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Abstract: A semilinear quadratic equation of the form Aij(x)uij = Bi(x, u)ui + F(x, u) defines a metric
Aij; therefore, it is possible to relate the Lie point symmetries of the equation with the symmetries of
this metric. The Lie symmetry conditions break into two sets: one set containing the Lie derivative of
the metric wrt the Lie symmetry generator, and the other set containing the quantities Bi(x, u), F(x, u).
From the first set, it follows that the generators of Lie point symmetries are elements of the conformal
algebra of the metric Aij, while the second set serves as constraint equations, which select elements
from the conformal algebra of Aij. Therefore, it is possible to determine the Lie point symmetries
using a geometric approach based on the computation of the conformal Killing vectors of the metric
Aij. In the present article, the nonlinear Poisson equation ∆gu − f (u) = 0 is studied. The metric
defined by this equation is 1 + 2 decomposable along the gradient Killing vector ∂t. It is a conformally
flat metric, which admits 10 conformal Killing vectors. We determine the conformal Killing vectors of
this metric using a general geometric method, which computes the conformal Killing vectors of a
general 1 + (n − 1) decomposable metric in a systematic way. It is found that the nonlinear Poisson
equation ∆gu − f (u) = 0 admits Lie point symmetries only when f (u) = ku, and in this case, only
the Killing vectors are admitted. It is shown that the Noether point symmetries coincide with the Lie
point symmetries. This approach/method can be used to study the Lie point symmetries of more
complex equations and with more degrees of freedom.

Keywords: Lie point symmetries; wave equation; sphere; conformal Killing vectors; 1 + (n − 1)
decomposable metric

1. Introduction

The homogenous wave equation on the sphere is given by the equation

utt = uxx + (cot x)ux +
1

sin2 x
uyy. (1)

H. Azad and M. Mustafa [1], using the package MathLie [2], determined the Lie
algebra of the Lie point symmetries of (1), and classified its subalgebras up to conjugancy.
Subsequently, they performed similarity reduction for each subalgebra, and in some cases
of the two-dimensional subalgebra, they provided the invariant solution.

In [3], Freire observed that Equation (1) is a particular case of the Poisson equation
∆gu = 0 for the metric

ds2
2+1 = −dt2 + dx2 + sin2 xdy2. (2)
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The Lie point and the Noether point symmetries of the nonlinear Poisson equation of
the form

∆gu − f (u) = 0 (3)

have been studied in [4] for certain forms of the function f (u) and n > 2, where n is the
dimension of the space. Using the results of [4], Freire studied the Lie point symmetries of
(1), which is a particular case of (3) for f (u) = 0, n = 3 and metric (2).

However, it should be pointed out that the situation here is different than the one
considered in [4]. Indeed, having the Lie symmetry conditions for a generic metric and
a general function f (u) , one has two possibilities: either to leave the metric unspecified
and consider various types of functions f (u), or to specify the metric and determine the
functions f (u) for which the symmetry conditions are satisfied.

In [4], the authors considered the first scenario, that is, they assumed a generic metric
and considered certain forms of f (u). In the present work, the situation is different because
the metric is specified. Therefore, one has to use the second approach, that is, to fix the
metric (2) and use the Lie symmetry conditions to find for which functions f (u) Lie point
symmetries are admitted. This is what it is carried out in the present work.

In the second approach, one needs the conformal Killing vectors (CKVs) of the metric
(2). To our knowledge, there is no a package available to perform that, at least for a
complex metric and/or a significant number of independent variables, and one has to use
available results from Riemannian geometry. This case, although more demanding, has
the advantage that it is applicable to higher dimensions and more complex metrics due
to the existence of the plethora of general relevant geometric results. In the Appendix A,
we use a systematic method, which determines the CKVs in a 1 + (n − 1) decomposable
Riemannian space to compute the CKVs of (2).

