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Abstract: This manuscript relates to the exploiting of the abstract calculus pattern (ACP) for the
(numerical) solution of ordinary differential equation (ODEs) systems, which are ubiquitous mathe-
matical formulations of many physical (dynamical) phenomena. We present FOODIE, a software
suite aimed to numerically solve ODE problems by means of a clear, concise, and efficient abstract
interface. The results presented prove manifold findings, in particular that our ACP approach en-
ables ease of code development, clearness and robustness, maximization of code re-usability, and
conciseness comparable with computer algebra system (CAS) programming (interpreted) but with
the computational performance of compiled programming. The proposed programming model is
also proven to be agnostic with respect to the parallel paradigm of the computational architecture:
the results show that FOODIE applications have good speedup with both shared (OpenMP) and
distributed (MPI, CAF) memory architectures. The present paper is the first announcement of the
FOODIE project: the current implementation is extensively discussed, and its capabilities are proved
by means of tests and examples.

Keywords: ordinary differential equations (ODE); partial differential equations (PDE); object-oriented
programming (OOP); abstract calculus pattern (ACP); Fortran

1. Introduction
1.1. Background

The initial value problem (IVP, or Cauchy problem, see [1]) constitutes a class of
mathematical models of paramount relevance, being applied to the modeling of a wide
range of dynamic phenomena. Briefly, an IVP is an ordinary differential equation (ODE)
system coupled with specified initial values of the unknown state variables, the solution of
which are searched for at a given time after the initial time considered.

The prototype of IVP can be expressed as

Ut = R(t, U)
U0 = U(t0)

(1)

where U(t) is the vector of state variables being a function of the time-like independent
variable t, Ut =

dU
dt = R(t, U) is the (vectorial) residuals function, and U(t0) is the (vectorial)

initial conditions, namely the state variables function evaluated at the initial time t0. In
general, the residuals function R is a function of the state variable U through which it
is a function of time, but it can also be a direct function of time, and thus, in general,
R = R(t, U(t)) holds.

The problem prototype (1) is ubiquitous in the mathematical modeling of physical
problems: essentially, whenever an evolutionary (i.e., dyanamic) phenomenon is considered,
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the prevision (simulation) of the future solutions involves the solution of an IVP. As a
matter of fact, many physical problems (fluid dynamics, chemistry, biology, evolutionary-
anthropology, among others) are described by means of an IVP.

It is worth noting that the state vector variables U and its corresponding residuals
function Ut =

dU
dt = R(t, U) are problem dependent: the number and the meaning of the state

variables as well as the equations governing their evolution (which are embedded into the
residuals function) are different for the Navier–Stokes conservation laws with respect to the
Burgers one, as an example. Nevertheless, the solution of the IVP model prototype can be
generalized, allowing the application of the same solver to many different problems, thus
eliminating the necessity of re-implementing the same solver for each different problem.

In this work, we present the FOODIE library: it is designed for solving the generalized
IVP (1), being completely unaware of the actual problem’s definition. The FOODIE library
provides a high-level, well-documented, simple application program interface (API) for
many well-known ODE integration solvers, with its aims being twofold:

• Provide a robust set of ODE solvers ready to be applied to a wide range of
different problems;

• Provide a simple framework for the rapid development of new ODE solvers.

1.2. Related Works

There are many ODE solvers described in the literature. In [2], a SODES (stepwise
ordinary differential equations solver) is presented: the authors describe an ODE solver able
to provide a step-by-step ODE solution exploiting a computer Algebra system (CAS) written
in the Python programming language. In the framework of computational fluid dynamics
(CFD), and in particular for solving detailed chemical kinetics problems, in [3], a novel
neural ODE solver, ChemNODE, is presented: exploiting the neural networks, the chemical
source terms are predicted and integrated and the networks themselves are adjusted during
the training to minimize errors. In [4], the problem of ODE solving is considered with
respect to the computational efficiency point of view: the authors analyze the performance
of three different solvers written in the C++ and Julia programming languages on both CPU
and GPU architectures, with a special focus on the parallel optimization of the ODE solving
algorithms. In [5], the Python framework TensorFlow is exploited to implement a neural-
network-based ODE solver: their approach, is hybrid in the sense that the neural model
combines both physics-informed and data-driven kernels in order to improve the accuracy
of the ODE solutions. The MAPLE CAS software (a symbolic and numeric computing
environment) has been used in [6] to apply a novel iterative scheme based on the Mohand
homotopy perturbation transform (MHPT) to the simulation of nonlinear shock wave
equations, proving a good computational efficiency.

The ODE framework solver presented in this work has different aims, as explained in
the following subsection.

1.3. Motivations and Aims

The FOODIE library is a free software application (https://github.com/Fortran-FOSS-
Programmers/FOODIE, accessed 20 August 2023) and is designed by the authors of the
current paper with the following specifications:

• It is written in modern Fortran (standard 2008 or newer);
• It is written by means of the object-oriented programming (OOP) paradigm;
• It is well documented;
• It is test-driven developed (TDD);
• It is collaboratively developed;
• It is free.

FOODIE, meaning Fortran Object oriented Ordinary Differential Equations integration
library, has been developed with the aim to satisfy the above specifications. The present
paper is its first comprehensive presentation.

https://github.com/Fortran-FOSS-Programmers/FOODIE
https://github.com/Fortran-FOSS-Programmers/FOODIE
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The Fortran (Formula Translator, [7,8]) programming language is the de facto standard
into computer science field: it strongly facilitates the effective and efficient translation of
(even complex) mathematical and numerical models into an operative software without
compromise on computations speed and accuracy. Moreover, its simple syntax is suitable
for scientific researchers that are interested (and skilled) in the physical aspects of the numer-
ical computations rather than computer technicians. Consequently, we develop FOODIE
using Fortran language: FOODIE is written by research scientists for research scientists.

One key-point of the FOODIE development is the problem generalization: the problem
solved must be the IVP (1) rather than any of its actual definitions. Consequently, we must
rely on a generic implementation of the solvers. To this aim, OOP is very useful (see [9]): it
allows to express IVP (1) in a very concise and clear formulation that is really generic. In
particular, our implementation is based on Abstract Calculus Pattern (ACP) concept.

1.3.1. The Abstract Calculus Pattern

The abstract calculus pattern provides a simple solution for the connection between the
very high-level expression of IVP (1) and the eventual concrete (low-level) implementation
of the ODE problem being solved. ACP essentially constitutes a contract based on an
Abstract Data Type (ADT): we specify an ADT supporting a certain set of mathematical
operators (differential and integral ones) and implement FOODIE solvers only on the basis
of this ADT. FOODIE clients must formulate the ODE problem under integration defining
their own concrete extensions of our ADT (implementing all the deferred operators). Such
an approach defines the abstract calculus pattern: FOODIE solvers are aware of only the
ADT, while FOODIE clients extend the ADT for defining the concrete ODE problem.

Is worth noting that this ACP emancipates the solvers implementations from any
low-level problem-dependent details: the ODE solvers developed with this pattern are
extremely concise, clear, maintainable and less errors-prone with respect a low-level (non
abstract) pattern. Moreover, the FOODIE clients can use solvers being extremely robust:
as a matter of facts, FOODIE solvers are expressed in a formulation very close to the
mathematical one and are tested on an extremely varying family of problems. As shown in
the following, such a great flexibility does not compromise the computational efficiency.

1.3.2. FOODIE Novelty

The main novelty of our approach is to combine many advantages of CAS program-
ming with the computational performances of compiled (parallel) programming: as a
matter of fact, CAS approaches generally enable fast and easy numerical methods im-
plementation, but at the cost of low computational performances they being generally
based on interpreted programming languages. On the other hand, compiled programming
languages have (extremely) higher computational performances (especially on parallel
architectures), but are more constrained with respect interpreted languages: the resulting
programming approach requires, in general, more effort to implement complicated algo-
rithms and more errors-prone. The novelty of the ACP implemented in FOODIE consists
in enabling code development easiness, clearness and robustness, maximization of code
re-usability and conciseness while retaining the computational performances of Fortran
compiled programming language.

1.3.3. Manuscript Organization

The present paper is organized as following: in Section 2 a brief description of the
mathematical and numerical methods currently implemented into FOODIE is presented;
in Section 3 a detailed discussion on the implementation specifications is provided by
means of an analytical code-listings review; in Section 4 a verification analysis on the
results of FOODIE applications is presented; Section 5 provides an analysis of FOODIE
performances under parallel frameworks scenario like the OpenMP and MPI paradigms;
finally, in Section 6 concluding remarks and perspectives are depicted.
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2. Mathematical and Numerical Models

In many (most) circumstances, the solution of Equation (1) cannot be computed in
a closed, exact form (even if it exists and is unique) due to the complexity and nature
of the residuals functions, that is often non linear. Consequently, the problem is often
solved relying on a numerical approach: the solution of system (1) at a time tn, namely
U(tn), is approximated by a subsequent time-marching approximations U0 = u0 → u1 →
u2 → ... → uN ≈ U(tn) where the relation ui → ui+1 implies a stepping, numerical
integration from the time ti to time ti+1 and N is the total number of numerical time steps
necessary to evolve the initial conditions toward the searched solution U(tn). To this aim,
many numerical schemes have been devised. Notably, the numerical schemes of practical
usefulness must posses some necessary proprieties such as consistency and stability to ensure
that the numerical approximation converges to the exact solution as the numerical time step
tends to zero. A detailed discussion of these details is out the scope of the present work and
is omitted. Here, we briefly recall some classifications necessary to introduce the schemes
implemented into the FOODIE library.

A non comprehensive classification of the most widely used schemes could distinguish
between multi-step versus one-step schemes and between explicit versus implicit schemes.

Essentially, the multi-step schemes have been developed to obtain an accurate ap-
proximation of the subsequent numerical steps using the informations contained into the
previously computed steps, thus this approach relates the next step approximation to a set
of the previously computed steps. On the contrary, a one-step scheme evolves the solution
toward the next step using only the information coming from the current time approxima-
tion. In the framework of one-step schemes family an equivalent accurate approximation
can be obtained by means of a multi-stage approach as the one due to Runge-Kutta. The
current version of FOODIE provides schemes belonging to both these families.

The other ODE solvers classification concerns with explicit or implicit nature of the
schemes employed. Briefly, an explicit scheme computes the next step approximation
using the previously computed steps at most to the current time, whereas an implicit
scheme uses also the next step approximation (that is the unknown), thus it requires extra
computations. The implicit approach is of practical use for stiff systems where the usage of
explicit schemes could require an extremely small time step to evolve in a stable way the
solution. Mixing together explicit and implicit schemes it is possible to build a family of
predictor-corrector methods: using an explicit scheme to predict a guess for the next step
approximation it is possible to use an implicit method for correcting this guess.

FOODIE currently implements the following ODE schemes:

• one-step schemes:

– explicit forward Euler scheme, it being 1st order accurate;
– explicit Runge-Kutta schemes (see [10,11]):

* TVD/SSP Runge-Kutta schemes:

· 2-stages, it being 2nd order accurate;
· 3-stages, it being 3rd order accurate;
· 5-stages, it being 4th order accurate;

* low storage Runge-Kutta schemes:

· 5-stages 2N registers schemes, it being 4th order accurate;
· 6-stages 2N registers schemes, it being 4th order accurate;
· 7-stages 2N registers schemes, it being 4th order accurate;
· 12-stages 2N registers schemes, it being 4th order accurate;
· 13-stages 2N registers schemes, it being 4th order accurate;
· 14-stages 2N registers schemes, it being 4th order accurate;

• multi-step schemes (see [12]):

– explicit Adams-Bashforth schemes:

* 2-steps, it being 2nd order accurate;



Dynamics 2023, 3 492

* 3-steps, it being 3rd order accurate;
* 4-steps, it being 4th order accurate;

– implicit Adams-Moulton schemes:

* 1-step, it being 2nd order accurate;
* 2-steps, it being 3rd order accurate;
* 3-steps, it being 4th order accurate;

– predictor-corrector Adams-Bashforth-Moulton schemes:

* 1-step, it being 2nd order accurate;
* 2-steps, it being 3rd order accurate;
* 3-steps, it being 4th order accurate;

– explicit Leapfrog schemes:

* 2-steps unfiltered, it being 2nd order accurate, but mostly unstable;
* 2-steps Robert-Asselin filtered, it being 1st order accurate (on amplitude

error);
* 2-steps Robert-Asselin-Williams filtered, it being 3rd order accurate (on

amplitude error);

2.1. The Explicit forward Euler Scheme

The explicit forward Euler scheme for ODE integration is probably the simplest solver
ever devised. Considering the system (1), the solution (approximation) of the state vector
U at the time tn+1 = tn + ∆t (∆t being the time step considered) assuming to known the
solution at time tn is:

U
(

tn+1
)
= U(tn) + ∆t · R[tn, U(tn)] (2)

where the solution at the new time step is computed by means of only the current time
solution, thus this is an explicit scheme. The solution is an approximation of 1st order, the
local truncation error being O(∆t2). As well known, this scheme has an absolute (linear)
stability locus equals to |1 + ∆tλ| ≤ 1 where λ contains the eigenvalues of the linear (or
linearized) Jacobian matrix of the system.

This scheme is Total Variation Diminishing (TVD) in the stability region under the
CFL limit, thus satisfies the maximum principle (or the equivalent positivity preserving
property, see [13]).

2.2. The Explicit TVD/SSP Runge-Kutta Class of Schemes

Runge-Kutta methods belong to the more general multi-stage family of schemes. This
kind of schemes has been designed to achieve a more accurate solution than the 1st Euler
scheme, but without increasing the number of time steps used, as it is done with the
multi-step schemes, see [11]. Essentially, the high order of accuracy is obtained by means
of intermediate values (the stages) of the solution and its derivative are generated and used
within a single time step. This commonly implies the allocation of some auxiliary memory
registers for storing the intermediate stages.

Notably, the multi-stage schemes class has the attractive property to be self-starting:
the high order accurate solution can be obtained directly from the previous one, without the
necessity to compute before a certain number of previous steps, as it happens for the multi-
step schemes. Moreover, one-step multi-stage methods are suitable for adaptively-varying
time-step size (that is also possible for multi-step schemes, but at a cost of more complexity)
and for discontinuous solutions, namely discontinued solutions happening at a certain
time t∗ (that in a multi-step framework can involve an overall accuracy degradation).
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In general, the TVD/SSP Runge-Kutta schemes provided by FOODIE library are
written by means of the following algorithm:

Un+1 = Un + ∆t ·
Ns

∑
s=1

βsKs (3)

where Ns is the number of Runge-Kutta stages used and Ks is the sth stage defined as:

Ks = R

(
tn + γs∆t, Un + ∆t

s−1

∑
l=1

αs,lKl

)
(4)

It is worth noting that the Equations (3) and (4) can be easily adapted for implicit schemes.
A scheme belonging to this family is operative once the coefficients α, β, γ are provided.
We represent these coefficients using the Butcher’s table, that for an explicit scheme where
γ1 = α1,∗ = αi,i = 0 has the form reported in Table 1.

Table 1. Butcher’s table for explicit Runge-Kutta schemes.

γ2 α2,1
γ3 α3,1 α3,2
...

...
. . .

