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Abstract: This paper introduces a robust deposition model designed for exploring the growth
dynamics of deposits on surfaces under practical conditions. The study addresses the challenge
of characterizing the intricate morphology of deposits, exhibiting significant visual variations. A
generative approach is deployed to create diverse natural and engineered surface textures, governed
by probabilistic principles. The model’s formulation addresses key questions related to deposition
initiation, nucleation point behaviour, spatial scaling, deposit growth rates, spread dynamics, and
surface mobility. A versatile algorithm, relying on six parameters and employing nested loops
and Gaussian sampling, is developed. The algorithm’s efficacy is examined through extensive
simulations, involving variations in nucleation scaling densities, aggregate scaling scenarios, spread
factors, and diffusion rates. Surface statistics are computed for simulated deposits and analyzed
using Fast Fourier Transform (FFT). The resulting database enables quantitative comparisons of
surfaces generated with different parameters, where the database-derived parallel coordinates offer
guidance for selecting optimal model parameters to achieve desired surface morphologies. The
proposed approach is validated against urea-derived deposits, exhibiting statistical consistency and
agreement with experimental observations. Overall, the model’s adaptable framework holds promise
for understanding and predicting deposit growth on surfaces in diverse practical scenarios.

Keywords: deposition model; surface morphology; probabilistic simulation; deposit growth dynamics;
Gaussian sampling; porous surfaces; fast Fourier transform analysis; parallel coordinates; urea
deposits

1. Introduction

Kinetic interface roughening refers to the dynamic evolution of interfaces or bound-
aries between different phases or materials over time, resulting in changes in their rough-
ness. This process is often characterized by the interplay of growth mechanisms, stochastic
fluctuations, and the influence of external factors, leading to the development of complex
and irregular surface patterns. These processes are prevalent in a wide range of natural and
engineered systems, contributing to the formation of diverse surface patterns. Examples
include the growth of crystal surfaces [1], the development of thin films [2], the advance-
ment of biological fronts such as bacterial colonies [3], coffee stains, density of birds on
a wire [4], sedimentary rock formations [5], the progression of chemical reaction fronts,
and DNA walk [6]. The roughening of interfaces is influenced by both deterministic and
stochastic factors. Deterministic factors may include the inherent growth mechanisms and
physical properties of the materials involved, while stochastic factors introduce random-
ness and fluctuations that affect the evolving interface. The combination of these factors
gives rise to intriguing phenomena such as self-affine or self-similar interface profiles and
the emergence of power-law behaviours in the spatial and temporal statistical properties of
the evolving surfaces.

Sequential random packing could be considered as one of the earliest attempts to
describe growth dynamics [7]. Given a one-dimensional space, the goal is to sequentially
place objects along this line in a random manner. Once an object is placed, it occupies a
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certain length along the line, and subsequent objects must be placed without overlapping
the existing ones. The term random indicates that the placement of each object is not
predetermined or planned; rather, it is subject to some form of stochastic or probabilistic
process. The mono-layered surface, in such a case, will saturate asymptotically to a constant,
0.74759. In parallel, Vold pioneered the formal particle deposition models for the sediment
formation application, where particles are added one at a time to a two-dimensional surface
with randomly selected linear ballistic trajectories [8]. Herein, the angle on trajectory
could be either at a prescribed angle [9], normal to the surface, or selected randomly
on a flat or inclined surface [10–12]. The extensively examined iteration of this ballistic
deposition (BD) model involves the use of pixel-like particles with uniform sizes, creating
clusters characterized by sophisticated porous structures, often articulated in terms of
fractal dimensionality. Herein, a crucial distinction lies in how the deposited particle
becomes immobilized upon contacting either another particle or the underlying surface.
In simple ballistic models, the particle dropped in the ith column can adhere upon initially
reaching a lattice site with one or more neighboring sites already occupied [13]. A further
level of complexity was later introduced by considering low-temperature diffusion [14,15].
In this case, the deposited particle surveys the surface sites at nearest-neighbor coordinates
(±1), assessing which one provides the strongest binding, i.e., the highest number of
occupied neighbors. The particle then relocates to this site and adheres accordingly. This
modification allowed better agreement with the linear generalized Langevin equation [16]
for growth with surface diffusion [14]. If the particles are nonsticky, on the other hand,
dropped particles deposit at the lowest position along its trajectory (i.e., random deposition
(RD)). As a result, deposition structure contains no voids and is compact. Further studies
extended the ballistic deposition algorithm for next-nearest-neighbour interactions [17],
binary particles with different diffusion/stickiness characteristics [18–20], hybrid models
with random deposition [21,22], particles of different sizes and shapes [23–31], triangular
lattice with relaxation [32], more complex sticking probability schemes [33–37], including
surface restructuring [38], and radial diffusion [39].