The structure of the paper is as follows. In Sections 3–6, we present the geometric
results, which shall be used in the “solution” of the system of Lie conditions. In Section 6,
we use these results to compute the CKVs of the metric defined by (2). In Section 7, we write
the Lie point symmetry conditions and find that the only homogeneous wave equations on
the sphere that admit Lie point symmetries are the ones for which f (u) = ku where k is a
constant. Furthermore, the Lie symmetry generators are the Killing vectors (KVs) of the
metric (2) and the vector b(x)∂u, where b(x) is a solution of the wave equation. In Section 8,
it is shown that the Lie symmetries are also Noether symmetries, and it is demonstrated
how the conserved Noether currents are computed. Finally, in Section 10, we draw our
conclusions.

2. Symmetries of a Metric

Consider a Riemannian space with metric gab, a vector field X, and the Lie derivative

LX gab = gab,cXc + Xa,b + Xb,a. (4)

A symmetry of the metric is defined by the relation

LX gab = Kab (5)

where Kab is a symmetric tensor. The basic symmetries of gab are defined by the tensors
Kab = 0, cgab, ψ(x)gab, and in each of these cases, the vector field X is called the Killing
vector (KV), Homothetic vector (HV), and conformal Killing vector (CKV), respectively. Each
type of these vectors forms a Lie algebra. In order to compute the vector X, one solves
the equation

gab,cXc + Xa,b + Xb,a = Kab (6)

Obviously, the general solution cannot be performed for all metrics, and we have to
consider special simplified classes of metrics. One special class of metrics are the maximally
symmetric metrics, or metrics of constant curvature.
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3. Maximally Symmetric Metrics

Maximally symmetric metrics are the units of “symmetry”, and have a direct relation
with the standard Euclidean concepts of symmetry, e.g., spherical symmetry.

Definition 1. A maximally symmetric metric gab is a metric whose curvature tensor Rabcd satisfies
the relation

Rabcd = Kgabcd. (7)

where K = R
n(n−1) is a constant, R is the curvature scalar, and the tensor

gabcd = gacgbd − gadgbc. (8)

A flat metric is a maximally symmetric metric for which K = 0. The covariant
definition of a flat metric is Rabcd = 0.

A maximally symmetric metric is characterized by the number of admitted KVs as
follows (see pp. 238–239 in [5]):

Theorem 1. A non-degenerate metric gab is a metric of constant curvature iff it is a maximally
symmetric metric iff it admits 1

2 n(n+ 1) KVs iff the equations of geodesics admit 1
2 n(n+ 1) linearly

independent linear first integrals (I = ξi ẋi where ξ(i;j) = 0).

All maximally symmetric metrics are conformally flat and have the global property
that they can be written in the form

ds2 =
1

(1 + K
4 xrxr)2

dxidxi (9)

where i = 0, 1, . . . , n and

K =
R

n(n − 1)
(10)

where R is the scalar curvature of the space and K = −1,+1, 0 for a negative, positive, and
zero curvature, respectively.

4. The Conformal Algebra of Maximally Symmetric Metrics

Definition 2. Two metrics, gab, ηab, are conformally related if they satisfy the condition

gab = ψ(x)ηab (11)

where ψ(x) is the conformal factor.

Two conformally related metrics share the same CKVs. From (9), it follows that a max-
imally symmetric metric is conformally related to the flat metric with the conformal factor

U =
1

1 + K
4 x2

. (12)

Therefore, the conformal algebra of the metric gab is the same with conformal algebra
of the flat metric.

It is well known [5–8] that a flat metric of dimension n admits n(n+1)
2 KVs, 1 gradient

HV and (n+1)(n+2)
2 Special CKVs (a CKV is called special if the conformal factor ψ satisfies

the condition gijψ;ij = 0).
Specifically, the conformal algebra of the flat space

ds2 = εdt2 + δABdyAdyB (13)

where ε = ±1 and A, B = 1, 2, . . . , n − 1 consists of the following vectors.
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n− gradient KVs: ∂t, ∂A.
n(n−1)

2 non-gradient KVs: X1A
R = yA∂t − εt∂A, XAB

R = yB∂A − yA∂B.
One HV: H = t∂t + ∑A yA∂A.
(n+1)(n+2)

2 Special CKVs: X1
C = 1

2
(
t2 − ε ∑A(yA)2)∂t + t ∑A yA∂A, XA

C = tyA∂t +
1
2
(
−εt2 + (yA)2 − ∑B ̸=A(yB)2)∂A + yA ∑B ̸=A yB∂B where A, B = 1, 2, . . . , n − 1 with con-

formal factor ψ1
C = t and ψA

C = yA.
From these, by taking into consideration the conformal factor U(x), we have that the

conformal algebra of a maximally symmetric metric gab consists of the vectors of Table 1.