γNs αNs ,1 αNs ,2 · · · αNs ,Ns−1

β1 β2 · · · βNs−1 βNs

The Equations (3) and (4) show that Runge-Kutta methods do not require any addi-
tional differentiations of the ODE system for achieving high order accuracy, rather they
require additional evaluations of the residuals function R.

The nature of the scheme and the properties of the solutions obtained depend on the
number of stages and on the value of the coefficients selected. Currently, FOODIE provides
3 Runge-Kutta schemes having TVD or Strong Stability Preserving (SSP) propriety (thus
they being suitable for ODE systems involving rapidly changing non linear dynamics) the
Butcher’s coefficients of which are reported in Tables 2–4.

Table 2. Butcher’s table of 2 stages, 2nd order, Runge-Kutta TVD scheme (also known as trape-
zoidal method).

1 1 0

1/2 1/2

Table 3. Butcher’s table of 3 stages, 3rd order, Runge-Kutta SSP scheme.

1 1
1/2 1/4 1/4

1/6 1/6 2/3

Table 4. Butcher’s table of 5 stages, 4th order accurate, Runge-Kutta SSP scheme.

0.39175222700392 0.39175222700392
0.58607968896779 0.21766909633821 0.36841059262959
0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738
0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395
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The absolute stability locus depends on the coefficients selected, however, as a general
principle, we can assume that greater is the stages number and wider is the stability locus
on equal accuracy orders.

It is worth noting that FODDiE also provides a one-stage TVD Runge-Kutta solver
that reverts back to the explicit forward Euler scheme: it can be used, for example, into a
Recursive Order Reduction (ROR) framework that automatically checks some properties of
the solution and, in case, reduces the order of the Runge-Kutta solver until those properties
are obtained.

2.3. The Explicit Low Storage Runge-Kutta Class of Schemes

As aforementioned, standard Runge-Kutta schemes have the drawback to require NS
auxiliary memory registers to store the necessary stages data. In order to make an efficient
use of the available limited computer memory, the class of low storage Runge-Kutta scheme
was devised. Essentially, the standard Runge-Kutta class (under some specific conditions)
can be reformulated allowing a more efficient memory management. Currently FOODIE
provides a class of 2N registers storage Runge-Kutta schemes, meaning that the storage of
all stages requires only 2 registers of memory with a word length N (namely the length of
the state vector) in contrast to the standard formulation where Ns registers of the same
length N are required. This is a dramatic improvement of memory efficiency especially
for schemes using a high number of stages (Ns ≥ 4) where the memory necessary is an
half with respect the original formulation. Unfortunately, not all standard Runge-Kutta
schemes can be reformulated as a low storage one.

Following the Williamson’s approach (see [14–17]) the standard coefficients are refor-
mulated to the coefficients vectors A, B and C and the Runge-Kutta algorithm becomes:

K1 = U(tn)
K2 = 0

K2 = AsK2 + ∆t · R(tn + Cs∆t, K1)
K1 = K1 + BsK2

}
s = 1, 2, ...Ns

U
(
tn+1) = K1

(5)

Currently FOODIE provides 5/6/7/12/13/14 stages, all 4th order, 2N registers explicit
schemes, the coefficients of which are listed in Table 5.

Similarly to the TVD/SSP Runge-Kutta class, the low storage class also provides a
fail-safe one-stage solver reverting back to the explicit forward Euler solver, that is useful
for ROR-like frameworks.

2.4. The Explicit Adams-Bashforth Class of Schemes

Adams-Bashforth methods belong to the more general (linear) explicit multi-step
family of schemes. This kind of schemes has been designed to achieve a more accurate
solution than the 1st Euler scheme using the information coming from the solutions already
computed at previous time steps.

In general, the Adams-Bashforth schemes provided by FOODIE library are written by
means of the following algorithm (for only explicit schemes):

U
(

tNs
)
= U

(
tNs−1

)
+ ∆t

Ns

∑
s=1

bs · R
[
ts−1, U

(
ts−1

)]
(6)

where Ns is the number of time steps considered and bs are the linear coefficients selected.
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Table 5. Williamson’s table of low storage Runge-Kutta schemes.

(a) 5 Stages, 4th Order (b) 6 Stages, 4th Order
Stage A B C Stage A B C

1 0 1432997174477
9575080441755 0 1 0 0.122000000000 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755 2 −0.691750960670 0.477263056358 0.122000000000

3 − 2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896 3 −1.727127405211 0.381941220320 0.269115878630

4 − 3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776 4 −0.694890150986 0.447757195744 0.447717183551

5 − 1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251 5 −1.039942756197 0.498614246822 0.749979795490

6 −1.531977447611 0.186648570846 0.898555413085

(c) 7 Stages, 4th Order (d) 12 Stages, 4th Order
Stage A B C Stage A B C

1 0.000000000000 0.117322146869 0.000000000000 1 0.0000000000000000 0.0650008435125904 0.0000000000000000
2 −0.647900745934 0.503270262127 0.117322146869 2 −0.0923311242368072 0.0161459902249842 0.0650008435125904
3 −2.704760863204 0.233663281658 0.294523230758 3 −0.9441056581158819 0.5758627178358159 0.0796560563081853
4 −0.460080550118 0.283419634625 0.305658622131 4 −4.3271273247576394 0.1649758848361671 0.1620416710085376
5 −0.500581787785 0.540367414023 0.582864148403 5 −2.1557771329026072 0.3934619494248182 0.2248877362907778
6 −1.906532255913 0.371499414620 0.858664273599 6 −0.9770727190189062 0.0443509641602719 0.2952293985641261
7 −1.450000000000 0.136670099385 0.868664273599 7 −0.7581835342571139 0.2074504268408778 0.3318332506149405

8 −1.7977525470825499 0.6914247433015102 0.4094724050198658
9 −2.6915667972700770 0.3766646883450449 0.6356954475753369

10 −4.6466798960268143 0.0757190350155483 0.6806551557645497
11 −0.1539613783825189 0.2027862031054088 0.7143773712418350
12 −0.5943293901830616 0.2167029365631842 0.9032588871651854

(e) 13 Stages, 4th Order (f) 14 Stages, 4th Order
Stage A B C Stage A B C

1 0.0000000000000000 0.0271990297818803 0.0000000000000000 1 0.0000000000000000 0.0367762454319673 0.0000000000000000
2 −0.6160178650170565 0.1772488819905108 0.0271990297818803 2 −0.7188012108672410 0.3136296607553959 0.0367762454319673
3 −0.4449487060774118 0.0378528418949694 0.0952594339119365 3 −0.7785331173421570 0.1531848691869027 0.1249685262725025
4 −1.0952033345276178 0.6086431830142991 0.1266450286591127 4 −0.0053282796654044 0.0030097086818182 0.2446177702277698
5 −1.2256030785959187 0.2154313974316100 0.1825883045699772 5 −0.8552979934029281 0.3326293790646110 0.2476149531070420
6 −0.2740182222332805 0.2066152563885843 0.3737511439063931 6 −3.9564138245774565 0.2440251405350864 0.2969311120382472
7 −0.0411952089052647 0.0415864076069797 0.5301279418422206 7 −1.5780575380587385 0.3718879239592277 0.3978149645802642
8 −0.1797084899153560 0.0219891884310925 0.5704177433952291 8 −2.0837094552574054 0.6204126221582444 0.5270854589440328
9 −1.1771530652064288 0.9893081222650993 0.5885784947099155 9 −0.7483334182761610 0.1524043173028741 0.6981269994175695

10 −0.4078831463120878 0.0063199019859826 0.6160769826246714 10 −0.7032861106563359 0.0760894927419266 0.8190890835352128
11 −0.8295636426191777 0.3749640721105318 0.6223252334314046 11 0.0013917096117681 0.0077604214040978 0.8527059887098624
12 −4.7895970584252288 1.6080235151003195 0.6897593128753419 12 −0.0932075369637460 0.0024647284755382 0.8604711817462826
13 −0.6606671432964504 0.0961209123818189 0.9126827615920843 13 −0.9514200470875948 0.0780348340049386 0.8627060376969976

14 −7.1151571693922548 5.5059777270269628 0.8734213127600976
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Currently FOODIE provides 2, 3, and 4 steps schemes having 2nd, 3rd and 4th formal
order of accuracy, respectively. The bs coefficients are reported in Table 6.

Table 6. Explicit Adams-Bashforth coefficients.

Ns b1 b2 b3 b4

2 − 1
2

3
2 / /

3 5
12 − 16

12
23
12 /

4 − 9
24

37
24 − 59

24
55
24

Similarly to the Runge-Kutta classes, the Adams-Bashforth class also provides a fail-
safe one-step solver reverting back to the explicit forward Euler solver, that is useful for
ROR-like frameworks.

It is worth noting that for Ns > 1 the Adams-Bashforth class of solvers is not self-
starting: the values of U

(
t1), U

(
t2), . . . , U

(
tNs−1) must be provided. To this aim, a lower

order multi-step scheme or an equivalent order one-step multi-stage scheme can be used.

2.5. The Implicit Adams-Moulton Class of Schemes

Adams-Moulton methods belong to the more general (linear) implicit multi-step
family of schemes. This kind of schemes has been designed to achieve a more accurate
solution than the 1st Euler scheme using the information coming from the solutions already
computed at previous time steps.

In general, the Adams-Moulton schemes provided by FOODIE library are written by
means of the following algorithm (for only implicit schemes):

U
(

tNs
)
= U

(
tNs−1

)
+ ∆t

Ns−1

∑
s=0

bs · R[ts, U(ts)] + bNs · R
[
tNs , U

(
tNs
)]

(7)

where Ns is the number of time steps considered and bs are the linear coefficients selected.
Currently FOODIE provides 1, 2, and 3 steps schemes having 2nd, 3rd and 4th formal

order of accuracy, respectively. The bs coefficients are reported in Table 7.

Table 7. Implicit Adams-Moulton coefficients.

Ns b0 b1 b2 b3

1 1
2

1
2 / /

2 − 1
12

8
12

5
12 /

3 1
24 − 5

24
19
24

9
24

Similarly to the Runge-Kutta and Adams-Bashforth classes, the Adams-Moulton class
also provides a fail-safe zero-step solver reverting back to the implicit backward Euler
solver, that is useful for ROR-like frameworks.

It is worth noting that for Ns > 1 the Adams-Moulton class of solvers is not self-starting:
the values of U

(
t1), U

(
t2), . . . , U

(
tNs−1) must be provided. To this aim, a lower order

multi-step scheme or an equivalent order one-step multi-stage scheme can be used.

2.6. The Predictor-Corrector Adams-Bashforth-Moulton Class of Schemes

Adams-Bashforth-Moulton methods belong to the more general (linear) predictor-
corrector multi-step family of schemes. This kind of schemes has been designed to achieve
a more accurate solution than the 1st Euler scheme using the information coming from the
solutions already computed at previous time steps.



Dynamics 2023, 3 497

In general, the Adams-Bashforth-Moulton schemes provided by FOODIE library are
written by means of the following algorithm:

U
(

tNp
s
)

p
= U

(
tNp

s −1
)
+ ∆t ∑Np

s
s=1 bp

s · R
[
ts−1, U

(
ts−1)]

U
(

tNc
s

)
c
= U

(
tNc

s−1
)
+ ∆t ∑Nc

s−1
s=0 bc

s · R[ts, U(ts)] + bc
Nc

s
· R
[

tNp
s , U

(
tNp

s
)

p

] (8)

where Np,c
s is the number of time steps considered for the Adams-Bashforth predictor/Adams-

Moulton corrector (respectively) and bp,c
s are the corresponding linear coefficients selected.

Essentially, the Adams-Bashforth prediction U
(

tNp
s
)

p
is corrected by means of the Adams-

Moulton correction resulting in U
(

tNc
s

)
c
. In order to preserve the formal order of accuracy

the relation Np
s = Nc

s + 1 always holds.
Currently FOODIE provides Nc

s = 1, 2, 3 → Nc
s = 2, 3, 4 steps schemes having 2nd,

3rd and 4th formal order of accuracy, respectively. The bp,c
s coefficients are those reported

in Tables 6 and 7.

2.7. The Leapfrog Solver

The leapfrog scheme belongs to the multi-step family, it being formally a centered
second order approximation in time, see [18–21]. The leapfrog method (in its original
formulation) is mostly unstable, however it is well suited for periodic-oscillatory problems
providing a null error on the amplitude value and a formal second order error on the
phase one, under the satisfaction of the time-step size stable limit. Commonly, the leapfrog
methods are said to provide a 2∆t computational mode that can generate unphysical,
unstable solutions. As consequence, the original leapfrog scheme is generally filtered in
order to suppress these computational modes.

The unfiltered leapfrog scheme provided by FOODIE is:

U
(

tn+2
)
= U(tn) + 2∆t · R

[
tn+1, U

(
tn+1

)]
(9)

FOODIE provides, in a seamless API, also filtered leapfrog schemes. A widely used
filter is due to Robert and Asselin, that suppress the computational modes at the cost of
accuracy reduction resulting into a 1st order error in amplitude value. A more accurate
filter, able to provide a 3rd order error on amplitude, is a modification of the Robert-
Asselin filter due to Williams known as Robert-Asselin-Williams (RAW) filter, that filters
the approximation of U

(
tn+1) and U

(
tn+2) by the following scalar coefficient:

U
(
tn+1) = U

(
tn+1)+ ∆ ∗ α

U
(
tn+2) = U

(
tn+2)+ ∆ ∗ (α− 1)
where

∆ = ν
2 (U

n − 2Un+1 + Un+2)

(10)

The filter coefficients should be taken as ν ∈ (0, 1] and α ∈ (0.5, 1]. If α = 0.5 the filters
of time tn+1 and tn+2 have the same amplitude and opposite sign thus allowing to the
optimal 3rd order error on amplitude. The default values of the FOODIE provided scheme
are ν = 0.01 α = 0.53, but they can be customized at runtime. The RA-filtered leapfrog
scheme is widely used in numerical weather prediction and, in general, in atmospheric/o-
ceanic circulation models probably because it is really simple to implement and has a good
accuracy. However, the RAW filter reported in (10) is a major upgrade and generalizes a
family of leapfrog solver ranging from unconditionally unstable, to conditionally stable,
and up to unconditionally stable. Tuning the family coefficients it is possible to reach
(almost) the ideal third order accuracy in amplitude while retaining a conditional stability,
see [21].
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3. Application Program Interface

In this section we review the FOODIE API providing a detailed discussion of the
implementation choices.

As aforementioned, the programming language used is the Fortran 2008 standard,
that is a minor revision of the previous Fortran 2003 standard. Such a new Fortran idioms
provide (among other useful features) an almost complete support for OOP, in particular
for ADT concept. Fortran 2003 has introduced the abstract derived type: it is a derived type
suitable to serve as contract for concrete type-extensions that has not any actual implemen-
tations, rather it provides a well-defined set of type bound procedures interfaces, that in
Fortran nomenclature are called deferred procedures. Using such an abstract definition, we
can implement algorithms operating on only this abstract type and on all its concrete exten-
sions. This is the key feature of FOODIE library: all the above described ODE solvers are
implemented on the knowledge of only one abstract type, allowing an implementation-style
based on a very high-level syntax. In the meanwhile, client codes must implement their
own IVPs extending only one simple abstract type.