In summary, the exploration of kinetic interface roughening, which encompasses the
dynamic evolution of interfaces or boundaries between different phases or materials, has
been a subject of considerable interest due to its relevance in various natural and engineered
systems. This dynamic process leads to the development of intricate and irregular surface
patterns, influenced by growth mechanisms, stochastic fluctuations, and external factors.
The significance of understanding these phenomena is underscored by their prevalence in
diverse contexts. In contrast to the wealth of deposit models focusing on scaling behaviors,
however, practical applications may demand a pragmatic approach. In many instances, we
possess knowledge about the desired properties of a surface, such as roughness or porosity,
but lack a suitable model to generate structures aligning with these specifications. This gap
necessitates the development of a general model capable of creating surfaces with prede-
fined properties, facilitating integration with mathematical models or parametric studies
for practical applications. In this context, our paper makes a significant contribution by in-
troducing a robust deposition model that adopts a top-down approach, utilizing a minimal
set of parameters to generate diverse surface morphologies. The model’s versatility lies in
its capacity to mimic the sub-physics of the deposit formation process, serving as a valuable
tool for researchers and practitioners seeking to create surfaces with specific properties
for coupling with mathematical models or parametric studies. Our approach provides a
systematic and adaptable framework, as demonstrated through extensive simulations and
validation against urea-derived deposits.

The subsequent sections of this paper delve into the underlying theory behind the
deposition models, followed by a detailed description of the proposed algorithm. We
further provide insights into a case study that validates the efficacy of the proposed
algorithm, followed by an exploration of the impact of model parameters on deposit
morphology and the presentation of proof-of-concept study results. The paper concludes
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with a summary of key findings and conclusions, emphasizing the broader applicability
and significance of the developed deposition model for practical scenarios.

2. Theory and Methods
2.1. Modeling Interface Growth in the Kardar-Parisi-Zhang Universality Class

A universality class is a concept in statistical physics that groups together differ-
ent physical systems exhibiting similar macroscopic behavior, despite differences in their
microscopic details. In the context of interface growth, the Kardar–Parisi–Zhang (KPZ) uni-
versality class describes a broad category of systems with universal scaling properties [40].

At its core, the KPZ universality class is described by a stochastic partial differential
equation that captures the dynamic evolution of an interface under the influence of random
fluctuations. Consider a one-dimensional interface described by the height function h(x, t),
where x represents the spatial coordinate and t the time. The KPZ equation for such a
system is given by [41]

∂h
∂t

= ν∇2h +
λ

2
(∇h)2 + η(x, t) (1)

where
∂h
∂t is time under the derivative of the height function;
ν∇2h is the surface tension, or diffusion term smoothing the interface,
λ
2 (∇h)2 is a nonlinear term capturing the local curvature of the interface, promoting
the growth in regions with significant local curvature;
η(x, t) is the Gaussian white noise term representing random fluctuations.

The scaling parameters ν and λ can be heuristically calculated for a particular case study.
The roughness of a growing interface, denoted as W(t), characterizes the deviation of

the surface from its average height:

W(t, L) =

√√√√ 1
L

L

∑
i=1

[h(t, xi)− ⟨h(t, xi)⟩]2 (2)

where L is the characteristic system size. In the KPZ universality class, the roughness
typically increases as a power of time, expressed as

W(t) ∼ tβ (3)

where β is the growth exponent. This scaling behavior indicates that the surface becomes
increasingly rough over time, with the rate of roughening determined by the specific value
of β for the given system. As time progresses, the roughness of the surface may exhibit
saturation, reaching a plateau value that depends on the system size. This saturation
behavior is often expressed as

W(t) ∼ Lα (4)

where α is the saturation exponent. The saturation value of the roughness increases as a
power of the system size, reflecting the influence of the overall dimensions of the system
on the final state of the interface.

The model has attracted much scientific interest on a variety of problems, as high-
lighted in the introduction section. Although presenting any rigorous analytic treatment is
beyond the scope of this paper, we will discuss simple discrete models to lay out the ground
work of the proposed methodology. For a more comprehensive theoretical exploration,
interested readers are directed to the works of Takeuchi [41] and Corwin [42], where deeper
analytical discussions and theoretical insights into KPZ universality can be found in the
related literature.
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2.2. Random Versus Ballistic Deposition Models

Within the scope of stochastic models governing interface growth, a comparative
exploration between random and ballistic deposition unveils fundamental distinctions in
their underlying growth mechanisms, which is necessary to revisit before describing the
proposed methodology. Random deposition (RD) is one of the simplest models capturing
the essence of a randomly evolving interface. The process unfolds as individual blocks
descend independently and concurrently onto substrate sites. The stochastic evolution
of the interface height function h(t, x) can be described by the following discrete Markov
process for a dropped particle size of unity:

h(t + 1, xi) = h(t, xi) + δij (5)

Herein, δi,j represents a random variable that equals 1 with probability p and 0 with
probability 1 − p. δij models the stochastic nature of block deposition for independent
column i for event j. The sampled probabilities for event j can be interpreted as exponential
waiting times, leading to the central limit theorem. In other words, as the number of depo-
sition events increases, the sum of these independent, identically distributed waiting times
converges to a Gaussian distribution. Consequently, the height fluctuations of the interface
exhibit Gaussian behavior, a characteristic feature of the Gaussian universality class.