Table 1. The conformal algebra of the metric of constant curvature (9).

Param Type Symbol Number ψ̂ F̂ij

ai CKV Pa n − KU
2 xI KU3x[aηb]I

aab KV rAB
n(n−1)

2
0 U2ηABab + KU3η . . c

AB . [bxa]xc

b CKV H 1 1 − KU
2 x2 0

ba SCKV Ka n 2UxI 4U3x[aηb]I

The metric gab being maximally symmetric must admit n(n + 1)/2 KVs. In Table 1, we
have only the n(n − 1)/2 KVs rab. Therefore, there must exist another n KVs. Furthermore,
we note that the HV is a gradient CKV. Because gradient vector fields are always convenient,
we are looking for combinations of these CKVs, which produce KVs and gradient CKVs.
We find that the vectors

II = PI +
K
4

KI = ∂I +
K
4

[
2xbxI − (xcxc)δb

I

]
∂b

=

[
1 − Kx2

4

]
∂I +

K
2

xbxI∂b (14)

CI = PI −
K
4

KI = ∂a −
K
4

[
2xbxI − (xcxc)δb

I

]
∂b

=

[
1 +

Kx2

4

]
∂I −

K
2

xbxI∂b (15)

are the required ones. Indeed, II is a KV and CI is a proper gradient CKV with the
conformal functor

ψ(CI) = −KUxI . (16)

We collect these results in Table 2. The non-tensorial indices A, B, I = 1, . . . , n count
vector fields. Fab is the antisymmetric part X[ab] of the non-gradient CKV, called the bivector
of X.

Table 2. The (n + 1)(n + 2)/2 CKVs of (9).

# Type Components F̂ab ψ̂ ψ̂;a

II KV (non-grad) 1
U

[
(2U − 1)δα

I +
1
2 KUxI xα

]
2KU3x[αηβ]I 0 0

rAB KV (non-grad) δc
[Aδd

B]xc U2ηABab + KU3η c
AB.[bxa]xc 0 0

H CKV (grad) xα∂α 0 1 − KU·x2

2 −KU2xa = −KĤα

CI CKV (grad) 1
U

[
δb

I −
KU
2 xI xb

]
0 −KUxI −KĈ(I)α

We note that the new basis consists of the n + n(n−1)
2 = n(n+1)

2 KVs {Ia, Mab}, no HV

and n + 1 proper CKVs {H, Ca}. These vectors are in total (n+1)(n+2)
2 as it is necessary for

a metric of constant curvature. Furthermore all KVs of this basis are not gradient and all
proper CKVs are gradient. This observation is very useful in applications.
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We note that the vectors {H, Ca} are not SCKVs except in the case K = 0. Indeed from
the last column we compute

ψ̂;ab(H) = −KĤ(;ab) = −Kψ̂(H)gab = −pψ̂(H)gab (17)

where we have set
p = K. (18)

A similar calculation applies to ψ̂;ab(CI). Relations (17) and (18) show two more facts:

1. The gradient vectors ψ̂,a(H) and ψ̂,a(CI) are gradient CKVs of the metric gab (not the
flat metric!);

2. For non-flat metrics (K ̸= 0) the gradient vector ψ,a is non-null.

5. The Conformal Algebra of a 1 + (n − 1) Decomposable Metrics

We continue with the determination of the conformal algebra of 1 + (n − 1) decom-
posable metric Sab.

Definition 3. A metric Sab is called 1 + (n − 1) globally decomposable if it admits a non-null
covariantly constant vector field ka.