In the Section 3.1 a review of the FOODIE main ADT, the integrand type, is provided,
while Sections 3.2–3.5 and 3.8 cover the API of the currently implemented solvers.

It is worth noting that all FOODIE public entities (ADT and solvers) must be ac-
cessed by the FOODIE module, see Listing 1 for an example on how access to all public
FOODIE entities.

Listing 1. Usage example importing all public entities of FOODIE main module.

use foodie , only : integrand , &
adams_bashforth_integrator , &
adams_moulton_integrator , &
adams_bashforth_moulton_integrator , &
e u l e r _ e x p l i c i t _ i n t e g r a t o r , &
l e a p f r o g _ i n t e g r a t o r , &
l s _ r u n g e _ k u t t a _ i n t e g r a t o r , &
tvd_runge_kut ta_ integra tor

! or simply
use foodie

3.1. The Main FOODIE Abstract Data Type: The Integrand Type

The implemented ACP is based on one main ADT, the integrand type, the definition of
which is shown in Listing 2.

Listing 2. Integrand type definition.

type , a b s t r a c t : : integrand
! < Abstract type for building FOODIE ODE integrators.
conta ins

! public deferred procedures that concrete integrand-field must implement
procedure ( t i m e _ d e r i v a t i v e ) , pass ( s e l f ) , deferred , publ ic : : t
! operators
procedure ( symmetric_operator ) , pass ( l h s ) , deferred , publ ic : : integrand_mult iply_integrand
procedure ( integrand_op_real ) , pass ( l h s ) , deferred , publ ic : : in tegrand_mul t ip ly_rea l
procedure ( rea l_op_integrand ) , pass ( rhs ) , deferred , publ ic : : r ea l_mul t ip ly_ in tegrand
procedure ( symmetric_operator ) , pass ( l h s ) , deferred , publ ic : : add
procedure ( symmetric_operator ) , pass ( l h s ) , deferred , publ ic : : sub
procedure ( assignment_integrand ) , pass ( l h s ) , deferred , publ ic : : ass ign_integrand
! operators overloading
generic , publ ic : : operator ( + ) => add
generic , publ ic : : operator ( −) => sub
generic , publ ic : : operator ( * ) => integrand_mult iply_integrand , &

rea l_mul t ip ly_ integrand , &
integrand_mul t ip ly_rea l

generic , publ ic : : assignment ( = ) => ass ign_integrand
endtype integrand

The integrand type does not implement any actual integrand field, it being and abstract
type. It only specifies which deferred procedures are necessary for implementing an actual
concrete integrand type that can use a FOODIE solver.

As shown in Listing 2, the number of the deferred type bound procedures that clients
must implement into their own concrete extension of the integrand ADT is very limited:
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essentially, there are 1 ODE-specific procedure plus some operators definition constituted by
symmetric operators between 2 integrand objects, asymmetric operators between integrand
and real numbers (and viceversa) and an assignment statement for the creation of new
integrand objects. These procedures are analyzed in the following paragraphs.

3.1.1. Time Derivative Procedure, the Residuals Function

The abstract interface of the time derivative procedure t is shown in Listing 3.

Listing 3. Time derivative procedure interface.

func t ion t i m e _ d e r i v a t i v e ( s e l f , t ) r e s u l t ( dSta te_dt )
import : : integrand , R_P , I_P
c l a s s ( integrand ) , i n t e n t ( IN ) : : s e l f ! < Integrand field.
r e a l ( R_P ) , opt ional , i n t e n t ( IN ) : : t ! < Time.
c l a s s ( integrand ) , a l l o c a t a b l e : : dSta te_dt ! < Result of the time derivative function of integrand field.
endfunction t i m e _ d e r i v a t i v e

This procedure-function takes two arguments, the first passed as a type bounded argu-
ment, while the latter is optional, and it returns an integrand object. The passed dummy
argument, self, is a polymorphic argument that could be any extensions of the integrand
ADT. The optional argument t is the time at which the residuals function must be computed:
it can be omitted in the case the residuals function does not depend directly on time.

Commonly, into the concrete implementation of this deferred abstract procedure clients
embed the actual ODE equations being solved. As an example, for the Burgers equation,
that is a Partial Differential Equations (PDE) system involving also a boundary value
problem, this procedure embeds the spatial operator that convert the PDE to a system of
algebraic ODE. As a consequence, the eventual concrete implementation of this procedure
can be very complex and errors-prone. Nevertheless, the FOODIE solvers are implemented
only on the above abstract interface, thus emancipating the solvers implementation from
any concrete complexity.

3.1.2. Symmetric Operators Procedures

The abstract interface of symmetric procedures is shown in Listing 4.

Listing 4. Symmetric operator procedure interface.

func t ion symmetric_operator ( lhs , rhs ) r e s u l t ( o p e r a t o r _ r e s u l t )
import : : integrand
c l a s s ( integrand ) , i n t e n t ( IN ) : : l h s ! < Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : o p e r a t o r _ r e s u l t ! < Operator result.
endfunction symmetric_operator

This interface defines a class of procedures operating on 2 integrand objects, namely it is
used for the definition of the operators multiplication, summation and subtraction of integrand
objects. These operators are used into the above described ODE solvers, for example see
Equations (2), (3), (6) or (9). The implementation details of such a procedures class are
strictly dependent on the concrete extension of the integrand type. From the FOODIE
solvers point of view, we need to known only that first argument passed as bounded one,
the left-hand-side of the operator, and the second argument, the right-hand-side of the
operator, are two integrand object and the returned object is still an integrand one. This
agnostic nature is a feature shared by all FOODIE operators.

3.1.3. Integrand/Real and Real/Integrand Operators Procedures

The abstract interfaces of Integrand/real and real/integrand operators procedures are
shown in Listing 5.

Listing 5. Integrand/real and real/integrand operators procedure interfaces.

func t ion integrand_op_real ( lhs , rhs ) r e s u l t ( o p e r a t o r _ r e s u l t )
import : : integrand , R_P
c l a s s ( integrand ) , i n t e n t ( IN ) : : l h s ! < Left hand side.
r e a l ( R_P ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
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c l a s s ( integrand ) , a l l o c a t a b l e : : o p e r a t o r _ r e s u l t ! < Operator result.
endfunction integrand_op_real

funct ion real_op_integrand ( lhs , rhs ) r e s u l t ( o p e r a t o r _ r e s u l t )
import : : integrand , R_P
r e a l ( R_P ) , i n t e n t ( IN ) : : l h s ! < Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : o p e r a t o r _ r e s u l t ! < Operator result.
endfunction real_op_integrand

These two interfaces are necessary in order to complete the algebra operating on
the integrand object class, allowing the multiplication of an integrand object for a real
number, circumstance that happens in all solvers, see Equations (2), (3), (6) or (9). The
implementation details of these procedures are strictly dependent on the concrete extension
of the integrand type.

3.1.4. Integrand Assignment Procedure

The abstract interface of integrand assignment procedure is shown in Listing 6.

Listing 6. Integrand assignment procedure interface.

subroutine assignment_integrand ( lhs , rhs )
import : : integrand
c l a s s ( integrand ) , i n t e n t (INOUT) : : l h s ! < Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! < Right hand side.
endsubroutine assignment_integrand

The assignment statement is necessary in order to complete the algebra operating on
the integrand object class, allowing the assignment of an integrand object by another one,
circumstance that happens in all solvers, see Equations (2), (3), (6) or (9). The implemen-
tation details of this assignment is strictly dependent on the concrete extension of the
integrand type.

3.2. The Explicit forward Euler Solver

The explicit forward Euler solver is exposed (by the FOODIE main module that must
imported, see Listing 1) as a single derived type (that is a standard convention for all
FOODIE solvers) named euler_explicit_integrator. It provides the type bound procedure
(also referred as method) integrate for integrating in time an integrand object, or any of
its polymorphic concrete extensions. Consequently, for using such a solver it must be
previously defined as an instance of the exposed FOODIE integrator type, see Listing 7.

Listing 7. Definition of an explicit forward Euler integrator.

use FOODIE, only : e u l e r _ e x p l i c i t _ i n t e g r a t o r
type ( e u l e r _ e x p l i c i t _ i n t e g r a t o r ) : : i n t e g r a t o r

Once an integrator of this type has been instantiated, it can be directly used without
any initialization, for example see Listing 8.

Listing 8. Example of usage of an explicit forward Euler integrator.

type ( my_integrand ) : : my_field
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , Dt = 0 . 1 )

where my_integrand is a concrete (valid) extension of integrand ADT.
The complete implementation of the integrate method of the explicit forward Euler

solver is reported in Listing 9.

Listing 9. Implementation of the integrate method of Euler solver.

subroutine i n t e g r a t e (U, Dt , t )
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! < Field to be integrated.
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! < Time step.
r e a l ( R_P ) , opt ional , i n t e n t ( IN ) : : t ! < Time.
U = U + U%t ( t = t ) * Dt
re turn
endsubroutine i n t e g r a t e
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This method takes three arguments, the first argument is an integrand class, it being
the integrand field that must integrated one-step-over in time, the second is the time step
used and the third, that is optional, is the current time value that is passed to the residuals
function for taking into account the cases where the time derivative explicitly depends
on time. The time step is not automatically computed (for example inspecting the passed
integrand field), thus its value must be externally computed and passed to the integrate
method.

3.3. The Explicit TVD/SSP Runge-Kutta Class of Solvers

The TVD/SSP Runge-Kutta class of solvers is exposed as a single derived type named
tvd_runge_kutta_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated

dynamic memory registers;
• integrate: integrate integrand field one-step-over in time.

As common for FOODIE solvers, for using such a solver it must be previously defined
as an instance of the exposed FOODIE integrator type, see Listing 10.

Listing 10. Definition of an explicit TVD/SSP Runge-Kutta integrator.

use FOODIE, only : tvd_runge_kut ta_ integra tor
type ( tvd_runge_kut ta_ integra tor ) : : i n t e g r a t o r

Once an integrator of this type has been instantiated, it must be initialized before used,
for example see Listing 11.

Listing 11. Example of initialization of an explicit TVD/SSP Runge-Kutta integrator.

c a l l i n t e g r a t o r%i n i t ( s t a g e s =3)

In the Listing 11 a 3-stages solver has been initialized. As a matter of facts, from the
Equations (3) and (4) a solver belonging to this class is completely defined once the number
of stages adopted has been chosen. The complete definition of the tvd_runge_kutta_integrator
type is reported into Listing 12. As shown, the Butcher’s coefficients are stored as allocatable
arrays the values of which are initialized by the init method.

Listing 12. Definition of tvd_runge_kutta_integrator type.

type : : tvd_runge_kut ta_ integra tor
i n t e g e r ( I_P ) : : s t a g e s =0 ! Number of stages.
r e a l ( R_P ) , a l l o c a t a b l e : : alph ( : , : ) ! alpha Butcher’s coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : beta ( : ) ! beta Butcher’s coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : gamm ( : ) ! gamma Butcher’s coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
f i n a l : : f i n a l i z e

endtype tvd_runge_kut ta_ integra tor

After the solver has been initialized it can be used for integrating an integrand field,
as shown in Listing 13.

Listing 13. Example of usage of a TVD/SSP Runge-Kutta integrator.

type ( my_integrand ) : : my_field
type ( my_integrand ) : : my_stages ( 1 : 3 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , s tage=my_stage , Dt = 0 . 1 )

where my_integrand is a concrete (valid) extension of integrand ADT. Listing 13 shows that
the memory registers necessary for storing the Runge-Kutta stages must be supplied by the
client code.

The complete implementation of the integrate method of the explicit TVD/SSP Runge-
Kutta class of solvers is reported in Listing 14.



Dynamics 2023, 3 502

Listing 14. Implementation of the integrate method of explicit TVD/SSP Runge-Kutta class.

subroutine i n t e g r a t e ( s e l f , U, stage , Dt , t )
c l a s s ( tvd_runge_kut ta_ in tegra tor ) , i n t e n t ( IN ) : : s e l f ! Actual RK integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : s tage ( 1 : ) ! Runge-Kutta stages [1:stages].
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time step.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ! Time.
i n t e g e r ( I_P ) : : s ! First stages counter.
i n t e g e r ( I_P ) : : s s ! Second stages counter.
s e l e c t type ( s tage )
c l a s s i s ( integrand )

do s =1 , s e l f%s t a g e s
s tage ( s ) = U
do ss =1 , s − 1

s tage ( s ) = s tage ( s ) + s tage ( ss ) * ( Dt * s e l f%alph ( s , ss ) )
enddo
stage ( s ) = s tage ( s)% t ( t = t + s e l f%gamm( s ) * Dt )

enddo
do s =1 , s e l f%s t a g e s

U = U + stage ( s ) * ( Dt * s e l f%beta ( s ) )
enddo

e n d s e l e c t
re turn
endsubroutine i n t e g r a t e

This method takes five arguments, the first argument is passed as bounded argument
and it is the solver itself, the second is of an integrand class, it being the integrand field
that must integrated one-step-over in time, the third is the stages array for storing the
stages computations, the fourth is the time step used and the fifth, that is optional, is the
current time value that is passed to the residuals function for taking into account the cases
where the time derivative explicitly depends on time. The time step is not automatically
computed (for example inspecting the passed integrand field), thus its value must be
externally computed and passed to the integrate method.

It is worth noting that the stages memory registers, namely the array stage, must be
passed as argument because it is defined as a not-passed polymorphic argument, thus we
are not allowed to define it as an automatic array of the integrate method.

3.4. The Explicit Low Storage Runge-Kutta Class of Solvers

The low storage variant of Runge-Kutta class of solvers is exposed as a single derived
type named ls_runge_kutta_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated

dynamic memory registers;
• integrate: integrate integrand field one-step-over in time.

As common for FOODIE solvers, for using such a solver it must be previously defined
as an instance of the exposed FOODIE integrator type, see Listing 15.

Listing 15. Definition of an explicit low storage Runge-Kutta integrator.

use FOODIE, only : l s _ r u n g e _ k u t t a _ i n t e g r a t o r
type ( l s _ r u n g e _ k u t t a _ i n t e g r a t o r ) : : i n t e g r a t o r

Once an integrator of this type has been instantiated, it must be initialized before used,
for example see Listing 16.

Listing 16. Example of initialization of an explicit low storage Runge-Kutta integrator.

c a l l i n t e g r a t o r%i n i t ( s t a g e s =5)

In the Listing 16 a 5-stages solver has been initialized. As a matter of facts, from the
Equation (5) a solver belonging to this class is completely defined once the number of stages
adopted has been chosen. The complete definition of the ls_runge_kutta_integrator type is
reported into Listing 17. As shown, the Williamson’s coefficients are stored as allocatable
arrays the values of which are initialized by the init method.
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Listing 17. Definition of ls_runge_kutta_integrator type.

type : : l s _ r u n g e _ k u t t a _ i n t e g r a t o r
i n t e g e r ( I_P ) : : s t a g e s =0 ! Number of stages.
r e a l ( R_P ) , a l l o c a t a b l e : : A ( : ) ! Low storage *A* coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : B ( : ) ! Low storage *B* coefficients.
r e a l ( R_P ) , a l l o c a t a b l e : : C ( : ) ! Low storage *C* coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
f i n a l : : f i n a l i z e

endtype l s _ r u n g e _ k u t t a _ i n t e g r a t o r

After the solver has been initialized it can be used for integrating an integrand field,
as shown in Listing 18.