Ballistic deposition (BD), on the other hand, introduces spatial correlations, devi-
ating from the inherent independent randomness of the RD. In this approach, particles
again fall similarly, but adhere upon their contact with the neighbouring particle, and/or
the substrate:

h(t + 1, xi) = max{h(t, xi−1), h(t, xi) + 1, h(t, xi+1)} (6)

In this simple formulation, the sticking probability is is assumed to 1, and neighbour
search is limited to a unit distance. In more recent implementations, such events are
also approximated with prior probability distribution [33–37], resulting in more complex
behaviours. In this context, RD can be considered as a BD model with sticking probability of
zero. This simple yet powerful mechanism results in the formation of porous structures and
overhangs, defining the height function h(t, x) as the maximum height above x occupied
by a block of deposit.

It is worth noting here that the BD model shares essential characteristics with the
KPZ universality class, forming a connection between microscopic deposition dynamics
and macroscopic features encapsulated by the KPZ equation. In the BD model, the height
changes are locally determined, relying solely on the heights of neighboring sites. Sim-
ilarly, in the KPZ equation, the growth of the interface at a given point is nonlinearly
influenced by the local slope, emphasizing the significance of nearby heights. Additionally,
the rapid filling of large valleys, promoting surface uniformity, aligns with the smoothing
tendencies observed in KPZ-like growth phenomena. BD model also exhibits growth
driven by noise that rapidly decorrelates both spatially and temporally, in line with the
stochastic dynamics typical of the KPZ universality class. Interestingly, the KPZ equation
itself emerges as a continuous limit of the discrete BD process, elucidating the shared
mathematical underpinnings.

2.3. Proposed Top-Down Modelling Approach

The objective of this study is to devise a robust model capable of generating diverse
surface morphologies while utilizing a minimal set of parameters. To achieve this objective,
we adopt a top-down approach, as illustrated in Figure 1. The initiation of this process
involves defining the global specifications of the surface, encompassing parameters such
as surface roughness, the slope of the power spectra density, and optionally, the porosity
and pore size distribution. In essence, our modeling strategy aims to commence with a
generalized deposit formation model, and through parameter selection, mimic the sub-
physics of the deposit formation process in a reverse engineering fashion.
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The following subsection delineates the proposed algorithm, with the descriptions
of the model parameters. Then, we explain simulated cases within a parametric sweep
study, systematically constructing a target library. This library proves instrumental in
facilitating parameter tuning for diverse use case scenarios. Finally, a proof-of-concept
study is detailed to test the proposed methodology.

Figure 1. Proposed top-down approach to create surfaces with different target properties.

2.3.1. Algorithm

The quality of our model lies in its generative nature, intending to produce varied
natural or engineered surfaces that are unique in each run, thereby yielding a distinct height
distribution profile. This necessitates the adoption of a probabilistic framework, steering
away from deterministic solutions. A crucial consideration in this pursuit is the “creativity”
problem, where the model’s outcomes should be statistically consistent. To address this
challenge, our model algorithm imposes constraints on the infinite possibility space by
incorporating a predefined set of rules rooted in the physics of the deposition problem.

To determine the mathematical form of the governing equations and the resulting
algorithm, we posed several key questions: (i) How is the deposition process initiated?
(ii) Can the initialization be approximated as nucleation points, serving as origins for
deposit growth propagation? (iii) Do nucleation points scale with the dimensions of the
solution domain? (iv) What are the relative lifetimes of nucleation events – do they occur
simultaneously or exhibit varying durations? (v) Do we anticipate variations in the relative
deposit growth rates across different spatial coordinates? (vi) To what extent does the
deposit growth spread over the surface? (vii) Is there a notable surface mobility? By
exploring alternative approaches, we arrived at a versatile algorithm (Figure 2) that adeptly
addresses these considerations and demonstrates efficacy in capturing the intricacies of the
deposition process.

