and so, their solutions are of imme-
diate interest. Examples of applications include the vibrations of nonlinear mechanical
systems [1], the oscillations of current or voltage in a nonlinear electric circuit [2] and
the orbits of a two-body gravitational systems [3], among others.

Many researchers have investigated exact solutions for nonlinear ordinary and par-
tial differential equations. Zhang [4] constructed exact polynomial solutions of linear
second-order differential equations. Ghaemi et al. [5] studied the Hyers–Ulam stability of
exact second-order linear differential equations. Lenci [1] developed exact solutions for
coupled Duffing oscillators. Liao and Tan [6] discussed a general approach to obtain series
solutions of nonlinear differential equations. Bartha et al. [7] computed the stable periodic
orbits for the Mackey–Glass equation. Burmasheva and Prosviryakov [8] developed exact
solutions to Navier–Stokes equations describing a gradient non-uniform unidirectional
vertical vortex fluid flow. Carravetta [9] developed a power series solution for nonlinear
ordinary differential equations having a quadratic form. Liu and Geng [10] obtained exact
solutions to the systems of carbon nanotubes conveying fluid via symmetry reductions.
Korman and Li [11] studied the multiplicity of positive solutions for differential equations
with concave–convex and convex–concave nonlinear behavior. Cheviakov [12] developed
exact closed-form solutions of a fully nonlinear asymptotic two-fluid model. Tur et al. [13]
studied vortex structures with complex points singularities in two-dimensional Euler equa-
tions. Volpert et al. [14] developed exact solutions in front propagation problems with
superdiffusion. MacNeil et al. [15] developed exact and approximate solutions for optical
solitary waves in nematic liquid crystals. Zubarev and Zubareva [16] developed exact solu-
tions for the shape of a two-dimensional conducting liquid drop in a non-uniform electric
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field. Santana et al. [17] developed closed-form solutions for the symmetric nonlinear free
oscillations of pyramidal trusses.

The main idea behind the method developed in the present work consists of identifying
the key properties of the solution and, from them, building a suitable parametrization that
encapsulates the solution’s behavior. The parametrization of the unknown function into an
auxiliary function is then proven to be valid. The invertible function connecting the auxil-
iary function and the independent parameter is obtained, leading to the exact solution of
the problem. Multiple reliable numerical methods for computing the solution of the type of
differential equations considered in the present work exist in the literature [18,19]. Also, ex-
act solutions for particular second-order ordinary differential equations are available [4,17].
However, when dealing with the general exact solution of such problems, there is a gap in
knowledge that the present contribution aims to fill. The main originalities of the present
contribution are listed below:

• Exact solution of general second-order nonlinear autonomous undamped differential
equations;

• Identification of the system class from the initial conditions;
• Identification of the system’s general properties (e.g., period, time to reach extremes,

long term behavior) before computing the solution.

The manuscript is organized as follows. The type of ordinary differential equation
considered in the present work is discussed in Section 2. The solutions are divided into
nine cases, depending on the ability of the system to absorb the energy provided by the
initial conditions. The exact solutions are developed in Sections 2.2.1–2.2.9. The algorithm
allowing for the implementation of the proposed exact solution is discussed in Section 3.
Multiple examples of classical nonlinear mechanical systems are used in Section 4 to
validate the developed exact solution. Finally, some conclusions and suggestions for
further developments are presented in Section 5.

2. Exact Solutions

In this section, the initial value problem (IVP) of interest is defined, and some useful
properties of the solution are discussed. The goal of the present work is to compute a
function x ∈ C2 : R→ I ⊂ R satisfying the following second-order autonomous nonlinear
ordinary differential equation (ODE) for a given function f ∈ C0 : R→ R:

ẍ(t) + f (x(t)) = 0 (1)

Throughout the paper, Ck represents the set of functions that are k times continuously
differentiable. The function x must also satisfy the following initial conditions for given
{t0, x0, ẋ0} ⊂ R:

x(t0) = x0 (2)

ẋ(t0) = ẋ0 (3)

The second-order nonlinear ODE in Equation (1) can be classified as undamped
since the function f (x(t)) does not depend directly on the rate of change ẋ(t). It can also
be classified as autonomous since the function f (x(t)) does not depend directly on the
independent parameter t, but only via the dependent unknown function x(t). A function
x that satisfies Equation (1) together with the initial conditions in Equations (2) and (3) is
said to be a solution of the initial value problem (IVP). The uniqueness of the solution is
not investigated in the present contribution but can be studied via the classical Cauchy–
Lipschitz theorem [20]. Also, under the condition of f ∈ C0, a solution is shown to always
exist. Let U : R→ R be defined as follows:

U(x) =
∫ x

x0

f (s)ds (4)



Dynamics 2023, 3 446

When the differential equation in Equation (1) is used to model a physical system,
the functions f and U represent the internal force and the internal energy of the sys-
tem, respectively. Multiplying Equation (1) by ẋ(t) and integrating over the interval
(t0, t) provides

ẋ(t)2 + 2U(x(t)) = ẋ2
0 ≥ 0 (5)

The principle of the method developed in the present work is to set the solution x as a
composition of two functions z : R→ I and h : R→ R, that is, x(t) = z(h(t)). As it will be
shown, the function z captures the qualitative behavior of the solution (Section 2.2), while
the function h maps the parameter t from the domain of x to the domain of z (Section 2.1).
The following conditions are imposed over the function z:

z′(p) = 0⇔ U(z(p)) = ẋ2
0/2 (6)

∃p0 ∈ R; z(p0) = x0 and sign(z′(p0)) = sign(ẋ0) (7)

∃L ∈ R+; lim
p→pe

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ = L, ∀pe ∈ R; z′(pe) = 0 (8)

2.1. Parameter Mapping

For a fixed function z and a fixed initial parameter p0, the initial condition
x(t0) = z(h(t0)) = z(p0) = x0 allows setting h(t0) = p0. Also, from the condition in
Equation (8), the function g : R→ R+ in Equation (9) is well-defined:

g(p) =


√

ẋ2
0−2U(z(p))
‖z′(p)‖ z′(p) 6= 0

limq→p

√
ẋ2

0−2U(z(q))
‖z′(q)‖ z′(p) = 0

(9)

Replacing the composition x(t) = z(h(t)) in Equation (5) and imposing that h must be
strictly increasing, thus we have

h′(t) = g(h(t)) (10)

The condition of h being strictly increasing could be replaced by h being strictly
decreasing without any loss of generality. It is important, however, that h is strictly
monotonic, so that a one-to-one relation between the domains of x and z can be later
established. The equation above represents a first-order nonlinear ODE on h with initial
condition h(t0) = p0. Since g is strictly positive, an implicit solution to this equation can be
obtained as follows:

t = t0 +
∫ h(t)

p0

ds
g(s)

(11)

The relation in Equation (11) provides a unique value of h(t), ∀t ∈ R and, therefore,
the function h(t) is well-defined and surjective. The implicit character of Equation (11) is
reminiscent of the nonlinearity of Equation (1) and is similar to the one appearing in the
Jacobi amplitude function, used to solve the nonlinear pendulum ODE [21].