Listing 18. Example of usage of a low storage Runge-Kutta integrator.

type ( my_integrand ) : : my_field
type ( my_integrand ) : : my_stages ( 1 : 2 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , s tage=my_stage , Dt = 0 . 1 )

where my_integrand is a concrete (valid) extension of integrand ADT. Listing 18 shows that
the memory registers necessary for storing the Runge-Kutta stages must be supplied by the
client code, as it happens of the TVD/SSP Runge-Kutta class. However, now the registers
necessary is always 2, independently on the number of stages used, that in the example
considered are 5.

The complete implementation of the integrate method of the explicit low storage
Runge-Kutta class of solvers is reported in Listing 19.

Listing 19. Implementation of the integrate method of explicit low storage Runge-Kutta class.

subroutine i n t e g r a t e ( s e l f , U, stage , Dt , t )
c l a s s ( l s _ r u n g e _ k u t t a _ i n t e g r a t o r ) , i n t e n t ( IN ) : : s e l f ! Actual RK integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : s tage ( 1 : 2 ) ! Runge-Kutta registers [1:2].
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time step.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ! Time.
i n t e g e r ( I_P ) : : s ! First stages counter.
s e l e c t type ( s tage )
c l a s s i s ( integrand )

s tage ( 1 ) = U
stage ( 2 ) = U* 0 . _R_P
do s =1 , s e l f%s t a g e s

s tage ( 2 ) = s tage ( 2 ) * s e l f%A( s ) + s tage (1)% t ( t = t + s e l f%C( s ) * Dt ) * Dt
s tage ( 1 ) = s tage ( 1 ) + s tage ( 2 ) * s e l f%B ( s )

enddo
U = stage ( 1 )

e n d s e l e c t
re turn
endsubroutine i n t e g r a t e

This method takes five arguments, the first argument is passed as bounded argument
and it is the solver itself, the second is of an integrand class, it being the integrand field
that must integrated one-step-over in time, the third is the stages array for storing the
stages computations, the fourth is the time step used and the fifth, that is optional, is the
current time value that is passed to the residuals function for taking into account the cases
where the time derivative explicitly depends on time. The time step is not automatically
computed (for example inspecting the passed integrand field), thus its value must be
externally computed and passed to the integrate method.

It is worth noting that the stages memory registers, namely the array stage, must be
passed as argument because it is defined as a not-passed polymorphic argument, thus we
are not allowed to define it as an automatic array of the integrate method.

3.5. The Explicit Adams-Bashforth Class of Solvers

The explicit Adams-Bashforth class of solvers is exposed as a single derived type
named adams_bashforth_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;



Dynamics 2023, 3 504

• destroy: destroy the integrator previously initialized, eventually freeing the allocated
dynamic memory registers;

• integrate: integrate integrand field one-step-over in time;
• update_previous: auto update (cyclically) previous time steps solutions.

As common for FOODIE solvers, for using such a solver it must be previously defined
as an instance of the exposed FOODIE integrator type, see Listing 20.

Listing 20. Definition of an explicit Adams-Bashforth integrator.

use FOODIE, only : adams_bashforth_integrator
type ( adams_bashforth_integrator ) : : i n t e g r a t o r

Once an integrator of this type has been instantiated, it must be initialized before used,
for example see Listing 21.

Listing 21. Example of initialization of an explicit Adams-Bashforth integrator.

c a l l i n t e g r a t o r%i n i t ( s teps =4)

In the Listing 21 a 4-steps solver has been initialized. As a matter of facts, from the
Equation (6) a solver belonging to this class is completely defined once the number of time
steps adopted has been chosen. The complete definition of the adams_bashforth_integrator
type is reported into Listing 22. As shown, the linear coefficients are stored as allocatable
arrays the values of which are initialized by the init method.

Listing 22. Definition of adams_bashforth_integrator type.

type : : adams_bashforth_integrator
p r i v a t e
i n t e g e r ( I_P ) : : s t eps =0 ! Number of time steps.
r e a l ( R_P ) , a l l o c a t a b l e : : b ( : ) ! b coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
procedure , pass ( s e l f ) , publ ic : : update_previous
f i n a l : : f i n a l i z e

endtype adams_bashforth_integrator

After the solver has been initialized it can be used for integrating an integrand field,
as shown in Listing 23.

Listing 23. Example of usage of an Adams-Bashforth integrator.

r e a l : : t imes ( 1 : 4 )
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 4 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , Dt=Dt , t =times )

where my_integrand is a concrete (valid) extension of integrand ADT, times are the time
at each 4 steps considered for the current one-step-over integration and previous are the
memory registers where previous time steps solutions are saved.

The complete implementation of the integrate method of the explicit Adams-Bashforth
class of solvers is reported in Listing 24.

Listing 24. Implementation of the integrate method of explicit Adams-Bashforth class.

subroutine i n t e g r a t e ( s e l f , U, previous , Dt , t , autoupdate )
c l a s s ( adams_bashforth_integrator ) , i n t e n t ( IN ) : : s e l f ! Actual AB integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : previous ( 1 : ) ! Previous time steps solutions.
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time steps.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ( : ) ! Times.
l o g i c a l , opt ional , i n t e n t ( IN ) : : autoupdate ! Autoupdate previous time steps.
l o g i c a l : : autoupdate_ ! Autoupdate previous time steps.
i n t e g e r ( I_P ) : : s ! Steps counter.
autoupdate_ = . t rue . ; i f ( present ( autoupdate ) ) autoupdate_ = autoupdate
do s =1 , s e l f%steps

U = U + previous ( s)% t ( t = t ( s ) ) * ( Dt * s e l f%b ( s ) )
enddo
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i f ( autoupdate_ ) c a l l s e l f%update_previous (U=U, previous=previous )
re turn
endsubroutine i n t e g r a t e

This method takes five arguments, the first argument is passed as bounded argument
and it is the solver itself, the second is of an integrand class, it being the integrand field that
must integrated one-step-over in time, the third are the previous time steps solutions, the
fourth is the time step used, the fifth is an array of the time values of the steps considered
for the current one-step-over integration that are passed to the residuals function for taking
into account the cases where the time derivative explicitly depends on time and the sixth
is a logical flag for enabling/disabling the cyclic update of previous time steps solutions.
The time step is not automatically computed (for example inspecting the passed integrand
field), thus its value must be externally computed and passed to the integrate method.

It is worth noting that the method also performs the cyclic update of the previous time
steps solutions memory registers. This can be disable passing autoupdate=.false.: it is useful
in the framework of predictor-corrector solvers.

3.6. The Implicit Adams-Moulton Class of Solvers

The implicit Adams-Moulton class of solvers is exposed as a single derived type
named adams_moulton_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated

dynamic memory registers;
• integrate: integrate integrand field one-step-over in time;
• update_previous: auto update (cyclically) previous time steps solutions.

As common for FOODIE solvers, for using such a solver it must be previously defined
as an instance of the exposed FOODIE integrator type, see Listing 25.

Listing 25. Definition of an implicit Adams-Moulton integrator.

use FOODIE, only : adams_moulton_integrator
type ( adams_moulton_integrator ) : : i n t e g r a t o r

Once an integrator of this type has been instantiated, it must be initialized before used,
for example see Listing 26.

Listing 26. Example of initialization of an implicit Adams-Moulton integrator.

c a l l i n t e g r a t o r%i n i t ( s teps =3)

In the Listing 26 a 3-steps solver has been initialized. As a matter of facts, from the
Equation (7) a solver belonging to this class is completely defined once the number of time
steps adopted has been chosen. The complete definition of the adams_moulton_integrator
type is reported into Listing 27. As shown, the linear coefficients are stored as allocatable
arrays the values of which are initialized by the init method.

Listing 27. Definition of adams_moulton_integrator type.

type : : adams_moulton_integrator
p r i v a t e
i n t e g e r ( I_P ) : : s t eps =−1 ! Number of time steps.
r e a l ( R_P ) , a l l o c a t a b l e : : b ( : ) ! b coefficients.
conta ins

procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e
procedure , pass ( s e l f ) , publ ic : : update_previous
f i n a l : : f i n a l i z e

endtype adams_moulton_integrator

After the solver has been initialized it can be used for integrating an integrand field,
as shown in Listing 28.
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Listing 28. Example of usage of an Adams-Moulton integrator.

r e a l : : t imes ( 1 : 3 )
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 3 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , Dt=Dt , t =times )

where my_integrand is a concrete (valid) extension of integrand ADT, times are the time
at each 4 steps considered for the current one-step-over integration and previous are the
memory registers where previous time steps solutions are saved.

The complete implementation of the integrate method of the implicit Adams-Moulton
class of solvers is reported in Listing 29.

Listing 29. Implementation of the integrate method of explicit Adams-Moulton class.

subroutine i n t e g r a t e ( s e l f , U, previous , Dt , t , autoupdate )
c l a s s ( adams_bashforth_integrator ) , i n t e n t ( IN ) : : s e l f ! Actual AB integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : previous ( 1 : ) ! Previous time steps solutions.
r e a l ( R_P ) , i n t e n t ( IN ) : : Dt ! Time steps.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ( : ) ! Times.
l o g i c a l , opt ional , i n t e n t ( IN ) : : autoupdate ! Autoupdate previous time steps.
l o g i c a l : : autoupdate_ ! Autoupdate previous time steps.
i n t e g e r ( I_P ) : : s ! Steps counter.
autoupdate_ = . t rue . ; i f ( present ( autoupdate ) ) autoupdate_ = autoupdate
i f ( autoupdate_ ) c a l l s e l f%update_previous (U=U, previous=previous )
i f ( s e l f%steps >0) then

U = previous ( s e l f%steps ) + U%t ( t = t ( s e l f%steps ) + Dt ) * ( Dt * s e l f%b ( s e l f%steps ) )
do s =0 , s e l f%steps − 1

U = U + previous ( s+1)% t ( t = t ( s + 1) ) * ( Dt * s e l f%b ( s ) )
enddo
i f ( autoupdate_ ) c a l l s e l f%update_previous (U=U, previous=previous )

e l s e
U = U + U%t ( t = t ( s +1 ) ) * ( Dt * s e l f%b ( 0 ) )

endi f
re turn
endsubroutine i n t e g r a t e

This method takes six arguments, the first argument is passed as bounded argument
and it is the solver itself, the second is of an integrand class, it being the integrand field that
must integrated one-step-over in time, the third are the previous time steps solutions, the
fourth is the time step used, the fifth is an array of the time values of the steps considered
for the current one-step-over integration that are passed to the residuals function for taking
into account the cases where the time derivative explicitly depends on time and the sixth
is a logical flag for enabling/disabling the cyclic update of previous time steps solutions.
The time step is not automatically computed (for example inspecting the passed integrand
field), thus its value must be externally computed and passed to the integrate method.

It is worth noting that the method also performs the cyclic update of the previous time
steps solutions memory registers. This can be disable passing autoupdate=.false.: it is useful
in the framework of predictor-corrector solvers.

3.7. The Predictor-Corrector Adams-Bashforth-Moulton Class of Solvers

The predictor-corrector Adams-Bashforth-Moulton class of solvers is exposed as a
single derived type named adams_bashforth_moulton_integrator. This type provides three
methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• destroy: destroy the integrator previously initialized, eventually freeing the allocated

dynamic memory registers;
• integrate: integrate integrand field one-step-over in time;

As common for FOODIE solvers, for using such a solver it must be previously defined
as an instance of the exposed FOODIE integrator type, see Listing 30.

Listing 30. Definition of an implicit Adams-Moulton integrator.

use FOODIE, only : adams_bashforth_moulton_integrator
type ( adams_bashforth_moulton_integrator ) : : i n t e g r a t o r
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Once an integrator of this type has been instantiated, it must be initialized before used,
for example see Listing 31.

Listing 31. Example of initialization of an implicit Adams-Moulton integrator.

c a l l i n t e g r a t o r%i n i t ( s teps =3)

In the Listing 31 a 3-steps solver has been initialized. As a matter of facts, from the
Equation (8) a solver belonging to this class is completely defined once the number of time
steps adopted has been chosen. The complete definition of the adams_moulton_integrator
type is reported into Listing 32. As shown, the linear coefficients are stored as allocatable
arrays the values of which are initialized by the init method.

Listing 32. Definition of adams_bashforth_moulton_integrator type.

type , extends ( i n t e g r a t o r _ m u l t i s t e p _ o b j e c t ) : : integrator_adams_bashforth_moulton
p r i v a t e
type ( integrator_adams_bashforth ) : : p r e d i c t o r ! Predictor solver.
type ( integrator_adams_moulton ) : : c o r r e c t o r ! Corrector solver.
conta ins

procedure , pass ( s e l f ) : : destroy
procedure , pass ( s e l f ) : : i n i t i a l i z e
procedure , pass ( s e l f ) : : scheme_number

endtype integrator_adams_bashforth_moulton

After the solver has been initialized it can be used for integrating an integrand field,
as shown in Listing 33.

Listing 33. Example of usage of an Adams-Bashforth-Moulton integrator.

r e a l : : t imes ( 1 : 3 )
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 3 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , Dt=Dt , t =times )

where my_integrand is a concrete (valid) extension of integrand ADT, times are the time
at each 4 steps considered for the current one-step-over integration and previous are the
memory registers where previous time steps solutions are saved.

The complete implementation of the integrate method of the predictor-corrector Adams-
Bashforth-Moulton class of solvers is reported in Listing 34.

Listing 34. Implementation of the integrate method of predictor-corrector Adams-Bashforth-
Moulton class.

subroutine i n t e g r a t e ( s e l f , U, Dt , t )
c l a s s ( integrator_adams_bashforth_moulton ) , i n t e n t ( inout ) : : s e l f ! Integrator.
c l a s s ( i n t e g r a n d _ o b j e c t ) , i n t e n t ( inout ) : : U ! Field to be integrated.
r e a l ( R_P ) , i n t e n t ( in ) : : Dt ! Time steps.
r e a l ( R_P ) , i n t e n t ( in ) : : t ! Times.
i n t e g e r ( I_P ) : : s ! Step counter.

do s =1 , s e l f%steps
s e l f%p r e d i c t o r%previous ( s ) = s e l f%previous ( s )
s e l f%p r e d i c t o r%t ( s ) = s e l f%t ( s )
s e l f%p r e d i c t o r%Dt ( s ) = s e l f%Dt ( s )

enddo
do s =1 , s e l f%steps − 1

s e l f%c o r r e c t o r%previous ( s ) = s e l f%p r e d i c t o r%previous ( s +1)
s e l f%c o r r e c t o r%t ( s ) = s e l f%p r e d i c t o r%t ( s +1)
s e l f%c o r r e c t o r%Dt ( s ) = s e l f%p r e d i c t o r%Dt ( s +1)

enddo
c a l l s e l f%p r e d i c t o r%i n t e g r a t e (U=U, Dt=Dt , t = t )
c a l l s e l f%c o r r e c t o r%i n t e g r a t e (U=U, Dt=Dt , t = t )
i f ( s e l f%autoupdate ) &

c a l l s e l f%update_previous (U=U, previous= s e l f%previous , Dt=Dt , t =t , previous_t= s e l f%t )
endsubroutine i n t e g r a t e

This method takes four arguments, the first argument is passed as bounded argument
and it is the solver itself, the second is of an integrand class, it being the integrand field
that must integrated one-step-over in time, the third is the time step used, and the fourth
is the current time. The time step is not automatically computed (for example inspecting
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the passed integrand field), thus its value must be externally computed and passed to the
integrate method.