The vector field ka is a gradient KV. The metric of a 1 + (n − 1) can be written in
the form

ds2 = ϵ(k)(dx1)2 + gαβ(xγ)dxαdxβ (19)

where k = ∂x1, ϵ(k) = ±1 is the sign of ka and the quantities gαβ(xγ) are the components
of the metric tensor Sab on the (n − 1) space x1 =constant.

The CKVs of the 1 + (n − 1) decomposable metric are computed from the CKVs of the
n − 1 metric gµν as indicated in the following Theorem [9].

Theorem 2. Consider the 1 + (n − 1), (n ≧ 3) decomposable Riemannian metric Sab, which is
as follows:

ds2
n = Sabdxadxb = S11(dx1)2 + gµν(xρ)dxmdxν

where the reduced n − 1 metric gµν (µν ̸= 1) is non-decomposable and the decomposing vector is
the Ma = δa

1 with sign ε = Ma Ma. The conformal algebra of Sab has as follows:
1. The KVs of Sab are the ones of gµν (if any) plus the Killing vector Ma, which decomposes

the metric. All these vectors are non-gradient.
2. Sab admits the gradient HV:

Xa = C1x1Ma + kµδ
µ
a

provided the reduced n − 1 metric gµν admits the gradient HV kµ with conformal factor C1.
3. The metric Sab admits a non-gradient special CKV Xa:

Xa =

[
1
2

a(x1)2 − aε
∫

kµdxµ

]
Ma + ax1δa

µkµ

with conformal factor ψ = ax1, provided the reduced n − 1 metric gµν admits the proper gradient
HV kµ with homothetic factor a.

4. All proper CKVs of the metric Sab are non-gradient and given by the formula

Xa =

[∫
g(x1)dx1λ(xρ) + C

]
Ma −

1
p

g(x1)λ(k),µδ
µ
a (20)

where
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a. The function g(x1)

g(x1) = sin(
√

px1), cos(
√

px1) for ϵp = 1

g(x1) = sinh(
√

px1), cosh(
√

px1) for ϵp = −1

p is a non-zero constant.
b. λ(k),µ is a gradient CKV of the reduced n − 1 metric gµν with conformal factor pλ(xρ)

(p ̸= 0). The conformal factor of Xa equals ψ(xa) = g(x1)λ(xρ) and its bivector is given by the
formula Fab(X) = ε

∫
g(x1)dx1λ,µ(xρ)(δ1

a δ
µ
b − δ1

b δ
µ
a ).

At this point, we have all the means to compute the functions f (u) for Equation (3).

6. The Geometry of the Metric (2)

The metric
ds2

2+1 = −dt2 + dx2 + sin2 xdy2. (21)

defined by the homogenous wave Equation (3) is 1 + 2 decomposable along the gradient
KV ∂t. Furthermore, the 2-metric

ds2
2 = dx2 + sin2 xdy2 (22)

is the metric of a maximally symmetric space with positive Gaussian curvature R = 2
therefore admits (2+1)(2+2)

2 = 6 CKVs. Three of these vectors are Killing vectors (KVs) and
the remaining three are proper CKVs. The homothetic vector (HV) is not admitted. It is
easily found (using any algebraic computing program) that the KVs ξ1, ξ2, ξ3 (say) are

ξ1 = ∂y, ξ2 = sin y∂x + cot x cos y∂y, ξ3 = cos y∂x − cot x sin y∂y. (23)

The 1 + 3 metric (2) is conformally flat (this can be shown easily by showing that
the Cotton tensor vanishes), and therefore admits (3+1)(3+2)

2 = 10 CKVs. These are the
four KVs ξ1, ξ2, ξ3, ∂t and six proper CKVs.