Theorem 1. Fixed a function z : R→ I ⊂ R satisfying the conditions in Equations (6)–(8) and
defining h : R→ R via Equation (11), the function x : R→ R with x(t) = z(h(t)) is a solution
of the IVP given in Equations (1)–(3).

Proof. The initial condition in Equation (2) can be verified as

x(t0) = z(h(t0)) = z(p0) = x0 (12)



Dynamics 2023, 3 447

The first derivative of x is given by

ẋ(t) = z′(h(t))h′(t) (13)

= z′(h(t))g(h(t)) (14)

= sign(z′(h(t)))
√

ẋ2
0 − 2U(z(h(t))) (15)

The initial condition in Equation (3) can then be verified as

ẋ(t0) = sign(z′(h(t0)))
√

ẋ2
0 − 2U(z(h(t0))) (16)

= sign(z′(p0))
√

ẋ2
0 − 2U(x0) (17)

= sign(ẋ0)‖ẋ0‖ = ẋ0 (18)

Finally, the ODE in Equation (1) can be verified taking the second derivative of x:

ẍ(t) = sign(z′(h(t)))
− f (z(h(t)))z′(h(t))h′(t)√

ẋ2
0 − 2U(z(h(t)))

(19)

=
− f (z(h(t)))‖z′(h(t))‖g(h(t))√

ẋ2
0 − 2U(z(h(t)))

(20)

= − f (z(h(t))) = − f (x(t)) (21)

2.2. Qualitative Behavior of the Solution

In this section, classes {z} are identified providing functions z that represent the
qualitative behavior of the solution and satisfy the conditions in Equations (6)–(8). Let the
limit sets Sa and Sb be defined as follows:

Sa = {x ≤ x0; U(x) = ẋ2
0/2 and f (x) ≤ 0 if x = x0} (22)

Sb = {x ≥ x0; U(x) = ẋ2
0/2 and f (x) ≥ 0 if x = x0} (23)

From the definitions in Equations (22) and (23), U(x) = ẋ2
0/2 if, and only if, x ∈ Sa ∪ Sb.

Also, Sa ∩ Sb = {x0} if, and only if, ẋ0 = 0 and f (x0) = 0, otherwise Sa ∩ Sb = ∅. When
Sa 6= ∅, we set xa = max(x0) and, when Sb 6= ∅, we set xb = min(Sb). The following
theorem shows how the signs of f (xa) and f (xb) are restrained.

Theorem 2. If Sa 6= ∅, then f (xa) ≤ 0. Also, if Sb 6= ∅, then f (xb) ≥ 0.

Proof. Suppose, by way of contradiction, that f (xa) > 0. From the definition of Sa in
Equation (22), xa < x0. Since U is continuous, ∃x1 ∈ (xa, x0); U(x) > ẋ2

0/2, ∀x ∈ (xa, x1).
As U(x0) ≤ ẋ2

0/2, ∃x2 ∈ (x1, x0]; U(x2) = ẋ2
0/2. If x2 < x0 or x2 = x0 and f (x0) ≤ 0, then

x2 ∈ Sa and x2 > xa, which contradicts the fact that xa = max(Sa). If x2 = x0 and f (x0) > 0,
then ∃x3 ∈ (xa, x0); U(x) < ẋ2

0/2, ∀x ∈ (x3, x0). Since U(x) > ẋ2
0/2 in the interval (xa, x1)

and U(x) < ẋ2
0/2 in the interval (x3, x0), there must exist x4 ∈ (x1, x3) ⊂ (xa, x0) such that

U(x4) = ẋ2
0/2, which once more contradicts the fact that xa = max(Sa).

The proof for xb follows the same path. Suppose, by way of contradiction, that
f (xb) < 0. From the definition of Sb in Equation (23), xb > x0. Since U is continuous,
∃x1 ∈ (x0, xb); U(x) > ẋ2

0/2, ∀x ∈ (x1, xb). As U(x0) ≤ ẋ2
0/2, ∃x2 ∈ [x0, x1); U(x2) = ẋ2

0/2.
If x2 > x0 or x2 = x0 and f (x0) ≥ 0, then x2 ∈ Sb and x2 < xb, which contradicts
the fact that xb = min(Sb). If x2 = x0 and f (x0) < 0, then ∃x3 ∈ (x0, xb); U(x) < ẋ2

0/2,
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∀x ∈ (x0, x3). Since U(x) > ẋ2
0/2 in the interval (x1, xb) and U(x) < ẋ2

0/2 in the interval
(x0, x3), there must exist x4 ∈ (x3, x1) ⊂ (x0, xb) such that U(x4) = ẋ2

0/2, which once more
contradicts the fact that xb = min(Sb).

From the definitions in Equations (22) and (23) and the result in Theorem 2, the IVP is
related to one of the nine cases presented in Table 1.

Table 1. Nine possible cases of the IVP.

Case Lower Bound Upper Bound

1 @xa @xb
2 @xa ∃xb and f (xb) > 0
3 ∃xa and f (xa) < 0 @xb
4 ∃xa and f (xa) < 0 ∃xb and f (xb) > 0
5 @xa ∃xb and f (xb) = 0
6 ∃xa and f (xa) = 0 @xb
7 ∃xa and f (xa) < 0 ∃xb and f (xb) = 0
8 ∃xa and f (xa) = 0 ∃xb and f (xb) > 0
9 ∃xa and f (xa) = 0 ∃xb and f (xb) = 0

As it will be shown, each of these cases have a particular behavior that motivates
the construction of the developed exact solution. More precisely, a class of functions {zn}
having a certain set of properties is defined for the nth case. An arbitrary function zn in this
class does not represent an exact solution to the IVP, but encapsulates the general behavior
of the solution. The link between the function zn and the actual solution of the IVP is then
established via the mapping function hn, representing the evolution of the parametrization.