3.8. The Leapfrog Solver

The explicit Leapfrog class of solvers is exposed as a single derived type named
leapfrog_integrator. This type provides three methods:

• init: initialize the integrator accordingly the possibilities offered by the class of solvers;
• integrate: integrate integrand field one-step-over in time.

As common for FOODIE solvers, for using such a solver it must be previously defined
as an instance of the exposed FOODIE integrator type, see Listing 35.

Listing 35. Definition of an explicit Leapfrog integrator.

use FOODIE, only : l e a p f r o g _ i n t e g r a t o r
type ( l e a p f r o g _ i n t e g r a t o r ) : : i n t e g r a t o r

Once an integrator of this type has been instantiated, it must be initialized before used,
for example see Listing 36.

Listing 36. Example of initialization of an explicit Leapfrog integrator.

! default coefficients nu=0.01, alpha=0.53
c a l l i n t e g r a t o r%i n i t ( )
! custom coefficients
c a l l i n t e g r a t o r%i n i t ( nu =0 .015 , alpha = 0 . 6 )

The complete definition of the leapfrog_integrator type is reported into Listing 37. As
shown, the filter coefficients are initialized to zero, suitable values are initialized by the
init method.

Listing 37. Definition of leapfrog_integrator type.

type : : l e a p f r o g _ i n t e g r a t o r
p r i v a t e
r e a l ( R_P ) : : nu=0.01 _R_P ! Robert-Asselin filter coefficient.
r e a l ( R_P ) : : alpha =0.53 _R_P ! Robert-Asselin-Williams filter coefficient.
conta ins

procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : i n t e g r a t e

endtype l e a p f r o g _ i n t e g r a t o r

After the solver has been initialized it can be used for integrating an integrand field,
as shown in Listing 38.

Listing 38. Example of usage of a Leapfrog integrator.

r e a l : : t imes ( 1 : 2 )
type ( my_integrand ) : : f i l t e r _ d i s p l a c e m e n t
type ( my_integrand ) : : my_field
type ( my_integrand ) : : previous ( 1 : 2 )
c a l l i n t e g r a t o r%i n t e g r a t e (U=my_field , previous=previous , f i l t e r = f i l t e r _ d i s p l a c e m e n t , Dt=Dt , &

t =times )

Where my_integrand is a concrete (valid) extension of integrand ADT, previous are the
memory registers where previous time steps solutions are saved, filter_displacement is the
register necessary for computing the eventual displacement of the applied filter and times
are the time at each 2 steps considered for the current one-step-over integration.

The complete implementation of the integrate method of the explicit Leapfrog class of
solvers is reported in Listing 39.

Listing 39. Implementation of the integrate method of explicit Leapfrog class.

subroutine i n t e g r a t e ( s e l f , U, previous , Dt , t , f i l t e r )
c l a s s ( l e a p f r o g _ i n t e g r a t o r ) , i n t e n t ( IN ) : : s e l f ! LF integrator.
c l a s s ( integrand ) , i n t e n t (INOUT) : : U ! Field to be integrated.
c l a s s ( integrand ) , i n t e n t (INOUT) : : previous ( 1 : 2 ) ! Previous time steps solutions.
r e a l ( R_P ) , i n t e n t ( in ) : : Dt ! Time step.
r e a l ( R_P ) , i n t e n t ( IN ) : : t ! Time.
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c l a s s ( integrand ) , opt ional , i n t e n t (INOUT) : : f i l t e r ! Filter field displacement.
U = previous ( 1 ) + previous (2)% t ( t = t ) * ( Dt * 2 . _R_P )
i f ( present ( f i l t e r ) ) then

f i l t e r = ( previous ( 1 ) − previous ( 2 ) * 2 . _R_P + U) * s e l f%nu * 0 . 5 _R_P
previous ( 2 ) = previous ( 2 ) + f i l t e r * s e l f%alpha
U = U + f i l t e r * ( s e l f%alpha − 1 . _R_P )

endi f
previous ( 1 ) = previous ( 2 )
previous ( 2 ) = U
return
endsubroutine i n t e g r a t e

This method takes six arguments, the first argument is passed as bounded argument
and it is the solver itself, the second is of an integrand class, it being the integrand field
that must integrated one-step-over in time, the third are the previous time steps solutions,
the fourth is the optional filter-displacement-register, the fifth is the time step used and
the sixth is an array of the time values of the steps considered for the current one-step-
over integration that are passed to the residuals function for taking into account the cases
where the time derivative explicitly depends on time. The time step is not automatically
computed (for example inspecting the passed integrand field), thus its value must be
externally computed and passed to the integrate method. It is worth noting that if the filter
displacement argument is not passed, the solver reverts back to the standard unfiltered
Leapfrog method.

It is worth noting that the method also performs the cyclic update of the previous
time steps solutions memory registers. In particular, if the filter displacement argument is
passed the method performs the RAW filtering.

3.9. General Remarks

Table 8 presents a comparison of the relevant parts of Equations (2)–(6) and (9) with
the corresponding FOODIE implementations reported in Listings 9, 14, 19, 24 and 39,
respectively. This comparison proves that the integrand ADT has allowed a very high-level
implementation syntax. The Fortran implementation is almost equivalent to the rigorous
mathematical formulation. This aspect directly implies that the implementation of a ODE
solver into the FOODIE library is very clear, concise and less-errors-prone than an hard-
coded implementation where the solvers must be implemented for each specific definition
of the integrand type, it being not abstract.

Table 8. Comparison between rigorous mathematical formulation and FOODIE high-level implemen-
tation; the syntax “(s)” and “(ss)” imply the summation operation.

Solver Mathematical Formulation FOODIE Implementation

explicit forward Euler U
(
tn+1) = U(tn) + ∆t · R[tn, U(tn)] U = U + U%t(t = t) ∗ Dt

TVD/SSP Runge-Kutta
Ks = R

(
tn + γs∆t, Un + ∆t

s−1
∑

l=1
αs,lKl

)
Un+1 = Un + ∆t ·

Ns
∑

s=1
βsKs

stage(s) = stage(s) + stage(ss) ∗ (Dt ∗ sel f %alph(s, ss))
U = U + stage(s) ∗ (Dt ∗ sel f %beta(s))

low storage Runge-Kutta K2 = AsK2 + ∆t · R(tn + Cs∆t, K1)
K1 = K1 + BsK2

stage(2) = stage(2) ∗ sel f %A(s)+
+stage(1)%t(t = t + sel f %C(s) ∗ Dt) ∗ Dt
stage(1) = stage(1) + stage(2) ∗ sel f %B(s)

explicit Adams-Bashforth
U
(
tn+Ns

)
= U

(
tn+Ns−1)+

+∆t ∑n+Ns
s=1 bs · R

[
tn+s−1, U

(
tn+s−1)] U = U + U%t(n = s, t = t(s)) ∗ (Dt ∗ sel f %b(s))

explicit Leapfrog U
(
tn+2) = U(tn) + 2∆t · R

[
tn+1, U

(
tn+1)] U = U%previous_step(n = 1) + U%t(n = 2, t = t) ∗ (Dt ∗ 2.)

4. Tests and Examples

For the assessment of FOODIE capabilities the oscillator test is considered:

4.1. Oscillation Equations Test

Let us consider the oscillator problem, it being a simple, yet interesting IVP. Briefly,
the oscillator problem is a prototype problem of non dissipative, oscillatory phenomena.
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For example, let us consider a pendulum subjected to the Coriolis accelerations without
dissipation, the motion equations of which can be described by the ODE system (11).

Ut = R(U)

U =

[
x
y

]
R(U) =

[
− f y

f x

]
(11)

where the frequency is chosen as f = 10−4. The ODE system (11) is completed by the
following initial conditions:

x(t0) = 0
y(t0) = 1

(12)

where t0 = 0 is the initial time considered.
The IVP constituted by Equations (11) and (12) is (apparently) simple and its exact

solution is known:

x(t0 + ∆t) = X0cos( f ∆t)− y0sin( f ∆t)
y(t0 + ∆t) = X0sin( f ∆t) + y0cos( f ∆t)

(13)

where ∆t is an arbitrary time step. This problem is non-stiff meaning that the solution is
constituted by only one time-scale, namely the single frequency f .

This problem is only apparently simple. As a matter of facts, in a non dissipative
oscillatory problem the eventual errors in the amplitude approximation can rapidly drive
the subsequent series of approximations to an unphysical solution. This is of particular
relevance if the solution (that is numerically approximated) constitutes a prediction far from
the initial conditions, that is the common case in weather forecasting.

Because the Oscillation system (11) posses a closed exact solution, the discussion
on this test has twofolds aims: to assess the accuracy of the FOODIE’s built-in solvers
comparing the numerical solutions with the exact one and to demonstrate how it is simple
to solve this prototypical problem by means of FOODIE.

4.1.1. Errors Analysis

For the analysis of the accuracy of each solver, we have integrated the Oscillation
Equation (11) with different, decreasing time steps in the range [5000, 2500, 1250, 625, 320, 100].
The error is estimated by the L2 norm of the difference between the exact (Ue) and the
numerical (U∆t) solutions for each time step:

ε(∆t) = ||Ue −U∆t||2 =

√√√√ Ns

∑
s=1

(Ue(t0 + s ∗ ∆t)−U∆t(t0 + s ∗ ∆t))2 (14)

where Ns is the total number of time steps performed to reach the final integration time.
Using two pairs of subsequent-decreasing time steps solution is possible to estimate

the order of accuracy of the solver employed computing the observed order of accuracy:

p =
log10

(
ε(∆t1)
ε(∆t2)

)
log10

(
∆t1
∆t2

) (15)

where ∆t1
∆t2

> 1.

4.1.2. FOODIE Aware Implementation of an Oscillation Numerical Solver

The IVP (11) can be easily solved by means of FOODIE library. The first block of a
FOODIE aware solution consists to define an oscillation integrand field defining a concrete
extension of the FOODIE integrand type. Listing 40 reports the implementation of such an
integrand field that is contained into the tests suite shipped within the FOODIE library.
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Listing 40. Implementation of the oscillation integrand type.

type , extends ( integrand ) : : o s c i l l a t i o n
p r i v a t e
i n t e g e r ( I_P ) : : dims=0 ! Space dimensions.
r e a l ( R_P ) : : f =0 . _R_P ! Oscillation frequency (Hz).
r e a l ( R_P ) , dimension ( : ) , a l l o c a t a b l e : : U ! Integrand (state) variables, [1:dims].
conta ins

! auxiliary methods
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : output
! type_integrand deferred methods
procedure , pass ( s e l f ) , publ ic : : t => d O s c i l l a t i o n _ d t
procedure , pass ( l hs ) , publ ic : : integrand_mult iply_integrand => &

o s c i l l a t i o n _ m u l t i p l y _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : in tegrand_mul t ip ly_rea l => o s c i l l a t i o n _ m u l t i p l y _ r e a l
procedure , pass ( rhs ) , publ ic : : r ea l_mul t ip ly_ in tegrand => r e a l _ m u l t i p l y _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : add => a d d _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : sub => s u b _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : ass ign_integrand => o s c i l l a t i o n _ a s s i g n _ o s c i l l a t i o n
procedure , pass ( l hs ) , publ ic : : a s s i g n _ r e a l => o s c i l l a t i o n _ a s s i g n _ r e a l

endtype o s c i l l a t i o n

The oscillation field extends the integrand ADT making it a concrete type. This derived
type is very simple: it has 5 data members for storing the state vector and some auxiliary
variables, and it implements all the deferred methods necessary for defining a valid concrete
extension of the integrand ADT (plus 2 auxiliary methods that are not relevant for our
discussion). The key point is here constituted by the implementation of the deferred
methods: the integrand ADT does not impose any structure for the data members, that are
consequently free to be customized by the client code. In this example the data members
have a very simple, clean and concise structure:

• dims is the number of space dimensions; in the case of Equation (11) we have dims = 2,
however the test implementation has been kept more general parametrizing this
dimension in order to easily allow future modification of the test-program itself;

• f stores the frequency of the oscillatory problem solved, that is here set to 104, but it
can be changed at runtime in the test-program;

• U is the state vector corresponding directly to the state vector of Equation (11);

As the Listing 40 shows, the FOODIE implementation strictly corresponds to the
mathematical formulation embracing all the relevant mathematical aspects into one derived
type, a single object. Here we not review the implementation of all deferred methods, this
being out of the scope of the present work: the interested reader can see the tests suite
sources shipped within the FOODIE library. However, some of these methods are relevant
for our discussion, thus they are reviewed.

dOscillation_dt, the Oscillation Residuals Function

Probably, the most important methods for an IVP solver is the residuals function. As a
matter of facts, the ODE equations are implemented into the residuals function. However,
the FOODIE ADT strongly alleviates the subtle problems that could arise when the ODE
solver is hard-implemented within the specific ODE equations. As a matter of facts, the
integrand ADT specifies the precise interface the residuals function must have: if the client
code implements a compliant interface, the FOODIE solvers will work as expected, reducing
the possible errors location into the ODE equations, having designed the solvers on the
ADT and not on the concrete type.

Listing 41 reports the implementation of the oscillation residuals function: it is very
clear and concise. Moreover, comparing this listing with the Equation (11) the close corre-
spondence between the mathematical formulation and Fortran implementation is evident.

Listing 41. Implementation of the oscillation integrand residuals function.

func t ion d O s c i l l a t i o n _ d t ( s e l f , t ) r e s u l t ( dSta te_dt )
c l a s s ( o s c i l l a t i o n ) , i n t e n t ( IN ) : : s e l f ! Oscillation field.
r e a l ( R_P ) , opt ional , i n t e n t ( IN ) : : t ! Time.
c l a s s ( integrand ) , a l l o c a t a b l e : : dSta te_dt ! Oscillation field time derivative.
i n t e g e r ( I_P ) : : dn ! Time level, dummy variable.
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a l l o c a t e ( o s c i l l a t i o n : : dSta te_dt )
s e l e c t type ( dSta te_dt )
c l a s s i s ( o s c i l l a t i o n )

dSta te_dt = s e l f
dSta te_dt%U( 1 ) = − s e l f%f * s e l f%U( 2 )
dSta te_dt%U( 2 ) = s e l f%f * s e l f%U( 1 )

e n d s e l e c t
re turn
endfunction d O s c i l l a t i o n _ d t

Add Method, an Example of Oscillation Symmetric Operator

As a prototype of the operators overloading let us consider the add operator, it being a
prototype of symmetric operators, the implementation of which is presented in Listing 42.