The computation of the six CKVs are computed using Theorem 2. It is found that there
are two sets of proper CKVs, the non-gradient and the gradient ones. The non-gradient
CKVs are

ξ5 = − cos t sin y sin x∂t − sin t sin y cos x∂x − sin t cos y sin x∂y

ξ6 = sin t sin y sin x∂t − cos t sin y cos x∂x − cos t
cos y
sin x

∂y

ξ7 = cos t cos y sin x + sin t cos y cos x∂x − sin t
sin y
sin x

sin x∂y

ξ8 = − sin t cos y sin x + cos t cos y cos x∂x − cos t
sin y
sin x

sin x∂y

with conformal factors

ψ5 = sin t sin y sin x; ψ6 = cos t sin y sin x; ψ7 = − sin t cos y sin x; ψ8 = − cos t cos y sin x

and the gradient CKVs are

ξ9 = − cos t cos x∂t + sin t sin x∂x

ξ10 = sin t cos x∂t + cos t sin x∂x

with conformal factors
ψ9 = sin t cos x; ψ10 = cos t cos x.
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It is important to note that the conformal factors of the all proper CKVs satisfy
the relation

ψ;ij = −ψgij (24)

that is, the vectors ψ,i are gradient CKVs.
In a Riemannian space, which admits CKVs the following results are well known [7,8].

Lemma 1. Assume that the vector ξ i is a CKV of the metric gij with conformal factor −(λ − a)
i.e., Lξ i∂i

gij = −(λ − a)gij. Then, the following relations hold:

gjkLξ Γi
.jk = gjkξ i

.,jk + Γi
,lξ

l − ξ i
.,lΓ

l + (a − λ)Γi
. (25)

gjkLξ Γi
.jk =

2 − n
2

(a − λ),i (26)

where n = gjkgkj is the dimension of the space.

Proof. The proof of (25) is straightforward by using the definition of LξΓi
.jk and contracting

with gjk. To prove (26), one uses the identity

LξΓi
.jk =

1
2

gir
[
∇kLξ gjr +∇jLξ gkr −∇rLξ gkj

]
(27)

and replaces Lξ gij = (a − λ)gij to find

LξΓi
.jk =

1
2

gir
[
(a − λ),kgjr + (a − λ),jgkr − (a − λ),rgkj

]
=

1
2

[
(a − λ),kδi

j + (a − λ),jδ
i
k − gir(a − λ),rgkj

]
.

Contracting with gjk the result follows.

We note that for n = 2 the gjkLξΓi
.jk = 0, that is, the connection coefficients are

disassociated from the conformal factor. This is a singular case, and it is the reason that the
case n = 2 was not considered in [4].

7. The Lie Point Symmetries

As it is done in [3], we consider the Equation (3) for an arbitrary function f (u) and the
metric (2), that is, we consider the equation ∆gu + f (u) = 0, or equivalently,

H(xi, u, u,i, u,ij) ≡ giju,ij − Γiui + f (u) = 0 (28)

where xi = {t, x, y}, gij = diag(−1, 1, sin2 x) and Γk = gijΓi
jk.

The Lie point symmetry vector is

X = ξ i(xj, u)∂i + η(x, u)∂u (29)

and the Lie symmetry condition is

X[2](H) = λH

where λ(xi, u, ui) is a function to be determined. X[2] is the second prolongation of X given
by the expression

X
[2]

= ξ i ∂

∂xi + η
∂

∂u
+ η

(1)
i

∂

∂ui
+ η

(2)
ij

∂

∂uij
. (30)
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where

η
(1)
i =

Dη

Dxi − uj
Dξ j

Dxi = η,i + uiηu − ξ
j
,iuj − uiujξ

j
,u (31)

η
(2)
ij =

Dη
(1)
i

Dxj − ujk
Dξk

Dxj = ηij + (ηuiuj + ηujui)− ξk
,ijuk + ηuuuiuj − (ξk

.,uiuj + ξk
.,ujui)uk

+ηuuij − (ξk
.,iujk + ξk

.,juik)−
(

uijuk + uiujk + uikuj

)
ξk

.,u − uiujukξk
uu.

The introduction of the function λ(xi, u, ui) in the defining equation allows one to
consider the variables xi, u, ui to be independent [10].