Due to the criteria of f (xa) = 0 and/or f (xb) = 0 in cases 5 to 9, the solution is sensible
to the initial conditions in these cases, given that any variation on them would push the
solution method to one of the other cases. Therefore, exact solutions are of particular
interest since the numerical errors present in approximate methods can easily misrepresent
the behavior of the solution, as will be shown in Section 4.

2.2.1. Case 1

Case 1 is described by Sa = Sb = ∅, Notice that ẋ0 6= 0 in this case, since ẋ0 = 0 would
imply x0 ∈ Sa ∪ Sb. When the IVP is used to model a physical system, the internal energy
is never able to fully absorb the energy level and, hence, the system continues to evolve
without bounds. These arguments motivate the following conditions over the function
z ∈ C1 : R→ R:

ẋ0z′(p) > 0, ∀p ∈ R (24)

lim
p→−∞

ẋ0z(p) = −∞ (25)

lim
p→+∞

ẋ0z(p) = +∞ (26)

As an example of such a function, one has

z(p) = ẋ0 p (27)

For the example function z in Equation (27), a unique p0 satisfying Equation (7) can be
obtained as

p0 =
x0

ẋ0
(28)

Theorem 3. Under the conditions of case 1, a function z ∈ C1 : R → R that satisfies
Equations (24)–(26) is bijective and also satisfies Equations (6)–(8).
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Proof. Recalling that ẋ0 6= 0, Equation (24) implies that z′(p) 6= 0, ∀p ∈ R. Also, since
Sa ∪ Sb = ∅, U(x) 6= ẋ2

0/2, ∀x ∈ R. Therefore, the condition in Equation (6) is identically
satisfied. The condition in Equation (24) implies that z is strictly monotonic and, therefore,
injective. The limits in equations Equations (25) and (26) then imply that z is neither lower
nor upper bounded. The continuity of z then implies its surjectivity and so ∃p0 ∈ R;
z(p0) = x0. From Equation (24), sign(z′(p)) = sign(ẋ0), ∀p ∈ R and so, the condition in
Equation (7) is satisfied. Finally, since U ∈ C0, z ∈ C1 and z′(p) 6= 0, ∀p ∈ R, the condition
in Equation (8) is also satisfied.

2.2.2. Case 2

Case 2 is described by Sa = ∅, Sb 6= ∅ and f (xb) > 0. When the IVP is used to model a
physical system, its internal energy is able to fully absorb the energy level only at one point
to the right of the initial condition and then bounces to negative infinity. These arguments
motivate the following conditions over the function z ∈ C2 : R→ (−∞, xb]:

z′′(p) < 0, ∀p ∈ R (29)

∃pb ∈ R; z(pb) = xb (30)

As an example of such a function, one has

z(p) = xb − p2 (31)

For the example function z in Equation (31), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 = − sign(ẋ0)
√

xb − x0 (32)

Theorem 4. Under the conditions of case 2, a function z ∈ C2 : R → (−∞, xb] that satisfies
Equations (29) and (30) is surjective and also satisfies Equations (6)–(8).

Proof. The co-domain and continuity of z imply that z′(pb) = 0, since z(pb) = xb is a
local (and global) maximum. Therefore, Equation (29) implies that z is strictly increasing
in (−∞, pb] and strictly decreasing in [pb,+∞). Hence, z(p) = xb or z′(p) = 0 imply
p = pb. From the definition of case 2, U(z(p)) = ẋ2

0/2 implies z(p) = xb. The condition in
Equation (6) is then satisfied.

Since z′(p) does not approach 0 as p tends to ±∞, z is not lower bounded neither
in (−∞, pb] nor in [pb,+∞). Therefore, the restrictions z1 : (−∞, pb] → (−∞, xb] and
z2 : [pb,+∞) → (−∞, xb] are bijective. The following p0 satisfies then the conditions in
Equation (7):

p0 =

(
1 + sign(ẋ0)

2

)
z−1

1 (x0) +

(
1− sign(ẋ0)

2

)
z−1

2 (x0) (33)

Applying L’Hôpital’s rule, the limit as p→ pb can be determined as

lim
p→pb

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ =

√
− f (xb)

z′′(pb)
(34)

The condition in Equation (8) is then also satisfied.

From Equation (30), x(tb) = z(h(tb)) = xb implies h(tb) = pb. The time tb to reach the
maximum value can then be determined from Equation (11) as follows:

tb = t0 +
∫ pb

p0

ds
g(s)

(35)
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2.2.3. Case 3

Case 3 is described by Sa 6= ∅, Sb = ∅ and f (xa) < 0. When the IVP is used to model a
physical system, its internal energy is able to fully absorb the energy level only at one point
to the left of the initial condition and then bounces to positive infinity. It is worth noting
that this case corresponds to the symmetric inverse of case 2 in Section 2.2.2 and, hence,
the solutions have similar behavior. These arguments motivate the following conditions
over the function z ∈ C2 : R→ [xa,+∞):

z′′(p) > 0, ∀p ∈ R (36)

∃pa ∈ R; z(pa) = xa (37)

As an example of such a function, one has

z(p) = xa + p2 (38)

For the example function z in Equation (38), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 = + sign(ẋ0)
√

x0 − xa (39)

Theorem 5. Under the conditions of case 3, a function z ∈ C2 : R → [xa,+∞) that satisfies
Equations (36) and (37) is surjective and also satisfies Equations (6)–(8).

Proof. The co-domain and continuity of z imply that z′(pa) = 0, since z(pa) = xa is a
local (and global) minimum. Therefore, Equation (36) implies that z is strictly decreasing
in (−∞, pa] and strictly increasing in [pa,+∞). Hence, z(p) = xa or z′(p) = 0 imply
p = pa. From the definition of case 3, U(z(p)) = ẋ2

0/2 implies z(p) = xa. The condition in
Equation (6) is then satisfied.