Listing 42. Implementation of the oscillation integrand add operator.

func t ion a d d _ o s c i l l a t i o n ( lhs , rhs ) r e s u l t ( opr )
c l a s s ( o s c i l l a t i o n ) , i n t e n t ( IN ) : : l h s ! Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! Right hand side.
c l a s s ( integrand ) , a l l o c a t a b l e : : opr ! Operator result.
a l l o c a t e ( o s c i l l a t i o n : : opr )
s e l e c t type ( opr )
c l a s s i s ( o s c i l l a t i o n )

opr = l h s
s e l e c t type ( rhs )
c l a s s i s ( o s c i l l a t i o n )

opr%U = l h s%U + rhs%U
e n d s e l e c t

e n d s e l e c t
re turn
endfunction ad d_O sc i l l a t i on

It is very simple and clear: firstly all the auxiliary data are copied into the operator
result, then the state vector of the result is populated with the addiction between the
state vectors of the left-hand-side and right-hand-side. This is very intuitive from the
mathematical point of view and it helps to reduce implementation errors. Similar imple-
mentations are possible for all the other operators necessary to define a valid intregrand
ADT concrete extension.

Assignment of an Oscillation Object

The assignment overloading of the oscillation type is the last key-method that enforces
the conciseness of the FOODIE aware implementation. Listing 43 reports the implementa-
tion of the assignment overloading. Essentially, to all the data members of the left-hand-side
are assigned the values of the corresponding right-hand-side. Notably, for the assignment
of the state vector and of the previous time steps solution array we take advantage of
the automatic re-allocation of the left-hand-side variables when they are not allocated or
allocated differently from the right-hand-side, that is a Fortran 2003 feature. In spite its
simplicity, the assignment overloading is a key-method enabling the usage of FOODIE
solver: effectively, the assignment between two integrand ADT variables is ubiquitous into
the solvers implementations, see Equation (3) for example.

Listing 43. Implementation of the oscillation integrand assignment.

subroutine o s c i l l a t i o n _ a s s i g n _ o s c i l l a t i o n ( lhs , rhs )
c l a s s ( o s c i l l a t i o n ) , i n t e n t (INOUT) : : l h s ! Left hand side.
c l a s s ( integrand ) , i n t e n t ( IN ) : : rhs ! Right hand side.
s e l e c t type ( rhs )
c l a s s i s ( o s c i l l a t i o n )

l h s%dims = rhs%dims
l h s%f = rhs%f
i f ( a l l o c a t e d ( rhs%U) ) l h s%U = rhs%U

e n d s e l e c t
re turn
endsubroutine o s c i l l a t i o n _ a s s i g n _ o s c i l l a t i o n



Dynamics 2023, 3 513

FOODIE Numerical Integration

Using the above discussed oscillation type it is very easy to solve IVP (11) by means
of FOODIE library. Listing 44 presents the numerical integration of system (11) by means
of the Leapfrog RAW-filtered method. In the example, the integration is performed with
104 steps with a fixed ∆t = 102 until the time t = 106 is reached. The example shows also
that for starting a multi-step scheme such as the Leapfrog one a lower-oder or equivalent
order one-scheme is necessary: in the example the first 2 steps are computed by means
of one-step TVD/SSP Runge-Kutta 2-stages schemes. Note that the memory registers for
storing the Runge-Kutta stages and the RAW filter displacement must be handled by the
client code. Listing 44 demonstrates how it is simple, clear and concise to solve a IVP
by FOODIE solvers. Moreover, it proves how it is simple and effective to apply different
solvers in a coupled algorithm, that greatly simplify the development of new hybrid solvers
for self-adaptive time step size.

Listing 44. Numerical integration of the oscillation system by means of Leapfrog RAW-filtered method.

use foodie , only : l e a p f r o g _ i n t e g r a t o r , tvd_runge_kut ta_ integra tor
type ( l e a p f r o g _ i n t e g r a t o r ) : : l f _ i n t e g r a t o r ! Leapfrog integrator.
type ( tvd_runge_kut ta_ integra tor ) : : r k _ i n t e g r a t o r ! Runge-Kutta integrator.
type ( o s c i l l a t i o n ) : : rk_s tage ( 1 : 2 ) ! Runge-Kutta stages.
type ( o s c i l l a t i o n ) : : previous ( 1 : 2 ) ! Previous time steps solution.
type ( o s c i l l a t i o n ) : : o s c i l l a t o r ! Oscillation field.
type ( o s c i l l a t i o n ) : : f i l t e r ! Filter displacement.
i n t e g e r : : s tep ! Time steps counter.
r e a l : : Dt ! Time step.
c a l l l f _ i n t e g r a t o r%i n i t ( )
c a l l r k _ i n t e g r a t o r%i n i t ( s t a g e s =2)
c a l l o s c i l l a t o r%i n i t ( i n i t i a l _ s t a t e = [ 0 . 0 , 1 . 0 ] , f =10e4 , s teps =2)
Dt = 100 .0
do step =1 , 10000

i f (2>= step ) then
c a l l r k _ i n t e g r a t o r%i n t e g r a t e (U= o s c i l l a t o r , s tage=rk_stage , Dt=Dt , t =step * Dt )
previous ( s tep ) = o s c i l l a t o r

e l s e
c a l l l f _ i n t e g r a t o r%i n t e g r a t e (U= o s c i l l a t o r , previous=previous , f i l t e r = f i l t e r , Dt=Dt , &

t =step * Dt )
endi f

enddo
c a l l p r i n t _ r e s u l t s (U= o s c i l l a t o r )

4.1.3. Adams-Bashforth

Table 9 summarizes the Adams-Bashforth error analysis. As expected, the Adams-
Bashforth 1 step solution, that reverts back to the explicit forward Euler one, is unstable for
all the ∆t exercised.

The expected observed orders of accuracy for the Adams-Bashforth solvers using 2,
3 and 4 time steps tend to 1.5, 2.5 and 3.5 that are in agreement with the expected formal
order of 2, 3 and 4, respectively. Comparing the errors of the finest time resolution, i.e.,
∆t = 100, we find that the L2 norm decreases of the 2 orders of magnitude as the solver’s
accuracy increases by 1 order. This also means that fixing a tolerance on the errors, the
higher is the solver’s accuracy the larger is the time resolution available. As an example,
assuming that admissible errors are of O(10−2) with the 4-steps solver we can use ∆t = 625
performing Ns = t f inal/625 numerical integration steps, whereas using a 3-steps solvers
we must adopt ∆t = 100 performing 6.25 × Ns numerical integration steps instead of
Ns. Considering that the computational costs is only slightly affected by the number of
previous time steps considered (recalling Equation (6) one can observe that there is only
one new evaluation of the residuals function R independently of the previous time steps
considered, thus, the computational costs is affected only by the increasing number of
residuals summations, the costs of which are typically negligible with respect the cost of R
evaluation.), the accuracy order has strong impact on the overall numerical efficiency: to
improve the numerical efficiency reducing the computational costs, the usage of high order
Adams-Bashforth solvers with larger time steps should be preferred instead of low order
solvers with smaller time steps.
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Table 9. Oscillation test: errors analysis of explicit Adams-Bashforth solvers.

(a) 1 Step (b) 2 Steps

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.840 × 1010 0.706 × 1010 / / 5000.0 0.596 × 103 0.583 × 103 / /
2500.0 0.503 × 106 0.570 × 106 14.03 13.60 2500.0 0.221 × 102 0.218 × 102 4.75 4.74
1250.0 0.289 × 104 0.272 × 104 7.45 7.71 1250.0 0.764 × 101 0.769 × 101 1.53 1.50
625.0 0.239 × 103 0.232 × 103 3.59 3.55 625.0 0.265 × 101 0.268 × 101 1.53 1.52
320.0 0.737 × 102 0.722 × 102 1.76 1.74 320.0 0.968 × 100 0.981 × 100 1.51 1.50
100.0 0.250 × 102 0.247 × 102 0.93 0.92 100.0 0.169 × 100 0.171 × 100 1.50 1.50

(c) 3 Steps (d) 4 Steps

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.857 × 101 0.854 × 101 / / 5000.0 0.128 × 107 0.143 × 107 / /
2500.0 0.391 × 101 0.386 × 101 1.13 1.14 2500.0 0.106 × 101 0.107 × 101 20.21 20.34
1250.0 0.825 × 100 0.814 × 100 2.24 2.25 1250.0 0.967 × 10−1 0.981 × 10−1 3.45 3.45
625.0 0.150 × 100 0.148 × 100 2.46 2.46 625.0 0.859 × 10−2 0.871 × 10−2 3.49 3.49
320.0 0.282 × 10−1 0.278 × 10−1 2.49 2.49 320.0 0.827 × 10−3 0.838 × 10−3 3.50 3.50
100.0 0.154 × 10−2 0.152 × 10−2 2.50 2.50 100.0 0.141 × 10−4 0.143 × 10−4 3.50 3.50

Figure 1 shows, for each solver exercised, the X(t) and Y(t) solution for t ∈ [0, 106]: the
plots into the figure report a global overview of the solution for all the instants considered
(left subplots) and a detailed zoom over the last instants of the integration (right subplots)
for evaluating the numerical errors accumulation. For the sake of clarity, the strongly unsta-
ble solutions are omitted into the subplots concerning the final integration instants, namely
the solutions for large ∆t. Figure 1 emphasizes the instability generation for some pairs
steps number/∆t. The 2 and 4 steps solutions are instable for ∆t = 5000→ f ∗ ∆t = 0.5.
On the contrary, the 3 steps solution is stable, but the amplitude is dumped and the solution
vanishes as the integration proceeds. The 2 and 4 steps solutions show a phase error that
decreases as the time resolution increases, whereas 3 steps solution has null phase error.

(a) 1 step (b) 2 steps

(c) 3 steps (d) 4 steps
Figure 1. Oscillation equations solutions computed by means of Adams-Bashforth solvers
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4.1.4. Adams-Bashforth-Moulton

Table 10 summarizes the Adams-Bashforth-Moulton error analysis. The same consid-
erations done for the Adams-Bashforth solutions can repeated for the Adams-Bashforth-
Moulton ones, thus they are omitted for the sake of conciseness. An interesting result
concerns the observed errors: the O(10−2) error is now obtained with ∆t = 1250 for the
4-steps solver, thus it is 2 times faster than the corresponding Adams-Bashforth 4-step
solver. Considering that the computational costs of a single Adams-Bashforth-Moulton
step is only slightly greater than the corresponding Adamas-Bashforth step, the efficiency
increasing is not negligible.

Table 10. Oscillation test: errors analysis of predictor-corrector Adams-Bashforth-Moulton solvers.

(a) 1 Step (b) 2 Steps

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.241 × 1020 0.266 × 1020 / / 5000.0 0.704 × 10E+01 0.701 × 10E+01 / /
2500.0 0.664 × 1011 0.716 × 1011 28.44 28.47 2500.0 0.392 × 10E+01 0.395 × 10E+01 0.84 0.83
1250.0 0.952 × 106 0.100 × 107 16.09 16.12 1250.0 0.148 × 10E+01 0.150 × 10E+01 1.40 1.39
625.0 0.413 × 104 0.407 × 104 7.85 7.95 625.0 0.526 × 10E+00 0.534 × 10E+00 1.49 1.49
320.0 0.387 × 103 0.383 × 103 3.54 3.53 320.0 0.193 × 10E+00 0.196 × 10E+00 1.50 1.50
100.0 0.145 × 103 0.145 × 103 0.84 0.83 100.0 0.338 × 10E−01 0.342 × 10E−01 1.50 1.50

(c) 3 Steps (d) 4 Steps

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.457 × 101 0.464 × 101 / / 5000.0 0.229 × 101 0.225 × 101 / /
2500.0 0.656 × 100 0.654 × 100 2.80 2.83 2500.0 0.119 × 100 0.118 × 100 4.26 4.25
1250.0 0.100 × 100 0.987 × 10−1 2.71 2.73 1250.0 0.825 × 10−2 0.833 × 10−2 3.85 3.83
625.0 0.169 × 10−1 0.167 × 10−1 2.56 2.56 625.0 0.671 × 10−3 0.681 × 10−3 3.62 3.61
320.0 0.314 × 10−2 0.310 × 10−2 2.52 2.51 320.0 0.631 × 10−4 0.640 × 10−4 3.53 3.53
100.0 0.171 × 10−3 0.169 × 10−3 2.50 2.50 100.0 0.107 × 10−5 0.108 × 10−5 3.51 3.51

Figure 2 shows similar plots of Figure 1 above discussed. Differently from the
Adams-Bashforth class, the amplitude damping feature is now possessed by the 2-steps
solver, see Figure 2b, while all solutions show phase errors that decrease as the time
resolution increases.

4.1.5. Adams-Moulton

Table 11 summarizes the Adams-Moulton error analysis. The implicit Adams-Moulton
solvers behave much like the Adams-Bashforth-Moulton ones: they have similar errors
and observed orders for the same formal order considered. However, the implicit Adams-
Moulton class uses one less step with respect the corresponding Adams-Bashforth-Moulton
class: this could lead to the promise of higher computational efficiency. Notwithstanding,
for solving the implicit non-linearity embedded into the Adams-Moulton solvers an iter-
ative algorithm must be employed: for the results presented, a 5 iterations of fixed point
algorithm have been computed. This strongly reduces the eventual gain of computational
efficiency with respect the Adams-Bashforth-Moulton class.
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(a) 1 step (b) 2 steps

(c) 3 steps (d) 4 steps
Figure 2. Oscillation equations solutions computed by means of Adams-Bashforth-Moulton solvers.

Table 11. Oscillation test: errors analysis of explicit Adams-Moulton solvers; the implicit non-linearity
is solved by 5 iterations of fixed point algorithm.

(a) 1 Step (b) 2 Steps

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.840 × 1010 0.706 × 1010 / / 5000.0 0.108 × 102 0.109 × 102 / /
2500.0 0.503 × 106 0.570 × 106 14.03 13.60 2500.0 0.412 × 101 0.419 × 101 1.39 1.38
1250.0 0.289 × 104 0.272 × 104 7.45 7.71 1250.0 0.148 × 101 0.150 × 101 1.48 1.48
625.0 0.239 × 103 0.232 × 103 3.59 3.55 625.0 0.527 × 100 0.533 × 100 1.49 1.49
320.0 0.737 × 102 0.722 × 102 1.76 1.74 320.0 0.193 × 100 0.196 × 100 1.50 1.50
100.0 0.250 × 102 0.247 × 102 0.93 0.92 100.0 0.338 × 10−1 0.342 × 10−1 1.50 1.50

5000.0 0.390 × 101 0.384 × 101 / / 5000.0 0.983 × 100 0.999 × 100 / /
2500.0 0.551 × 100 0.544 × 100 2.82 2.82 2500.0 0.832 × 10−1 0.845 × 10−1 3.56 3.56
1250.0 0.947 × 10−1 0.934 × 10−1 2.54 2.54 1250.0 0.736 × 10−2 0.746 × 10−2 3.50 3.50
625.0 0.167 × 10−1 0.165 × 10−1 2.50 2.50 625.0 0.652 × 10−3 0.660 × 10−3 3.50 3.50
320.0 0.313 × 10−2 0.309 × 10−2 2.50 2.50 320.0 0.626 × 10−4 0.635 × 10−4 3.50 3.50
100.0 0.171 × 10−3 0.169 × 10−3 2.50 2.50 100.0 0.107 × 10−5 0.108 × 10−5 3.50 3.50

Figure 3 shows similar plots of Figure 2 above discussed: there are not relevant
differences between the 2 classes of solvers.
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(a) 0 step (b) 1 step

(c) 2 steps (d) 3 steps
Figure 3. Oscillation equations solutions computed by means of Adams-Moulton solvers.