The backbone model is based on the terms governing the KPZ class (Equation (1))
with a sticking probability of zero (i.e., RD). Nonetheless, instead of depositing individual
particles of unit size, the deposition process is governed by nucleation points and evolves as
deposition of clusters (Figure 3). The nuclei can be considered as attractors originating from
the physics of the problem, such as supersaturated solutions [43]. Herein, the nuclei can
be homogeneously, or heterogeneously distributed over the substrate surface. As a result
of this cluster-based approach, the model inherently gains properties that can be tuned at
macroscopic level (Figure 3a), such as (i) the locations of nuclei, which can be coded as a
surface property and passed down to model as a filter, (ii) scalability of number of nuclei
with the substrate size, (iii) variable cluster size and size distribution, (iv) variable cluster
aspect ratio (i.e., spread of nucleation event) and (v) pore and pore size distributions.

In the presented model, nucleation event density is scaled with the size of the substrate
(WL)α, where α is the nucleation density parameter. The homogeneity of the process time
distribution for deposit formation (i.e., how long each event takes) and the spread of the
deposit clusters are defined by another parameter, cluster group . In particular, Class A
refers to the uniform amount deposit formation with the same spread characteristics for
all nuclei, typically yielding symmetric surfaces with uniform properties. Class B denotes
the same spread behaviour for all nuclei, but with different process times. In the code,
these process times were sampled from Gaussian distributions. Class C refers to cases with
varying process times and spread dynamics, both sampled from Gaussian distributions
(Figure 3a).
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Figure 2. Algorithm of the proposed deposit formation model.

Figure 3. Details of the model parameters to change the deposit morphology at macroscopic (a) and
microscopic (b) scale. Formation of deposit clusters for a set of parameters including surface diffusion
is also depicted (c).

For a given nucleation point, particles are dropped via RD within a radius of influence
around the nucleus. This event can be considered as a micro random deposition process.
Figure 3c depicts four cluster formations with RD. The spread dynamics of each nucleus
(marked with red for the first cluster) is defined by a smoothing factor, which changes the
radius of influence of the random deposition process (Figure 3b). Another micro-parameter
is the surface diffusion, related to the first term of the KPZ equation. If allowed, the model
checks the neighbours within a radius for surface relaxation (Figure 3b). The process is
depicted in Figure 3c for the fourth deposited cluster. When the last blue particle is dropped,
it slides down to a the lower position on the left when Ri = 1.

In the base model (Figure 2), the simulation starts with the definition of the model
parameters: substrate dimensions W, L, scaling factor for nucleation density α, amount
of particles to drop in terms of average height H, size of a particle h = 1, cluster group
A, B, C, smoothing factor SF and surface relaxation radius Ri. Then, the number of nuclei
is calculated from



Dynamics 2024, 4 239

nnuclei ∝ randrange
(

1,
⌊(

W
2

· L
2

)α⌋)
Next, the number of dropped particles per cluster i is determined as follows for cluster

group A and B, C, respectively:

number_particles[n] ∝


number_particles_total

nnuclei
, for Group A

randrange(1,
2.0 × number_particles_total

nnuclei
), for Group B, C

Then, a random location p is selected for nucleation event n. This is followed by the
calculation of the radius of influence (deposit_range) via smoothing factor SF:

spread_multiplier = 0.618(−SF)

For Case A, B

deposit_range =
⌊

spread_multiplier × number_particles[n]1/3
⌋

,

For Case C

deposit_range = randrange

(
1 +

⌊
a × spread_multiplier × number_particles[n]1/3

⌋
,

1 +
⌊

b × spread_multiplier × number_particles[n]1/3
⌋)

.

In the current work, we set a, b as [0.618, 1.382] for Group C1 and [0.382, 1.618] for
Group C2, respectively. During the model development phase, we found heuristically that
the resulting surfaces are much more consistent and natural when such parameters are
based on the golden ratio. Once deposit_range is calculated for the nucleation event n,
we first create a list of coordinates within the deposit_range by drawing a circle around
the coordinate p. Then, within a for loop, particles are dropped randomly to the enlisted
coordinates. If surface diffusion parameter Ri > 0, then we create a sub-list of neighbours l′

within Ri, and check for surface diffusion/relaxation and the particle is shifted to the lowest
position within Ri. This inner loop continues until all the particles are dropped in the micro-
RD loop for the cluster n nucleated at position p. For more details, readers are encouraged to
review the code example provided in Supplementary Material S1, which also incorporates
a visual representation of the deposition process in the form of a rendered video.