Since z′(p) does not approach 0 as p tends to ±∞, z is not upper bounded neither
in (−∞, pa] nor in [pa,+∞). Therefore, the restrictions z1 : (−∞, pa] → [xa,+∞) and
z2 : [pa,+∞) → [xa,+∞) are bijective. The following p0 satisfies then the conditions in
Equation (7):

p0 =

(
1− sign(ẋ0)

2

)
z−1

1 (x0) +

(
1 + sign(ẋ0)

2

)
z−1

2 (x0) (40)

Applying L’Hôpital’s rule, the limit as p→ pa can be determined as follows:

lim
p→pa

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ =

√
− f (xa)

z′′(pa)
(41)

The condition in Equation (8) is then also satisfied.

From Equation (37), x(ta) = z(h(ta)) = xa implies h(ta) = pa. The time ta to reach the
minimum value can then be determined from Equation (11) as follows:

ta = t0 +
∫ pa

p0

ds
g(s)

(42)

2.2.4. Case 4

Case 4 is described by Sa 6= ∅, Sb 6= ∅, f (xa) < 0 and f (xb) > 0. The solution’s
behavior is lower and upper bounded. When the IVP is used to model a physical system,
its internal energy is able to fully absorb the energy level at points to the left and right of
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the initial condition and, hence, bounces between them. These arguments motivate the
following conditions over the function z ∈ C2 : R→ [xa, xb]:

z is periodic (43)

∃!pa ∈ [0, p); z(pa) = xa (44)

∃!pb ∈ [0, p); z(pb) = xb (45)

z′(p) = 0, p ∈ [0, p) =⇒ p ∈ {pa, pb} (46)

z′′(pa)z′′(pb) 6= 0 (47)

In Equations (44)–(46), p is the period of z. As an example of such a function, one has

z(p) =
(

xa + xb
2

)
+

(
xb − xa

2

)
sin(p) (48)

For the example function z in Equation (31), a p0 satisfying Equation (7) can be
obtained as follows:

p0 = sign(ẋ0) arcsin
(

2x0 − xa − xb
xb − xa

)
+ (1− sign(ẋ0))

π

2
(49)

Theorem 6. Under the conditions of case 4, a function z ∈ C2 : R → [xa, xb] that satisfies
Equations (43)–(47) also satisfies Equations (6)–(8).

Proof. Recalling Equation (46), z′(p) = 0 implies p = pa + np or p = pb + np, with
n ∈ N. From the definition of case 4, U(z(p)) = ẋ2

0/2 implies z(p) = xa or z(p) = xb.
Equations (44) and (45) then imply that p = pa + np or p = pb + np, with n ∈ N. The con-
dition in Equation (6) is then satisfied.

It is assumed, without loss of generality, that pa < pb. From Equation (46) and
recalling that z ∈ C2, z′(p) > 0 in (pa, pb) and z′(p) < 0 in (pb, pa + p), the restrictions
z1 : [pa, pb] → [xa, xb] and z2 : [pb, pa + p] → [xa, xb] are then bijective. The following p0
satisfies then the conditions in Equation (7):

p0 =

(
1 + sign(ẋ0)

2

)
z−1

1 (x0) +

(
1− sign(ẋ0)

2

)
z−1

2 (x0) (50)

The limit as p→ pa + np, with n ∈ N, is determined via L’Hôpital’s rule, taking into
account that z′′(pa) > 0 (Equation (47)):

lim
p→pa+np

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ =

√
− f (xa)

z′′(pa)
(51)

The limit as p→ pb + np, with n ∈ N, is determined via L’Hôpital’s rule, taking into
account that z′′(pb) < 0 (Equation (47)):

lim
p→pb+np

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ =

√
− f (xb)

z′′(pb)
(52)

The condition in Equation (8) is then also satisfied.

The periodicity of z implies the periodicity of z′ and g. From Equation (11), the follow-
ing relation can then be obtained:

h−1(p + p) = h−1(p) + h−1(p)− t0 (53)
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The periodicity of the solution x, with period t = h−1(p)− t0, can then be shown:

x(t + t) = z(h(t + t)) = z(h(t) + p) = z(h(t)) = x(t) (54)

2.2.5. Case 5

Case 5 is described by Sa = ∅, Sb 6= ∅ and f (xb) = 0. Notice that ẋ0 6= 0 in this case,
since ẋ0 = 0 would imply x0 ∈ Sa. When the IVP is used to model a physical system, its
internal energy is never able to fully absorb the energy level, but tends to/from a point
(located to the right of the initial condition) and bounces from/to infinity. These arguments
motivate the following conditions over the function z ∈ C2 : R→ (−∞, xb):

z′′(p) < 0, ∀p ∈ R (55)

lim
p→+∞

z(ẋ0 p) = xb (56)

As an example of such a function, one has

z(p) = xb − exp(−ẋ0 p) (57)

For the example function z in Equation (57), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 = − ln(xb − x0)

ẋ0
(58)

Theorem 7. Under the conditions of case 5, a function z ∈ C2 : R → (−∞, xb) that satisfies
Equations (55) and (56) is bijective and also satisfies Equations (6)–(8).

Proof. The limit in Equation (56) implies that z′(ẋ0 p) → 0 as p → +∞. Therefore,
from Equation (55), ẋ0z′(p) > 0, ∀p ∈ R and z is injective. Recalling the definition of
case 5 and the co-domain of z, z(p) /∈ Sa ∪ Sb, ∀p ∈ R and the condition in Equation (6) is
identically satisfied. Equation (55) implies that z′(ẋ0 p) does not approach 0 as p→ −∞ and
hence, z is not lower bounded. The continuity of z then implies its surjectivity and so the
condition in Equation (7) is satisfied. Finally, since U ∈ C0, z ∈ C2 and z′(p) 6= 0, ∀p ∈ R,
the condition in Equation (8) is also satisfied.