4.1.6. Leapfrog

The Leapfrog solutions are in agreement with the expected results: both unfiltered
and RAW-filtered solutions show an observed order of accuracy that tends to the formal
2nd order, as reported in Table 12. The two solutions are almost the same, see Figure 4.

Table 12. Oscillation test: errors analysis of explicit Leapfrog solvers.

(a) Unfiltered (b) RAW-Filtered

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.156 × 102 0.156 × 102 / / 5000.0 0.156 × 102 0.156 × 102 / /
2500.0 0.849 × 101 0.846 × 101 0.87 0.88 2500.0 0.855 × 101 0.852 × 101 0.86 0.87
1250.0 0.300 × 101 0.303 × 101 1.50 1.48 1250.0 0.303 × 101 0.305 × 101 1.50 1.48
625.0 0.106 × 101 0.107 × 101 1.51 1.50 625.0 0.107 × 101 0.108 × 101 1.51 1.50
320.0 0.387 × 100 0.392 × 100 1.50 1.50 320.0 0.390 × 100 0.395 × 100 1.50 1.50
100.0 0.676 × 10−1 0.685 × 10−1 1.50 1.50 100.0 0.685 × 10−1 0.692 × 10−1 1.50 1.50

(a) Unfiltered (b) RAW-filtered
Figure 4. Oscillation equations solutions computed by means of Leapfrog solvers.
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4.1.7. Low Storage Runge-Kutta

Table 13 summarizes the error analysis of Low Storage Runge-Kutta solver. The
1 stage solution, that reverts back to the explicit forward Euler one, is unstable for all the
∆t exercised.

The expected observed orders of accuracy using 5, 6, 7, 12, 13 and 14 stages tend to 3.5
that are in agreement with the expected formal order 4. Comparing the errors of the finest
time resolution, i.e., ∆t = 100, we find that the L2 norm decreases (slowly) as the number
of stages increases. Figures 5 and 6 show the solutions for all the stages tested.

Table 13. Oscillation test: errors analysis of explicit Low Storage Runge-Kutta solvers.

(a) 1 Stage (b) 5 Stages

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.840 × 1010 0.706 × 1010 / / 5000.0 0.120 × 100 0.122 × 100 / /
2500.0 0.503 × 106 0.570 × 106 14.03 13.60 2500.0 0.106 × 10−1 0.107 × 10−1 3.51 3.51
1250.0 0.289 × 104 0.272 × 104 7.45 7.71 1250.0 0.935 × 10−3 0.947 × 10−3 3.50 3.50
625.0 0.239 × 103 0.232 × 103 3.59 3.55 625.0 0.826 × 10−4 0.836 × 10−4 3.50 3.50
320.0 0.737 × 102 0.722 × 102 1.76 1.74 320.0 0.793 × 10−5 0.803 × 10−5 3.50 3.50
100.0 0.250 × 102 0.247 × 102 0.93 0.92 100.0 0.135 × 10−6 0.137 × 10−6 3.50 3.50

(c) 6 Stages (d) 7 Stages

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.979 × 10−1 0.994 × 10−1 / / 5000.0 0.238 × 10−1 0.240 × 10−1 / /
2500.0 0.876 × 10−2 0.888 × 10−2 3.48 3.48 2500.0 0.203 × 10−2 0.205 × 10−2 3.55 3.55
1250.0 0.776 × 10−3 0.786 × 10−3 3.50 3.50 1250.0 0.177 × 10−3 0.180 × 10−3 3.51 3.51
625.0 0.686 × 10−4 0.695 × 10−4 3.50 3.50 625.0 0.156 × 10−4 0.158 × 10−4 3.50 3.50
320.0 0.659 × 10−5 0.667 × 10−5 3.50 3.50 320.0 0.150 × 10−5 0.152 × 10−5 3.50 3.50
100.0 0.112 × 10−6 0.114 × 10−6 3.50 3.50 100.0 0.269 × 10−7 0.273 × 10−7 3.46 3.46

(e) 12 Stages (f) 13 Stages

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.195 × 10−1 0.198 × 10−1 / / 5000.0 0.795 × 10−2 0.805 × 10−2 / /
2500.0 0.175 × 10−2 0.177 × 10−2 3.48 3.48 2500.0 0.703 × 10−3 0.712 × 10−3 3.50 3.50
1250.0 0.155 × 10−3 0.157 × 10−3 3.50 3.50 1250.0 0.621 × 10−4 0.629 × 10−4 3.50 3.50
625.0 0.137 × 10−4 0.139 × 10−4 3.50 3.50 625.0 0.549 × 10−5 0.556 × 10−5 3.50 3.50
320.0 0.132 × 10−5 0.133 × 10−5 3.50 3.50 320.0 0.527 × 10−6 0.534 × 10−6 3.50 3.50
100.0 0.225 × 10−7 0.228 × 10−7 3.50 3.50 100.0 0.899 × 10−8 0.911 × 10−8 3.50 3.50

(g) 14 Stages

Time Step Error X Error Y Order X Order Y

5000.0 0.849 × 10−2 0.860 × 10−2 / /
2500.0 0.750 × 10−3 0.759 × 10−3 3.50 3.50
1250.0 0.662 × 10−4 0.671 × 10−4 3.50 3.50
625.0 0.585 × 10−5 0.593 × 10−5 3.50 3.50
320.0 0.562 × 10−6 0.569 × 10−6 3.50 3.50
100.0 0.959 × 10−8 0.972 × 10−8 3.50 3.50
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(a) 1 stage (b) 5 stages
Figure 5. Oscillation equations solutions computed by means of low storage Runge-Kutta solvers
with 1 and 5 stages.

(a) 6 stages (b) 7 stages

(c) 12 stages (d) 13 stages

(e) 14 stages
Figure 6. Oscillation equations solutions computed by means of low storage Runge-Kutta solvers
with 6, 7, 12, 13 and 14 stages.
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4.1.8. TVD/SSP Runge-Kutta

Table 14 summarizes the error analysis of TVD/SSP Runge-Kutta solver. The 1 stage so-
lution, that reverts back to the explicit forward Euler one, is unstable for all the ∆t exercised.

The expected observed orders of accuracy using 2, 3, and 5 stages tend to 1.5, 2.5 and
3.5 that are in agreement with the expected formal order 2, 3 and 4, respectively. Comparing
the errors of the finest time resolution, i.e., ∆t = 100, we find that the L2 norm decreases
as the number of stages increases (roughly 2 order of magnitude for each stage). Figure 7
shows the solutions for all the stages tested.

Table 14. Oscillation test: errors analysis of explicit TVD/SSP Runge-Kutta.

(a) 1 Stage (b) 2 Stages

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.840 × 1010 0.706 × 1010 / / 5000.0 0.316 × 102 0.319 × 102 / /
2500.0 0.503 × 106 0.570 × 106 14.03 13.60 2500.0 0.892 × 101 0.894 × 101 1.83 1.84
1250.0 0.289 × 104 0.272 × 104 7.45 7.71 1250.0 0.301 × 101 0.305 × 101 1.57 1.55
625.0 0.239 × 103 0.232 × 103 3.59 3.55 625.0 0.106 × 101 0.107 × 101 1.51 1.51
320.0 0.737 × 102 0.722 × 102 1.76 1.74 320.0 0.387 × 100 0.392 × 100 1.50 1.50
100.0 0.250 × 102 0.247 × 102 0.93 0.92 100.0 0.676 × 10−1 0.685 × 10−1 1.50 1.50

(c) 3 Stages (d) 5 Stages

Time Step Error X Error Y Order X Order Y Time Step Error X Error Y Order X Order Y

5000.0 0.255 × 101 0.252 × 101 / / 5000.0 0.139 × 100 0.141 × 100 / /
2500.0 0.523 × 100 0.516 × 100 2.28 2.29 2500.0 0.122 × 10−1 0.124 × 10−1 3.50 3.50
1250.0 0.944 × 10−1 0.931 × 10−1 2.47 2.47 1250.0 0.108 × 10−2 0.110 × 10−2 3.50 3.50
625.0 0.167 × 10−1 0.165 × 10−1 2.50 2.50 625.0 0.956 × 10−4 0.969 × 10−4 3.50 3.50
320.0 0.314 × 10−2 0.310 × 10−2 2.50 2.50 320.0 0.937 × 10−5 0.949 × 10−5 3.47 3.47
100.0 0.171 × 10−3 0.169 × 10−3 2.50 2.50 100.0 0.512 × 10−6 0.519 × 10−6 2.50 2.50

(a) 1 stage (b) 2 stages

(c) 3 stages (d) 5 stages
Figure 7. Oscillation equations solutions computed by means of TVD/SSP Runge-Kutta solvers.
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5. Benchmarks on Parallel Frameworks

As aforementioned, FOODIE is unaware of any parallel paradigms or programming
models the client codes adopt. As a consequence, the parallel performances measurements
presented into this section are aimed only to prove that FOODIE environment does not
destroy the parallel scaling of the baseline code implemented without FOODIE.

To obtain such a prove, the 1D Euler PDE system described previously is numerically
solved with FOODIE-aware test codes that in turn exploit parallel resources by means:

• CoArray Fortran (CAF) model, for shared and distributed memory architectures;
• OpenMP directive-based model, for only shared memory architectures;

In order to measure the performances of the parallel-enabled FOODIE tests, the
strong and weak scaling have been considered. For the strong scaling the speedup has
been computed:

speedup(N, k) =
Tserial(N)

Tparallel(N, k)
(16)

where N is the problem size, K the number of parallel resources used (namely the physical
cores), Tserial is the CPU time of the serial code and Tparallel the one of the parallel code. The
ideal speedup is linear with slop equals to 1. The efficiency correlated to the strong scaling
measurement is defined as:

e f f iciency(N, k) =
speedup(N, k)

k
(17)

The maximum ideal efficiency is obviously the unity.
For the of weak scaling measurement the sizeup has been computed:

sizeup(N, k) =
Nk
N1
· Tserial(N1)

Tparallel(Nk, k)
(18)

where N1 is the minimum size considered and NK is the size used for the test computed
with k parallel resources. If NK is scaled proportional to N1, the ideal sizeup is again linear
and if Nk = k · N1 the slope is again linear. The efficiency correlated to the weak scaling is
defined as:

e f f iciency(N, k) =
sizeup(N, k)

k
(19)

The maximum ideal efficiency is obviously the unity.
The same 1D Euler PDEs problem is also solved by parallel-enabled codes that are not

based on FOODIE: their solutions provide a reference for measuring the effect of FOODIE
abstraction on the parallel scaling.

5.1. CAF Benchmark

This subsection reports the parallel scaling analysis of Euler 1D test programs (with
and without FOODIE) being parallelized by means of CoArrays Fortran (CAF) model. This
parallel model is based on the concept of coarray introduced into the Fortran 2008 standard:
the array syntax is extended introducing the so called codimension that is a new arrays
indexing. Essentially, a CAF enabled code is designed to be replicated a certain number
of times and all copies, conventionally named images, are executed asynchronously. Each
image has its own set of data (memory) and the codimension indexes are used to access to
the (remote) memory of the other images. The CAF approach allows the implementation
of Partitioned Global Address Space (PGAS) model following the SPMD (single program,
multiple data) parallelization paradigm. The programmer must take care of defining the
coarray variables and of synchronizing the images when necessary. This approach requires
the refactoring of legacy serial codes, but it allows the exploitation of both shared and
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distributed memory architectures. Moreover, it is a standard feature of Fortran (2008), thus
it is not chained to any particular compiler vendors extension.

The benchmarks shows in this section have been done on a dual Intel(R) Xeon(R) CPU
X5650 exacores workstation for a total of 12 physical cores, coupled with 24 GB of RAM. In
order to perform an accurate analysis 4 different codes have considered:

• FOODIE-aware codes:

– serial code;
– CAF-enabled code;

• procedural codes without using FOODIE library:

– serial code;
– CAF-enabled code;

These codes (see Appendix A.1 for the implementation details) have been compiled
by means of the GNU gfortran compiler v5.2.0 coupled with OpenCoarrays v1.1.0 (an
open-source software project for developing, porting and tuning transport layers that
support coarray Fortran (CAF) compilers, see http://www.opencoarrays.org/ (accessed
on 20 August 2023).

The Euler conservation laws are integrated for 30 time steps by means of the TVD
RK(5,4) solver: the measured CPU time used for computing the scaling efficiencies is the
average of the 30 integrations, thus representing the mean CPU time for computing one
time step integration.

For the strong scaling, the benchmark has been conducted with 240,000 finite volumes.
Figure 8a summarizes the strong scaling analysis: it shows that FOODIE-based code scales
similarly to the baseline code without FOODIE.

(a) Strong scaling, number of cells 240,000

(b) Weak scaling, minimum number of cells 24,000
Figure 8. Scaling efficiency with CAF programming model.

http://www.opencoarrays.org/
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For the weak scaling the minimum size is 24,000 finite volumes and the size is scaled
linearly with the CAF images, thus N12 = 288,000 cells. Figure 8b summarizes the weak
scaling analysis and it essentially confirms that FOODIE-based code scales similarly to the
baseline code without FOODIE.

Both strong and weak scaling analysis point out that for the computing architecture
considered the parallel scaling is reasonable up to 12 cores, the efficiency being always
satisfactory.

To complete the comparison, the absolute CPU-time consumed by the two families
of codes (with and without FOODIE) must be considered. Table 15 summarizes the
benchmarks results. As shown, procedural and FOODIE-aware codes consume a very
similar CPU-time for both the strong and the weak benchmarks. The same results are
shown in Figure 9. These results prove that the abstraction of FOODIE environment does
not degrade the computational efficiency.

Table 15. Caf benchmarks results.

(a) Strong Benchmarks, Number of Cells 240,000 (b) Weak Benchmarks, Minimum Number of Cells 24,000
Number

of Caf
Threads

CPU Time for 1 Time Step Integration
Number

of Caf
Threads

Number
of Cells CPU Time for 1 Time Step Integration

FOODIE
Serial

FOODIE
Parallel

Procedural
Serial

Procedural
Parallel

FOODIE
Serial

FOODIE
Parallel

Procedural
Serial

Procedural
Parallel

1 3.2970 3.3297 3.0049 3.0563 1 24,000 0.3105 0.3159 0.3089 0.3133
2 / 1.6536 / 1.5686 2 48,000 / 0.3209 / 0.3185
4 / 0.8515 / 1.8116 4 96,000 / 0.3384 / 0.3269
8 / 0.4296 / 0.4130 8 192,000 / 0.3449 / 0.3369
12 / 0.3094 / 0.2839 12 288,000 / 0.4291 / 0.3657

(a) Strong benchmark, number of cells
240,000

(b) Weak benchmark, minimum number
of cells 24,000

Figure 9. CPU time consumed with caf programming model.