As discussed in Section 2.2, RD model is not capable of creating porous surfaces
like the BD model. In this work, we introduce porosity as a macroscopic property of the
surface, which is represented as a particle type in the RD model. Herein, the objective
is not to simulate the pore development, but to integrate known material properties like
porosity and pore size distribution to the deposition model for pragmatic purposes, such as
calculation of the effective thermal conductivity or permeability of a 3D object is a tandem
modelling study. As the RD relies on stochastic sampling of many events, by defining
the type of a particle, one can also develop complex pore structures without introduc-
ing further complexity. Herein, particle type is assigned with a probability distribution
based on the porosity parameter. In particular, we experimented with different pore size
distributions, aspect ratios and macro/micro pore types. All based on simple stochastic
sampling principles from a priori assigned pore size distribution, assumed to be collected
via experimental methods. More details can be found in the sample codes provided in
Supplementary Material S1.
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2.3.2. Proof-of-Concept Study and the Target Library

In a previous work [1], we identified a unique morphology of urea-derived deposits
within selective catalytic reduction (SCR) systems, exhibiting self-affine surfaces and a
consistent power-law distribution. Our subsequent investigation further illustrated sim-
ilar deposit characteristics during the crystallization of individual urea water solution
droplets [43]. Importantly, we observed nuanced variations in deposition dynamics influ-
enced by the surface properties, which in turn results in distinct deposition regimes. This
led us to question the possibility of effectively characterizing and modeling the dynamics
governing such processes. Given the inherent difficulty in predicting growth dynamics for
a particular problem in advance, we developed and fine-tuned the proposed algorithm
(Figure 2) capable of generating intricate surface textures with a minimal set of parameters
(Figure 3).

In order to analyze the influence of the model parameters on the resulting surface mor-
phology, we tested 4 nucleation scaling densities (α = 0.25, 0.5, 0.75, 1.0), 4 aggregate scaling
scenarios (i.e., cluster groups A, B, C1, C2), 9 smoothing factors (SF = −5,−2,−1.618,−1, 0,
1, 0.618, 2, 5), and 4 diffusion rates (Ri = 0, 1, 3, 5) over 1000 × 1000 unit length planes
(W ×L) with a high total deposition volume (i.e., H) ensuring surface saturation. In the next
step, we calculated the surface statistics for all simulated deposits and applied Fast Fourier
Transform (FFT), which together constitute a target library for the quantitative comparison
of the surfaces generated with different parameters (Figure 1). In particular, the database
was used to generate a guideline in the form of an interactive parallel coordinates (Figure 4
was used to select the proper model parameters leading to the desired surface morphology,
which can be found in Supplementary Material S2).

Figure 4. Visualization of the target library with the model feature space via parallel coordinates.
The RMS axis is ranged up to 150 µm for better visibility. The data, interactive html file and plotting
script can be found in Supplementary Material S2 to generate alternative views.

To assess the utility and the statistical consistency of our approach, we used surface
height profile measurements of urea deposits generated under practically relevant con-
ditions. To capture high-resolution data on the deposit topology, we utilized an optical
profilometer (Sensofar Plµ Neox) in confocal measurement mode. In this setup, the sam-
ple underwent vertical scanning in incremental steps, ensuring that every point on the
surface passed through the focus. The measurements presented in this study employed a
10× confocal objective, resulting in a field of view measuring 1270 µm × 950 µm with a
spatial sampling interval of 1.66 µm. The achieved vertical resolution is smaller than 50 nm
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[1]. The measurements, conducted in replicates (n = 50), revealed (i) an interface width of
50 µm with a standard deviation of 26 µm, and (ii) an averaged slope of −1.14 ± 0.07 for
the corresponding power spectral density (PSD) functions. For further details on the mea-
surements and FFT computations, refer to [1]. Figure 5 illustrates images of urea deposit
samples at three different magnifications, providing a detailed view of the urea deposits
under optical microscopy. By using these target variables (RMS and slope), we identify the
corresponding model parameters and run 400 simulations to analyze the variations in the
generated surface topology.

Figure 5. Microscopic view of urea deposits at different magnifications.

3. Results
3.1. Impact of Model Parameters on the Generated Deposit Morphology

The objective of this study is to create a robust deposition model, which can be
utilized to generate surface structures with the desired macroscopic properties such as
surface roughness, or the scaling behaviour of the surface deposits (i.e., shape and slope
of the PSD curve). This is carried out by a top-down, data driven approach (Figure 1,
where the macroscopic target variables that can be easily measured (roughness, PSD curve
characteristics) is used to select model parameters. To create the necessary parameter space
library, the deposition model is run with 576 different parameter combinations over four
features: nucleation density parameter α, macroscopic scaling group (A,B,C), diffusion
radius R and smoothing factor (see Section 2.3.1 and Figure 3 for details). The resulting
target variables are illustrated for RMS < 150 µm is shown in Figure 4.

One macroscopic parameter of the model is the cluster type (Figure 3), which deter-
mines both (i) the distribution of process times and (ii) the macroscopic spread of deposit
nucleation events. In the current model, we have defined four modes: (i) A, where nu-
cleation events have the same spatial spread and deposits have the same volume; (ii) B,
where nucleation events have the same spread dynamics but different sizes (hence dif-
ferent process times); and (iii) C, the cluster type where both spread and volume are
sampled via a distribution. The generated deposits for two sets of parameters are shown in
Figure 6. As expected, developed clusters become more heterogeneously distributed with
Group C, while Group B enables the emergence of similar structures with different sizes or
process times.