2.2.6. Case 6

Case 6 is described by Sa 6= ∅, Sb = ∅ and f (xa) = 0. Notice that ẋ0 6= 0 in this case,
since ẋ0 = 0 would imply x0 ∈ Sb. When the IVP is used to model a physical system, its
internal energy is never able to fully absorb the energy level, but tends to/from a point
(located to the left of the initial condition) and bounces from/to infinity. It is worth noting
that this case corresponds to the symmetric inverse of case 5 in Section 2.2.5 and, hence,
the solutions have a similar behavior. These arguments motivate the following conditions
over the function z ∈ C2 : R→ (xa,+∞):

z′′(p) > 0, ∀p ∈ R (59)

lim
p→−∞

z(ẋ0 p) = xa (60)

As an example of such a function, one has

z(p) = xa + exp(+ẋ0 p) (61)
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For the example function z in Equation (61), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 = +
ln(x0 − xa)

ẋ0
(62)

Theorem 8. Under the conditions of case 6, a function z ∈ C2 : R → (xa,+∞) that satisfies
Equations (59) and (60) is bijective and also satisfies Equations (6)–(8).

Proof. The limit in Equation (60) implies that z′(ẋ0 p) → 0 as p → +∞. Therefore,
from Equation (55), ẋ0z′(p) > 0, ∀p ∈ R and z is injective. Recalling the definition of
case 5 and the co-domain of z, z(p) /∈ Sa ∪ Sb, ∀p ∈ R and the condition in Equation (6) is
identically satisfied. Equation (55) implies that z′(ẋ0 p) does not approach 0 as p→ −∞ and
hence, z is not lower bounded. The continuity of z then implies its surjectivity and so the
condition in Equation (7) is satisfied. Finally, since U ∈ C0, z ∈ C2 and z′(p) 6= 0, ∀p ∈ R,
the condition in Equation (8) is also satisfied.

2.2.7. Case 7

Case 7 is described by Sa 6= ∅, Sb 6= ∅, f (xa) < 0 and f (xb) = 0. When the IVP is
used to model a physical system, its internal energy is able to fully absorb the energy level
at a point to the left of the initial condition and tends from and to a point to the right of the
initial condition that is also able to fully absorb the energy level. These arguments motivate
the following conditions over the function z ∈ C2 : R→ [xa, xb):

lim
p→−∞

z(p) = xb (63)

lim
p→+∞

z(p) = xb (64)

∃!pa ∈ R; z(pa) = xa (65)

z′(p) 6= 0, ∀p 6= pa (66)

As an example of such a function, one has

z(p) = xb −
xb − xa

1 + p2 (67)

For the example function z in Equation (67), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 = + sign(ẋ0)

√
x0 − xa

xb − x0
(68)

Theorem 9. Under the conditions of case 7, a function z ∈ C2 : R → [xa, xb) that satisfies
Equations (63)–(66) is surjective and also satisfies Equations (6)–(8).

Proof. From Equations (63)–(65) and the co-domain of z, z′(p) = 0 implies p = pa and
z′(p) < 0 in (−∞, pa) and z′(p) > 0 in (pa,+∞). Recalling the definition of case 7,
U(z(p)) = ẋ2

0/2 implies z(p) = xa, implying p = pa. The condition in Equation (6) is
then satisfied.

The limit conditions in Equations (63) and (64) and the continuity of z imply its
surjectivity in (−∞, pa) and in (pa,+∞). Hence, the restrictions z1 : (−∞, pa] → [xa, xb)
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and z2 : [pa,+∞)→ [xa, xb) are bijective. The following p0 satisfies then the conditions in
Equation (7):

p0 =

(
1− sign(ẋ0)

2

)
z−1

1 (x0) +

(
1 + sign(ẋ0)

2

)
z−1

2 (x0) (69)

The limit as p→ pa is determined via L’Hôpital’s rule:

lim
p→pa

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ =

√
− f (xa)

z′′(pa)
(70)

The condition in Equation (8) is then also satisfied.

From Equation (65), x(ta) = z(h(ta)) = xa implies h(ta) = pa. The time ta to reach the
minimum value can then be determined from Equation (11) as follows:

ta = t0 +
∫ pa

p0

ds
g(s)

(71)

2.2.8. Case 8

Case 8 is described by Sa 6= ∅, Sb 6= ∅, f (xa) = 0 and f (xb) > 0. When the IVP is
used to model a physical system, its internal energy is able to fully absorb the energy level
at a point to the right of the initial condition and tends from and to a point to the left of
the initial condition that is also able to fully absorb the energy level. It is worth noting
that this case corresponds to the symmetric inverse of case 7 in Section 2.2.7 and, hence,
the solution have a similar behavior. These arguments motivate the following conditions
over the function z ∈ C2 : R→ (xa, xb]:

lim
p→−∞

z(p) = xa (72)

lim
p→+∞

z(p) = xa (73)

∃!pb ∈ R; z(pb) = xb (74)

z′(p) 6= 0, ∀p 6= pb (75)

As an example of such a function, one has

z(p) = xa +
xb − xa

1 + p2 (76)

For the example function z in Equation (76), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 = − sign(ẋ0)

√
xb − x0

x0 − xa
(77)

Theorem 10. Under the conditions of case 8, a function z ∈ C2 : R → (xa, xb] that satisfies
Equations (72)–(75) is surjective and also satisfies Equations (6)–(8).

Proof. From Equations (72)–(74) and the co-domain of z, z′(p) = 0 implies p = pb and
z′(p) > 0 in (−∞, pb) and z′(p) < 0 in (pb,+∞). Recalling the definition of case 8,
U(z(p)) = ẋ2

0/2 implies z(p) = xb, implying p = pb. The condition in Equation (6) is
then satisfied.

The limit conditions in Equations (72) and (73) and the continuity of z imply its
surjectivity in (−∞, pb] and in [pb,+∞). Hence, the restrictions z1 : (−∞, pb] → [xa, xb)
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and z2 : [pb,+∞)→ [xa, xb) are bijective. The following p0 satisfies then the conditions in
Equation (7):

p0 =

(
1 + sign(ẋ0)

2

)
z−1

1 (x0) +

(
1− sign(ẋ0)

2

)
z−1

2 (x0) (78)

The limit as p→ pb is determined via L’Hôpital’s rule:

lim
p→pb

√
ẋ2

0 − 2U(z(p))

‖z′(p)‖ =

√
− f (xb)

z′′(pb)
(79)

The condition in Equation (8) is then also satisfied.