5.2. OpenMP Benchmark

This subsection reports the parallel scaling analysis of Euler 1D test programs (with
and without FOODIE) being parallelized by means of OpenMP directives-based paradigm.
This parallel model is based on the concept of threads: an OpenMP enabled code start a
single (master) threaded program and, at run-time, it is able to generate a team of (many)
threads that work concurrently on the parallelized parts of the code, thus reducing the
CPU time necessary for completing such parts. The parallelization is made by means of
directives explicitly inserted by the programmer: the communications between threads are
automatically handled by the compiler (through the provided OpenMP library used as
back-end). OpenMP parallel paradigm is not a standard feature of Fortran, rather it is an
extension provided by the compiler vendors. This parallel paradigm constitutes an effective
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and easy approach for parallelizing legacy serial codes, however its usage is limited to
shared memory architectures because all threads must have access to the same memory.

The benchmarks shown in this section have been done on a dual Intel(R) Xeon(R) CPU
X5650 exacores workstation for a total of 12 physical cores, coupled with 24 GB of RAM. In
order to perform an accurate analysis 4 different codes have considered:

• FOODIE-aware codes:

– serial code;
– OpenMP-enabled code;

• procedural codes without using FOODIE library:

– serial code;
– OpenMP-enabled code;

These codes (see Appendix A.1 for the implementation details) have been compiled
by means of the GNU gfortran compiler v5.2.0 with -O2 -fopenmp compilation flags.

The Euler conservation laws are integrated for 30 time steps by means of the TVD
RK(5,4) solver: the measured CPU time used for computing the scaling efficiencies is the
average of the 30 integrations, thus representing the mean CPU time for computing one
time step integration.

For the strong scaling, the benchmark has been conducted with 240,000 finite volumes.
Figure 10a summarizes the strong scaling analysis: it shows that FOODIE-based code scales
similarly to the baseline code without FOODIE.

(a) Strong scaling, number of cells 240,000

(b) Weak scaling, minimum number of cells 24,000

Figure 10. Scaling efficiency with OpenMP programming model.

For the weak scaling the minimum size is 24,000 finite volumes and the size is scaled
linearly with the OpenMP threads, thus N12 = 288,000 cells. Figure 10b summarizes the
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weak scaling analysis and it essentially confirms that FOODIE-based code scales similarly
to the baseline code without FOODIE.

Both strong and weak scaling analysis point out that for the computing architecture
considered the parallel scaling is reasonable up to 8 cores: using 12 cores the measured
efficiencies become unsatisfactory, reducing below the 60%.

To complete the comparison, the absolute CPU-time consumed by the two families
of codes (with and without FOODIE) must be considered. Table 16 summarizes the
benchmarks results. As shown, procedural and FOODIE-aware codes consume a very
similar CPU-time for both the strong and the weak benchmarks. The same results are
shown in Figure 11. These results prove that the abstraction of FOODIE environment does
not degrade the computational efficiency.

Table 16. OpenMP benchmarks results.

(a) Strong Benchmarks, Number of Cells 240,000 (b) Weak Benchmarks, Minimum Number of Cells 24,000
Number

of
OpenMP
Threads

CPU Time for 1 Time Step Integration

Number
of

OpenMP
Threads

Number
of Cells CPU Time for 1 Time Step Integration

FOODIE
Serial

FOODIE
Parallel

Procedural
Serial

Procedural
Parallel

FOODIE
Serial

FOODIE
Parallel

Procedural
Serial

Procedural
Parallel

1 3.3466 3.3076 3.1252 3.0873 1 24,000 0.3171 0.3162 0.3089 0.3111
2 / 1.8166 / 1.7765 2 48,000 / 0.3492 / 0.3854
4 / 0.9798 / 1.0085 4 96,000 / 0.3666 / 0.4069
8 / 0.5192 / 0.5055 8 192,000 / 0.3862 / 0.4142
12 / 0.4847 / 0.4748 12 288,000 / 0.5727 / 0.6142

(a) Strong benchmark, number of cells
240,000

(b) Weak benchmark, minimum number
of cells 24,000

Figure 11. CPU time consumed with OpenMP programming model.

6. Concluding Remarks and Perspectives

The present manuscript provides detailed analysis of the implementation and tests
of a software framework for the numerical solution of Ordinary Differential Equations
(ODEs) for evolutionary (dynamic) problems. The numerical solution of general, non
linear differential equations system of the form Ut = R(t, U), U0 = F (where U is the
vector of state variables being a function of the time-like independent variable t, Ut =

dU
dt ,

R is the (vectorial) residual function, it could be a non linear function of the solution U
itself and F is the (vectorial) initial conditions function.) is an ubiquitous mathematical
representation for many dynamic phenomena. As a consequence, the development of
new mathematical and numerical methods for solving ODEs is of paramount interest for
mathematicians and physicists: in particular, it is crucial to minimize implementation
errors, to maximize source code clearness and conciseness and to speed-up the rapid
implementation of new ideas while preserving computational efficiency. Such goals are
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often in contrast with hard-coded ODEs solvers which implementations are often very
different from the mathematical description of the solvers themselves. As demonstrated in
this work, the exploitation of Fortran Object Oriented Programming capabilities had let
us to implement a very powerful ODEs solver library, FOODIE framework, that allows
mathematicians and physicists to implement novel solvers in a very clear, concise and
less-errors-prone than the hard-coded way due to the high abstraction level of the library
itself. In particular, by means of the Abstract Calculus Pattern (ACP), FOODIE library
allows to express the solvers formulae with a very high-level language, it being close as
much as possible to their natural mathematical formulations which scientists are familiar to,
i.e., the presented approach allows the implementation of novels methods with the same
low-efforts of Computer Algebra System (CAS). However, differently from common CAS,
the presented approach is implemented in pure Fortran programming language, allowing
also for High Performance Computing (HPC) problems. As a matter of facts, the presented
tests and parallel benchmarks have proved that FOODIE (and ACP approach in general)
does not decrease the parallel computing efficiency.

Future works on FOODIE will concern the implementation of new ODEs solvers as
well as its applications to some non linear, dynamic PDEs system, in particular concerning
the Computational Fluid Dynamics (CFD) field. Current exascale superpc are currently
focused on GPU accelerators: the closest perspective of FOODIE extensions will concern
the exploitation of parallel GPU computing power by means of OpenMP GPU offloading.
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published version of the manuscript.
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Appendix A. Euler 1D Parallel Tests API

In Sections 5.1 and 5.2 it has been proved that FOODIE usage does not penalize the
parallel scaling of an equivalent procedural code implemented without FOODIE. To this
aim, we have solved the Euler’s conservation laws (in one dimension) by means of FOODIE:
as a matter of fact, Euler 1D PDEs constitutes a complex test retaining many difficulties of
real applications, but it is still simple enough to serve as benchmark test. In this section we
report the implementation details of the codes developed to solve (with serial and parallel
models) the Euler 1D PDEs system.

Appendix A.1. Euler 1D Baseline API

The 1D Euler PDEs system is a non linear, hyperbolic (inviscid) system of conservation
laws for compressible gas dynamics, that reads

Ut = R(U)⇔ Ut = F(U)x

U =

 ρ
ρu
ρE

 F(U) =

 ρu
ρu2 + p

ρuH

 (A1)

where ρ is the density, u is the velocity, p the pressure, E the total internal specific energy
and H the total specific enthalpy. The PDEs system must completed with the proper

https://github.com/Fortran-FOSS-Programmers/FOODIE
https://github.com/Fortran-FOSS-Programmers/FOODIE
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initial and boundary conditions. Moreover, an ideal (thermally and calorically perfect) gas
is considered

R = cp − cv

γ =
cp
cv

e = cvT
h = cpT

(A2)

where R is the gas constant, cp and cv are the specific heats at constant pressure and volume
(respectively), e is the internal energy, h is the internal enthalpy and *T* is the temperature.
The following addition equations of state hold:

T = p
ρR

E = ρe + 1
2 ρu2

H = ρh + 1
2 ρu2

a =
√

γp
ρ

(A3)

An extension of the above Euler system is considered allowing the modelling of
a multi-fluid mixture of different gas (with different physical characteristics). The well
known Standard Thermodynamic Model is used to model the gas mixture replacing the
density with the density fraction of each specie composing the mixture. This led to the
following system:

Ut = R(U)⇔ Ut = F(U)x

U =

 ρs
ρu
ρE

 F(U) =

 ρsu
ρu2 + p

ρuH

 f or s = 1, 2, ...Ns

ρ = ∑Ns
s=1 ρs

cp = ∑NS
s=1

ρs
ρ cp,s cv = ∑NS

s=1
ρs
ρ cv,s

(A4)

where Ns is the number of initial species composing the gas mixture.

Appendix A.1.1. Memory Organization

The finite volume, Godunov’s like approach is employed. Essentially, the method of
Lines is used to decouple the space operator from the time one. Firstly, the space operator
(the residual function of Equation (A1)) is numerically solved in order to reduce the original
PDEs system to a system of ODEs that is then integrated over time by means of FOODIE
solvers. Here we omit the details of the numerical models, interested readers can see [22,23].
On the contrary, some details on the memory organization is necessary to explaining the
implemented API.

The conservative variables are co-located at the cell center. The cell and (inter)faces
numeration is as shown in Listing A1.

Listing A1. Numerical grid organization.

c e l l ( i n t e r ) f a c e s
| |
v v

|−−−−|−−−−|−...−|−−−−|−−−|−−−|−−−|−...−|−−−−−|−−−−−|−−−−−|−...−|−−−−−−−|−−−−−−−|
|1−Ng|2−Ng| . . . |−1 | 0 | 1 | 2 | . . . | Ni | Ni+1| Ni+1| . . . |Ni+Ng−1| Ni+Ng |
|−−−−|−−−−|−...−|−−−−|−−−|−−−|−−−|−...−|−−−−−|−−−−−|−−−−−|−...−|−−−−−−−|−−−−−−−|
0−Ng −1 0 1 2 Ni−1 Ni Ni+Ng

In Listing A1 Ni is the number of finite volumes (cells) used for discretizing the
domain and Ng is the number of ghost cells used for imposing the left and right boundary
conditions (for a total of 2Ng cells). For each cell the conservative variables must be stored:
this is done by means of of rank 2 array where the first index refers to the conservative
variables (densities, momentum or energy) while the second index refers to the space
location, namely the cell index.
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The most CPU time consuming part of a finite volume scheme is the fluxes computa-
tion across the cells interfaces. Such a computation corresponds to a loop over all the cells
interfaces. Listing A2 shows a pseudo-code example of such a computation.

Listing A2. Pseudo-code example of fluxes computation.

do i =0 , Ni
F ( : , i ) = compute_fluxes (U( : , i ) , U( : , i + 1 ) )

enddo

In the pseudo-code of Listing A2 it has been emphasized that the fluxes across an
interface depends on the cells at left and right of the interface itself. The key point for the
parallelization of such an algorithm is to compute the fluxes concurrently using as much
as possible the parallel resources provided by the running architecture. As a consequence,
the above showed loop over the whole domain is split into sub-domains (explicitly or
implicitly accordingly to the parallel model adopted) and the fluxes of each sub-domain
are computed concurrently.

Appendix A.1.2. The Integrand API

The conservative variables of 1D Euler’s system can be easily implemented as a FOODIE
integrand field defining a concrete extension of the FOODIE integrand type. Listing A3 reports
the implementation of such an integrand field that is contained into the tests suite shipped
within the FOODIE library.

Listing A3. Implementation of the Euler 1D integrand type.

type , extends ( integrand ) : : euler_1D
p r i v a t e
i n t e g e r ( I_P ) : : ord=0 ! Space accuracy formal order.
i n t e g e r ( I_P ) : : Ni=0 ! Space dimension.
i n t e g e r ( I_P ) : : Ng=0 ! Number of ghost cells for boundary conditions handling.
i n t e g e r ( I_P ) : : Ns=0 ! Number of initial species.
i n t e g e r ( I_P ) : : Nc=0 ! Number of conservative variables, Ns+2.
i n t e g e r ( I_P ) : : Np=0 ! Number of primitive variables, Ns+4.
r e a l ( R_P ) : : Dx=0. _R_P ! Space step.
type ( weno_interpolator_upwind ) : : weno ! WENO interpolator.
r e a l ( R_P ) , a l l o c a t a b l e : : U ( : , : ) ! Integrand (state) variables, whole physical domain [1:Nc,1:Ni].
r e a l ( R_P ) , a l l o c a t a b l e : : cp0 ( : ) ! Specific heat cp of initial species [1:Ns].
r e a l ( R_P ) , a l l o c a t a b l e : : cv0 ( : ) ! Specific heat cv of initial species [1:Ns].
c h a r a c t e r ( : ) , a l l o c a t a b l e : : BC_L ! Left boundary condition type.
c h a r a c t e r ( : ) , a l l o c a t a b l e : : BC_R ! Right boundary condition type.
i n t e g e r ( I_P ) : : me=0 ! ID of this_image().
i n t e g e r ( I_P ) : : we=0 ! Number of CAF images used.
conta ins

! auxiliary methods
procedure , pass ( s e l f ) , publ ic : : i n i t
procedure , pass ( s e l f ) , publ ic : : destroy
procedure , pass ( s e l f ) , publ ic : : output
procedure , pass ( s e l f ) , publ ic : : dt => compute_dt
! ADT integrand deferred methods
procedure , pass ( s e l f ) , publ ic : : t => dEuler_dt
procedure , pass ( l hs ) , publ ic : : l o c a l _ e r r o r => e u l e r _ l o c a l _ e r r o r
procedure , pass ( l hs ) , publ ic : : integrand_mult iply_integrand => e u l e r _ m u l t i p l y _ e u l e r
procedure , pass ( l hs ) , publ ic : : in tegrand_mul t ip ly_rea l => e u l e r _ m u l t i p l y _ r e a l
procedure , pass ( rhs ) , publ ic : : r ea l_mul t ip ly_ in tegrand => r e a l _ m u l t i p l y _ e u l e r
procedure , pass ( l hs ) , publ ic : : add => add_euler
procedure , pass ( l hs ) , publ ic : : sub => sub_euler
procedure , pass ( l hs ) , publ ic : : ass ign_integrand => e u l e r _ a s s i g n _ e u l e r
procedure , pass ( l hs ) , publ ic : : a s s i g n _ r e a l => e u l e r _ a s s i g n _ r e a l
! private methods
procedure , pass ( s e l f ) , p r i v a t e : : p r i m i t i v e 2 c o n s e r v a t i v e
procedure , pass ( s e l f ) , p r i v a t e : : c o n s e r v a t i v e 2 p r i m i t i v e
procedure , pass ( s e l f ) , p r i v a t e : : synchronize
procedure , pass ( s e l f ) , p r i v a t e : : impose_boundary_conditions
procedure , pass ( s e l f ) , p r i v a t e : : r e c o n s t r u c t _ i n t e r f a c e s _ s t a t e s
procedure , pass ( s e l f ) , p r i v a t e : : r iemann_solver
f i n a l : : f i n a l i z e

endtype euler_1D

Serial, CAF enabled and OpenMP versions of Euler test share the same integrand API.
In the serial version the cells fluxes are computed serially, whereas in CAF and OpenMP
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versions they are computed in parallel by the number of CAF images or OpenMP threads
used, respectively.
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