The impact is more easily observed when comparing the saturated surface roughness
profiles and the corresponding PSD for different cluster types, as depicted in Figure 7 and
Figure 8, respectively. At smaller smoothing factors, the micro-scale nucleation events have
very small radii, creating a very spiky landscape. When deposits have the same cluster
size and shape characteristics (Group A), for SF ≤ 0, the model yields a cascade of “doped”
surfaces with distinct peaks in the PSD curve. With high SF, deposition events overlap and
smoothen the surface.

A similar effect is observed when introducing surface mobility with the Ri parameters.
For Group A, increasing Ri makes the peaks in the PSD curve vanish, as seen in the surface
roughness profiles calculated from 2D cut planes of the 3D deposit structure (Figure 7).
When changing the cluster group from A to B, fluctuations along the 2D cut-planes typically
increase. However, this difference can be suppressed with the introduction of lateral surface
diffusion with Ri. A similar effect is also observed between cluster groups C1 and C2, where
C2 deploys a wider range of cluster process times and spreads.
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Figure 6. Impact of cluster type on the generated deposit height profiles with 1 µm resolution over a
substrate of 1000 × 1000 units. The remaining parameters are given at the top of each figure groups.
The legends show the height profile. The remaining surface profiles for other parameter combinations
can be found in Supplementary Material S3.
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Figure 7. Impact of cluster type on the surface roughness with 1 µm resolution over a substrate
of 1000 × 1000 units. X axis gives the calculated RMS for each 2D cut-plane over the 3D deposit
topology. Each curve represents a different smoothing factor (SF). The remaining parameters are
given at the top of each figure groups. The remaining profiles for other parameter combinations can
be found in Supplementary Material S3.
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Figure 8. Impact of cluster type on the PSD curves with 1 µm resolution over a substrate of 1000 ×
1000 units. Each curve represents a different smoothing factor (SF). The remaining parameters are
given at the top of each figure groups. The remaining profiles for other parameter combinations can
be found in Supplementary Material S3.

Another intriguing parameter in the model is the surface diffusion parameter Ri,
which induces intricate variations in surface properties and exhibits diverse behaviors at
different nucleation number densities (Figure 9). As the parameter α decreases, the number
of nucleation events decreases following a logarithmic relationship (Figure 3). This effect
leads to the formation of deeper valleys for a fixed total volume of deposits, offering an
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opportunity to leverage such structures if desired. In this context, surface diffusion once
again provides control over the smoothness of the developed macro-structures.

Overall, a wide variety of surfaces could be created by changing macroscopic (α, Group)
and/or microscopic (Ri, SF) model parameters. For detailed plots of all 576 parameter
combinations, refer to Supplementary Material S3.

Figure 9. Impact of surface diffusion on the generated deposit height profiles with 1 µm resolution
over a substrate of 1000 × 1000 units. The remaining parameters are given at the top of each figure
groups. The legends show the height profile. The remaining surface profiles for other parameter
combinations can be found in Supplementary Material S3.
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3.2. Generation of Porous Structures

Another possibility offered by the proposed algorithm is the simplicity of mimick-
ing alternative pore structures from macroscopic target variables such as overall porosity
and the pore size distributions (Figure 1). This is achieved by assigning particle types,
distinguishing between solid particles, voids belonging to macro-pore structures, or micro-
pore structures (see Section 2.3.1 for detailed information). By incorporating this feature,
the model not only preserves total porosity but also inherently maintains the pore size
distribution. It is essential to emphasize that this approach is not intended to replace the
ballistic deposition model, where pore structures emerge due to stickiness probability
sampling. Instead, we propose extending the random deposition model by incorporating
additional target variables (porosity and pore size distribution) and relying on statistical
sampling to generate pores with precise spatial distributions. This simple addition un-
locks the potential to simulate complex structures for transport phenomena, such as heat
conduction and mass transfer, with desired parametric properties.

Figure 10 illustrates various examples of pore structures with different aspect ratios
and pore size distributions, incurring minimal additional computational burden. Through
the sampling of the cluster event type and its parameters, the same algorithm can create
3D structures with distinct global porosity (Figure 10a), pore shapes and aspect ratios
(Figure 10b), and pore size distributions (Figure 10c). The introduction of porous structures
can be further extended with a nucleation event (i.e., inner loop in Figure 2), where the
dropped particle type can be sampled from a pre-defined distribution (Figure 11)). This
capability enables the generation of micro-pores alongside the macro-pores introduced by
selecting the type of clustering event (i.e., macro-pores). It should be remembered that the
same idea can be utilized for any “particle type”, so that complex structures with multiple
solids with different properties can be generated without any significant change in the
model algorithm. Supplementary Material S1 includes two example codes illustrating the
use of macro–micro pore particles within the proposed algorithm (Figure 2).