From Equation (74), x(tb) = z(h(tb)) = xb implies h(tb) = pb. The time tb to reach the
maximum value can then be determined from Equation (11) as follows:

tb = t0 +
∫ pb

p0

ds
g(s)

(80)

2.2.9. Case 9

Case 9 is described by Sa 6= ∅, Sb 6= ∅, f (xa) = 0 and f (xb) = 0. When the IVP is
used to model a physical system, its internal energy is never able to fully absorb the energy
level, but tends from and to points to the left and right to the initial condition that are able
to fully absorb the energy level. These arguments motivate the following conditions over
the function z ∈ C1 : R→ (xa, xb):

lim
p→−∞

z(ẋ0 p) = xa (81)

lim
p→+∞

z(ẋ0 p) = xb (82)

ẋ0z′(p) > 0, ∀p ∈ R (83)

As an example of such a function, one has

z(p) =
(

xa + xb
2

)
+

(
xb − xa

π

)
arctan(ẋ0 p) (84)

For the example function z in Equation (84), a unique p0 satisfying Equation (7) can be
obtained as follows:

p0 =
1
ẋ0

tan
(

π

2

(
2x0 − xa − xb

xb − xa

))
(85)

Theorem 11. Under the conditions of case 9, a function z ∈ C1 : R → (xa, xb) that satisfies
Equations (81)–(83) also satisfies Equations (6)–(8).

Proof. Recalling that ẋ0 6= 0, Equation (83) implies that z′(p) 6= 0, ∀p ∈ R. From the
definition of case 9 and the co-domain of z, U(z(p)) 6= ẋ2

0/2, ∀p ∈ R. Therefore, the con-
dition in Equation (6) is identically satisfied. The limits in Equations (81) and (82) and
the continuity of z imply its continuity. Hence, ∃p0 ∈ R; z(p0) = x0. From Equation (83),
sign(z′(p)) = sign(ẋ0), ∀p ∈ R and so, the condition in Equation (7) is satisfied. Fi-
nally, since U ∈ C0, z ∈ C1 and z′(p) 6= 0, ∀p ∈ R, the condition in Equation (8) is
also satisfied.
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3. Algorithm

In this section, an algorithm to compute the exact solution of the IVP is described.
The algorithm takes as inputs the function f ∈ C0, the initial condition parameters t0, x0
and ẋ0 and the current parameter t and outputs the exact solution x(t).

The first step consists of determining the IVP type (Table 1), which is determined by
checking the existence of points to left (xa) and to the right (xb) of x0 such that U(x) = ẋ2

0/2.
Unfortunately, there are not analytical methods to determine the existence of roots of a
general function and so, a numerical approach is used. More precisely, the algorithm takes
as additional input the boundaries (xa < x0 and xb > x0) and divides the intervals [xa, x0]
and [x0, xb] in a uniform mesh. Next, the bisection method is used to determine if a point xa
of Sa exists in each sub-interval of [xa, x0] and if a point xb of Sb exists in each sub-interval
of [x0, xb]. Taking the direction starting with x0 in each case ensures that, if the points xa
and/or xb are found, they represent the maximum and minimum of Sa and Sb, respectively.
The bisection method is also used in each of these sub-intervals to search for points x with
f (x) = 0. If this later condition is satisfied, the condition U(x) = ẋ2

0/2 is checked and the
special points of cases 5 to 9 can be computed.

The use of the bisection method assumes that the search function is monotonic in
each of the sub-intervals. This hypothesis can be assured by controlling the size of the
uniform mesh. It is worthy noting that, for specific functions U or f analytical tools can
often be applied to determine the existence of the roots, excluding the need for numerical
root-finding methods.

Once the type of the IVP is determined, a function z respecting the conditions in
Equations (6)–(8) can be chosen. In the present work, the example functions z and initial
parameters p0 in Sections 2.2.1–2.2.9 are used; however, any function in the given class
could be adopted. For a fixed z, the value of h(t) can be determined from Equation (11)
and the exact solution can be computed as x(t) = z(h(t)). Due to the careful definition of
the function g in Equation (9), the solution can be computed without any singularities or
numerical instabilities. Moreover, since the function h is strictly monotonic, the implicit
relation in Equation (11) can always be solved to an arbitrary level of precision. It is worth
noting that, the use of a numerical approach is used to determine the type of the IVP and
compute the mapping h(t) for a given parameter t, does not spoil the exactness of the
solution x(t) since the latter can be computed to an arbitrary level of precision and no
approximation of the ODE is employed, yielding a solution that is independent of the time
step size.

4. Examples and Validation

In this section, IVPs used to model well-known nonlinear mechanical systems are used
to showcase the accuracy and capacities of the developed method. The explicit fourth-order
Runge–Kutta [22] and implicit Newmark [18] numerical methods are used for comparison,
where a converged time step is adopted. Special initial conditions, close or equal to critical
points, are used to highlight the exactness of the developed solution even when numerical
methods fail due to drift errors.

4.1. Nonlinear Pendulum

The first example studied in this section is the nonlinear pendulum (Figure 1). The pen-
dulum consists of a point mass m attached to a rigid string with length L. The point mass
is subjected to the tension force of the string and the action of gravity with acceleration g.
The equation of motion of the system can be written as follows [23,24]:

θ̈(t) +
g
L

sin(θ(t)) = 0 (86)
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with initial conditions

θ(t0) = θ0 (87)

θ̇(t0) = θ̇0 (88)

The force f and energy U functions of the system can then be obtained as follows:

f (θ) =
g
L

sin(θ) (89)

U(θ) =
g
L
[cos(θ0)− cos(θ)] (90)

m

m

Lθ(t)

Figure 1. Nonlinear pendulum.

The internal energy function U of the nonlinear pendulum is shown in Figure 2. Three
initial conditions, corresponding to cases 1, 4 and 9 from Sections 2.2.1, 2.2.4 and 2.2.9,
respectively, are considered in order to highlight the capabilities of the developed exact
solution in extreme cases. Considering the downward initial position θ0 = 0, the critical
initial velocity θ̇∗0 that brings the pendulum to the upward position (θ(t∗) = π) can be
obtained from Equation (90):

θ̇∗0 = 2
√

g
L

(91)
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Figure 2. Internal energy of the nonlinear pendulum.
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The first initial condition studied is taken as θ0 = 0 and θ̇0 = 1.005θ̇∗0 , corresponding
to an energy level just above the critical one and is represented by the red line in Figure 2.
The system is then never capable of fully absorbing the energy level and a certain amount
of kinetic energy is always present, corresponding to the behavior described in Section 2.2.1.
The results obtained with the developed exact solution, the Newmark and RK4 methods,
are shown in Figure 3. As can be observed, the developed exact solution shows a good
agreement with the numerical methods and represents well the general monotonic behavior.
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Figure 3. Nonlinear pendulum: Case 1.