Figure 10. Cont.
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Figure 10. Porous structures generated with the proposed algorithm with varying (a) global porosity,
(b) pore cluster shape/aspect ratio and (c) pore size distributions.

Figure 11. Porous structures generated with the proposed algorithm with macro and micro pore
types. Macro-pores are sampled as nucleation events, while micro-pores are generated by sampling
the particle type during a RD event for a given nucleus. An example of the pore sampling procedure
can be found in Supplementary Material S1.
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3.3. Proof-of-Concept: Urea Deposit Formation

While the proposed model exhibits the capability to generate deposit structures with
varying macroscopic properties, such as surface roughness or characteristics of the Power
Spectral Density (PSD) curve, the added value of this top-down approach requires further
demonstration. To address this, we selected a problem that inspired this work—the urea
deposit formation problem encountered in SCR systems due to complex heat and reactive
mass transfer mechanisms [1]. Our previous measurements uncovered a unique scaling
behavior for surface morphology under practically relevant conditions [1], a finding later
confirmed in controlled single droplet experiments [43]. Additionally, we demonstrated
that changes in deposit morphology significantly affect the re-atomization performance
over static mixers, a crucial step in managing NOx emissions in SCR systems [44]. Therefore,
the representation of surface morphology for modeling other physical phenomena holds
significant practical value.

The surface characterization of urea deposits revealed a mean Root Mean Square
(RMS) of 50 µm with a standard deviation of 26 µm and an averaged slope of −1.14 ± 0.07.
When these target variables are represented in parallel coordinates, the model parameters
were determined to be SF = 0.618, Ri = 3, Group = C1, α = 0.75 (Figure 12). Herein,
the selection of the model parameters via parallel coordinates can be interpreted as a
“coarse regression task”. In the subsequent step, the proposed algorithm is executed with
these parameters 400 times to investigate the creativity and statistical consistency of the
proposed approach. Figure 13a,b displays RMS variations along the width of the generated
sample with 1 µm resolution over a substrate of 1000 × 1000, along with the Power Spectral
Density (PSD) curves for 25 randomly selected surfaces, respectively. Overall, the 3D RMS
values (interface width values for the entire surface) oscillate typically between 30–80 µm
(Figure 13c). The immediate conclusion drawn from this observation is that the developed
algorithm is both generative and statistically consistent. Interestingly, our approach yields
statistics very similar to experimental observations, where the RMS values oscillate around
50 µm with a standard deviation of 26 µm. This similarity is also reflected in the variations
in the PSD slopes (Figure 13d). The model produces surfaces with the expected scaling
behavior but also oscillates around the set point, as observed during the experiments. This
agreement confirms the robustness of the model and its capability to capture urea-derived
deposit dynamics from a morphological perspective.

Figure 12. Identification of model parameters with the measured RMS and PSD slope values.
The interactive html file and plotting script can be found in Supplementary Material S2 to generate
alternative views.
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Figure 13. Surface properties of the generated deposits with SF = 0.618, Ri = 3, Group = C1, α = 0.75.
(a) 2D RMS profiles along the y axis, (b) mean PSD curve for each deposit surface, (c) variations in 3D
RMS of the deposits, (d) variations in the slopes of the PSD curves.

It is important to emphasize that urea crystallization is a complex process influenced
by numerous factors specific to each application. The design of experiments often aims
to achieve diverse practical objectives. Therefore, it is crucial to delve deeper into the
connection between model parameters and macroscopic growth conditions observed in
experiments. By utilizing the UWS example, we can gain deeper insights into how to select
appropriate model parameters tailored to specific applications.

The final shape and morphology of deposits formed during the crystallization of UWS
are strongly influenced by the dynamics of mass and heat transfer during the preceding
solvent evaporation phase. For instance, if evaporation is diffusion-limited, the evapora-
tion flux is non-uniform along the liquid–gas interface, particularly near the three-phase
contact line. This non-uniformity can lead to capillary flows that transport dissolved solids
towards the contact line, resulting in the formation of characteristic ring-like deposits,
a phenomenon known as the “coffee-ring” effect. Conversely, Marangoni flows induced by
surface tension gradients along the liquid–gas interface can lead to more uniform deposit
distributions, or even reverse the coffee-ring effect. In particular, solutal Marangoni flows,
driven by composition gradients in the solution, influence mass transport during evapo-
ration, impacting the distribution of supersaturated regions within the liquid. Changes
in surface properties, on the other hand, such as alterations in the contact angle due to
variations in surface finishing or coating, can lead shift the balance between these two
characteristic mechanisms, and lead to the dominance of solutal Marangoni flows. At el-
evated contact angles, pronounced Marangoni flows result in the distribution of soluted
urea along the liquid–gas interface. Under such conditions, the entire interface becomes
saturated with urea, eliminating localized concentration increases observed in cases of
good wettability. Under these circumstances, the crystallization process mirrors a swift
solidification of the liquid–gas interface. Continuous nucleation outpaces the growth of
existing crystals, hastening the formation of a solid surface.

When considering the proposed top-down modeling approach, the presented UWS de-
position case provides further insights into how these model parameters can be connected
with a real, macroscopic deposition event. For UWS, Marangoni flows have a strong impact
on crystallization behavior, as they define how supersaturated regions are distributed
within the liquid. The internal flow field depends on both substrate temperature and the
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contact angle, which in turn are reflected in the time scales and dynamics of crystallization.
Overall, these factors lead to extremely nonlinear dependencies for individual nucleation
events. This was the reason for constructing the parameterized model presented in this
study, where global parameters such as nucleation number density and their locations can
be defined separately from nucleation event properties such as volume, spread dynamics,
and diffusion. Depending on the experimental configuration (single droplet or a spray
experiment, well-defined substrate temperature or a variable temperature field, contact
angle, chamber temperature, whether there is already formed deposit on the surface or
not), key mass transfer mechanisms can be identified a priori, and model parameters can be
selected accordingly. Herein, the physical processes that lead to nucleation events should
be aligned with the design philosophy of the model parameters. If the time scales of the
deposition events are expected to be similar, then using group C behavior would be inap-
propriate. If the three-phase contact line of the spray is known, nucleation events should
only be triggered in that particular spatial region. Another important point here is how
asymmetrically the deposition process evolves for a given problem. For instance, during the
crystallization of UWS sessile droplets, PSD signals, which is one of the key target variable
to determine model parameters, exhibits three different behaviors following the trends in
the crystallization dynamics and time scales [43]. In particular, capillary flow-dominated
crystallization process (low contact angle) is vividly identified as a bimodal distribution of
aggregate sizes across a deposit sample, with the number of smaller structures exhibiting
much higher density. With the increased influence of Marangoni flow, the local size dis-
tributions of the deposits are much more uniform compared to the case where capillary
flow dominates. Such a behaviour should be represented with nucleation type A. In our
previous work with urea deposits, we also showed that this distinction also seems to be
reflected onto the fractal dimension of the deposit surfaces [43]. In the same work, we
also demonstrated that the effect of Marangoni flow becomes even more apparent (the
higher the evaporation rates, the stronger the supersaturation of the liquid-gas interface)
as the substrate temperature increases, leading to a more homogeneous appearance of the
deposit surface.

As in all mathematical models, domain expertise would allow the user to select proper
growth dynamics from the available options presented in Figure 3. We also suggest that
the reader look into the provided deposition library and height profile images, together
with the surface properties given in the parallel coordinates, to narrow down the model
parameter search space for their particular application.

4. Conclusions

This paper introduces a robust deposition model, providing a versatile and generative
framework for investigating the growth dynamics of deposits on surfaces in practical
conditions. The study addresses crucial aspects related to deposition initiation, nucleation
point behavior, spatial scaling, deposit growth rates, spread dynamics, and surface mobility.
Adopting a top-down approach, the model utilizes a minimal set of parameters to generate
diverse surface morphologies, effectively reverse engineering the sub-physics of the deposit
formation process.

To establish a framework, 576 different parameter combinations were executed, gen-
erating a comprehensive dataset that connects model parameters with target variables,
specifically surface roughness and deposit scaling characteristics obtained through Fast
Fourier Transform. The impact of model parameters on surface morphology is elucidated
through illustrative examples. Moreover, the robustness of the proposed algorithm is
extended by integrating particle type concept, enabling the creation of porous structures
with desired properties.

As a proof-of-concept, the paper further demonstrates the applicability of the top–
down approach by employing the created dataset to select optimal model parameters
for a specific problem. Results indicate that the model can generate surfaces with the
desired properties, exhibiting similar variances compared to experimental measurements.
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Overall, the successful demonstration of the model’s applicability highlights its potential
for understanding and predicting deposit growth in various real-world scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/dynamics4020014/s1, SM-S1: This package comprises code for generating
both solid and porous deposits, accompanied by a README file for ease of use; SM-S2: The archive file
encompasses a parallel coordinate HTML file along with the data and code essential for visualization;
SM-S3: This archive provides detailed depictions of deposit morphologies under diverse settings,
coupled with an analysis of their surface properties.
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