The second initial condition studied is taken as θ0 = 0 and θ̇0 = 0.995θ̇∗0 , corresponding
to an energy level just below the critical one and is represented by the blue line in Figure 2.
The system is then capable of fully absorbing the energy level at points to the left and to
the right of the initial position, corresponding to the behavior described in the Section 2.2.4.
The results obtained with the developed exact solution, the Newmark and RK4 methods
are shown in Figure 4. As can be observed, the developed exact solution shows a good
agreement with the numerical methods and represents well the general oscillatory behavior.
It is worth noting that, while both numerical methods starts to diverge from the periodic
behavior, the exact solution retains this key property. Moreover, the dashed black lines
in Figure 4 represent the period t = 4.748945 s, calculated via Equation (54), showcasing
its accuracy.
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Figure 4. Nonlinear pendulum: Case 4.
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Although the two numerical methods appear to drift by the same amount, in Figure 4
the red (RK4) and black (Newmark) points vary for the same values of the parameter t,
and for t > 6 these points start to visibly differ from one another, indicating loss of accuracy
of the numerical methods. Moreover, the accuracy of the exact solution can be verified
by the dash lines indicating the period of the response. Since the energy provided by the
initial conditions in this case is smaller than the critical one, the solution must always be
periodic. Until the second dashed line (t ≈ 9.5), all solutions have approximately the same
period. However, after this point, the solutions from the two numerical methods (via drift
errors) have a smaller period, while the response from the exact solution maintain the
original period.

For a null initial velocity (θ̇0 = 0), the response of the system is always periodic, falling
in case 4 of Section 2.2.4. The period of the response can than be calculated as a function
of initial positions θ0 as shown in Figure 5. These calculations are performed without the
need of computing the time response of the system in advance and highlight an advantage
of exact methods.
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Figure 5. Period of the nonlinear pendulum as a function of the initial conditions.

The third initial condition studied is taken as θ0 = 0 and θ̇0 = θ̇∗0 , corresponding to
an energy level equal to the critical one and is represented by the green line in Figure 2.
The system is then never capable of fully absorbing the energy level but approaches such
points to the left and to the right of the initial position, corresponding to the behavior
described in the Section 2.2.9. The results obtained with the developed exact solution,
the Newmark and RK4 methods are shown in Figure 6. As can be observed, the developed
exact solution shows a good agreement with the numerical methods at the beginning.
However, as this initial condition corresponds to a critical one, even small numerical drift
errors will throw the numerical response to either case 1 or case 4 described above. These
phenomena can be clearly observed in Figure 6 as the Newmark method drift the solution
to case 1 (monotonic behavior), while the RK4 method drifts the solution to case 4 (periodic
behavior). The developed exact solution, however, retains the asymptotic behavior of the
system, highlighting once more the advantages of exact methods.
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Figure 6. Nonlinear pendulum: Case 9.

4.2. Nonlinear Pyramidal Truss

The next example studied in this section is the nonlinear pyramidal truss (Figure 7).
The truss consists of n bars attached to central point, at a height H, that can only move
vertically (z) and are blocked in the base, that forms a circle with radius R. The central point
is subjected to the tension force of all the bars. The bars have a section with area A and are
made of a material with elastic modulus E and specific mass ρ. The natural frequency ω0
of the system in the reference configuration is then given by [17]

ω0 =
3EH2

ρL4 (92)

where L =
√

R2 + H2.
Considering a logarithmic strain measure and the adimensional time t = ω0t and

position z = z/H, the equation of motion of the system can be written as follows [17]:

d2z

dt2 (t) + β4 ln

(√
z(t)2 + α2

β

)
z(t)

z(t)2 + α2 = 0 (93)

where α = R/H and β = L/H =
√

1 + α2.

(a) (b)

Figure 7. Nonlinear pyramidal truss. (a) Model; (b) deformed.
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The force f and energy U functions of the system can then be obtained:

U(z) =
β4

2
ln

(√
z2 + α2

β

)2

(94)

f (z) = β4 ln

(√
z2 + α2

β

)
z

z2 + α2
(95)

The internal energy function U of the nonlinear pyramidal truss is shown in Figure 8.
Two initial conditions, corresponding to cases 7 and 8 from Sections 2.2.7 and 2.2.8, respec-
tively, are considered in order to highlight the capabilities of the developed exact solution
in extreme cases. The truss has three static equilibrium points, that is, zeros of the force
function f . The equilibrium points z = ±1 are stable, while the equilibrium point z = 0 is
unstable, as indicated by the curvature of this points in Figure 8. Starting from any of the
stable equilibrium points (z = ±1) the critical velocity ż∗0 required to reach the unstable
equilibrium point (z = 0) can be obtained:

ż∗0 = ∓β2 ln
(

β

α

)
(96)
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Figure 8. Internal energy of the nonlinear pyramidal truss.

The first initial condition studied is taken as z0 = −1 and ż0 = +ż∗0 , corresponding
to an energy level equal to the critical one and is represented by the blue line in Figure 8.
The system is capable of fully absorbing the energy level in a point to left of the initial
condition and approaches such a point to the right of the initial condition, corresponding
to the behavior described in the Section 2.2.7. The results obtained with the developed
exact solution, the Newmark and RK4 methods are shown in Figure 9. As can be observed,
the developed exact solution shows a good agreement with the numerical methods at the
beginning. However, as this initial condition corresponds to a critical one, even small
numerical drift errors will throw the numerical response to case 4, either oscillating around
just one stable equilibrium point or around both of them. These phenomena can be clearly
observed in Figure 9 as the Newmark method drifts the solution to case 4. For a larger
time interval, the RK4 also showed such drift numerical errors. The developed exact
solution, however, retains the asymptotic behavior of the system, highlighting once more
the advantages of exact methods. Moreover, the dashed black line in Figure 9 represents
the time t = 1.696756 s to reach the minimum value xa = −1.732043, calculated via
Equation (71), showcasing its accuracy.
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Figure 9. Nonlinear pyramidal truss: Case 7.

The second initial condition studied is taken as z0 = +1 and ż0 = +ż∗0 , corresponding
to an energy level equal to the critical one and is represented by the red line in Figure 8.
The system is capable of fully absorbing the energy level in a point to right of the initial
condition and approaches such a point to the left of the initial condition, corresponding
to the behavior described in Section 2.2.8. The results obtained with the developed exact
solution, the Newmark and RK4 methods are shown in Figure 10. As can be observed,
the developed exact solution shows a good agreement with the numerical methods at the
beginning. However, as this initial condition corresponds to a critical one, even small
numerical drift errors will throw the numerical response to case 4, either oscillating around
just one stable equilibrium point or around both of them. These phenomena can be
clearly observed in Figure 10 as the Newmark method drifts the solution to case 4. For a
larger time interval, the RK4 also showed such drift numerical errors. The developed
exact solution, however, retains the asymptotic behavior of the system, highlighting once
more the advantages of exact methods. Moreover, the dashed black line in Figure 10
represents the time t = 1.696756 s to reach the maximum value xb = 1.732043, calculated
via Equation (80), showcasing its accuracy.
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Figure 10. Nonlinear pyramidal truss: Case 8.
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4.3. Spike System

The next example of this section consists of a system where the internal energy spikes
around an unstable equilibrium point. This kind of behavior is common in chemical
systems or probabilistic models [25–27]. The equation of motion of the system can be
described as follows:

ẍ(t)− 2x(t) exp(4− x(t)2) = 0 (97)

The force f and energy U functions of the system can then be obtained:

f (x) = −2x exp(4− x2) (98)

U(z) = exp(4− x2)− 1 (99)

The internal energy function U of the spike system is shown in Figure 11. Four initial
conditions, corresponding to cases 2, 3, 5 and 6 from Sections 2.2.2, 2.2.3, 2.2.5 and 2.2.6,
respectively, are considered in order to highlight the capabilities of the developed exact
solution in extreme cases. The system has one unstable equilibrium point at x = 0.

The first initial condition studied is taken as x0 = −2 and ẋ0 = +2
√

2U(0.5), corre-
sponding to an energy level that makes the system reaches the maximum point xb = −0.50
and is represented by the blue line in Figure 11. The system is capable of fully absorbing the
energy level only to a point to right of the initial condition, corresponding to the behavior
described in the Section 2.2.2. The results obtained with the developed exact solution,
the Newmark and RK4 methods are shown in Figure 12. As can be observed, the developed
exact solution shows a good agreement with the numerical methods and represents well
the general parabolic behavior. Moreover, the dashed black line in Figure 12 represents the
time t = 0.2707428 s to reach the maximum value, calculated via Equation (35), showcasing
its accuracy.

The second initial condition studied is taken as x0 = +2 and ẋ0 = −2
√

2U(0.5), cor-
responding to an energy level that makes the system reach the minimum point xb = +0.50
and is represented by the red line in Figure 11. The system is capable of fully absorbing the
energy level only to a point to left of the initial condition, corresponding to the behavior
described in Section 2.2.3. The results obtained with the developed exact solution, the New-
mark and RK4 methods are shown in Figure 13. As can be observed, the developed exact
solution shows a good agreement with the numerical methods and represents well the
general parabolic behavior. Moreover, the dashed black line in Figure 13 represents the
time t = 0.2707428 s to reach the maximum value, calculated via Equation (42), showcasing
its accuracy.

The third initial condition studied is taken as x0 = −2 and ẋ0 = +2
√

2U(0), corre-
sponding to an energy level equal to the critical one, making the system approach the
critical point x = 0 and is represented by the green line in Figure 11. The system is never
capable of fully absorbing the energy level but approaches such a point to right of the
initial condition, corresponding to the behavior described in the Section 2.2.5. The results
obtained with the developed exact solution, the Newmark and RK4 methods are shown in
Figure 14. As can be observed, the developed exact solution shows a good agreement with
the numerical methods and represents well the general asymptotic behavior.

The fourth initial condition studied is taken as x0 = +2 and ẋ0 = −2
√

2U(0), cor-
responding to an energy level equal to the critical one, making the system approach the
critical point x = 0 and is represented by the magenta line in Figure 11. The system is
never capable of fully absorbing the energy level but approaches such a point to left of
the initial condition, corresponding to the behavior described in Section 2.2.6. The results
obtained with the developed exact solution, the Newmark and RK4 methods are shown in
Figure 15. As can be observed, the developed exact solution shows a good agreement with
the numerical methods and represents well the general asymptotic behavior.
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Figure 13. Spike system: Case 3.



Dynamics 2023, 3 465

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

z(
t)

t

Exact RK4 Newmark

Figure 14. Spike system: Case 5.

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

z(
t)

t

Exact RK4 Newmark

Figure 15. Spike system: Case 6.

5. Discussion and Conclusions

In this work, exact solutions regarding second-order nonlinear autonomous undamped
differential equations were developed. The behavior of the solution was linked to its energy
level and nine classes of solutions were identified. The exact solutions were constructed
via a suitable parametrization of the unknown function to a capable class that encapsulates
its nonlinear response. The solution was shown to exist and be well-defined over all cases,
for a general nonlinear form of the differential equation. Illustrative examples considering
different types of nonlinearity were used to further validate the obtained exact solutions.

In future works, the exact solution could perhaps be extended to damped systems.
For undamped systems, the energy level is constant and so, the topology of the solution
remains the same as the system evolves. For damped systems, this is not generally the
case. The solution can pass from one topological form to another as the energy level of the
system changes. These considerations could be taken into account when proposing a new
parametrization to the solution.

The extension of the exact solution to non-autonomous systems or systems with
multiple degrees of freedom is not trivial. In these cases, the solution can be chaotic and so,
identifying a general behavior to propose a parametrization seems to be a very difficult
task. For the non-autonomous case, a scalable form could perhaps be used to parametrize
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the solution. In this case, attention should be made to the change of suitable form of the
parametrization as the solution evolves.
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