When the symmetry condition X[2](H) = λH is applied to (28), the following system
of equations results [10–18] in

gij(aiju + bij)− (a,iu + b,i)Γi + au f,u + b f,u − λ f = 0 (32)

gijξk
,ij − 2gikai − ξk

,iΓ
i + ξ iΓk

,i + (a − λ)Γk = 0 (33)

Lξ i∂i
gij = (λ − a)gij (34)

η = a(xi)u + b(xi) (35)

ξk
,u = 0 ⇔ ξk(xi). (36)

These relations coincide with those given in [10] (p. 115) if we consider the following
correspondence:

This Notation Ibragimov Notation

a(x) σ(x)
f (x, u) −ψ(x, u)
Bi −bi

Bi
,u 0

The strategy to solve these conditions is the following.
Because we know the metric, it is possible (in principle!) to solve condition (34) and

determine the CKVs ξ i. Using these vectors in (33), one determines the value of λ. Having
these results and using (32), one determines the possible functions f (u), and consequently,
the equations of the form (28), which admit Lie point symmetries. Having the admitted Lie
symmetries, one may use similarity reduction and possibly determine invariant solutions
of (28). This latter part has been carried out for the case f (u) = 0 in [1]. Finally, using the
fact that Equation (28) follows from the Lagrangian [4]

L =
1
2

sin x
(
−u2

t + u2
x +

1
sin2 x

uy + 2 f (u)
)

one determines the Noether point symmetries and finds the corresponding Noether cur-
rents, which reduce this equation possibly to one that can be solved with quadratures. This
has been considered in [3] for f (u) = ku, where k is a constant.

In the present case, it is possible to compute the CKVs of the 1+ (3− 1) decomposable
metric; therefore, we follow the above algorithm.

We start with (34). This states that ξ i is a CKV of (2). These vectors have been
determined in Section 6.

Next, we consider condition (33).
Using property (25) of Lemma 1, condition (33) becomes

gjkLξ Γi
.jk = 2gikai. (37)
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Again, using (26) of Lemma 1 to replace gjkLξΓi
.jk, we find that eventually, condition

(33) gives
2 − n

2
(a − λ),i = 2a,i

where n is the dimension of the space. In our case, n = 3; therefore,

(a − λ),i = −4a,i

or
a − λ = −4a − 2C (38)

where C is a constant, which counts for the KVs and the HV. We conclude that condition (33)
expresses the conformal factor in terms of a, and furthermore provides the value of λ:

λ = 5a + 2C. (39)

Due to (38), condition (34) becomes

Lξ i∂i
gij = 2(2a + C)gij (40)

Still, we have to consider the remaining Lie symmetry condition (32):

gij(aiju + bij)− (a,iu + b,i)Γi + au f,u + b f,u − λ f = 0

from which follows

gijaij − a,iΓi + a f,u = 0 ⇔ ∆ga = −a f,u (41)

gijbij − b,iΓi + b f,u − λ f = 0 ⇔ ∆gb = λ f − b f,u. (42)

The obvious implication of (41) is (because a(xi)) f,u = 0; therefore, the function
f (u) = ku, where k is a constant.

In the last section, it has been shown that the conformal factors of the CKVs of the
metric (2) satisfy the relation

ψ;ij = −ψgij (43)

from which follows
∆gψ = −3ψ. (44)

From (34) we have 2ψ = −(a − λ), and replacing λ from from (39), we find

ψ = 2a + 2C (45)

Combining (44) and (45), we find

2∆ga + 3(2a + C) = 0. (46)

Then, condition (41) becomes

3(2a + C) = 2ak.

or
2(k − 3)a = 3C. (47)

We consider two cases.
Case a. k ̸= 3
Then, a is a constant, which means that a = 0 (homothetic vector is not admitted),

and subsequently, C = λ = 0. In this case, only the KVs ξ1, ξ2, ξ3 survive. Condition (42)
gives ∆gb = −bk.
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We conclude that for metric (2), the wave equations that admit Lie point symmetries
are of the form

∆gu = ku (48)

where k ̸= 3. The Lie symmetry vectors are

X1,2,3,4,5 = ξ1,2,3(xi), ∂t, b(xi)
∂

∂u
(49)

where ξ1,2,3 are the KVs (23) and b(xi) is a solution of Equation (48). These vectors coincide
with the ones found in [1,3], except the Lie symmetry u ∂

∂u . This is reasonable, because
a = 0.

Note: In [3], the author refers to [4]’s case f (u) = up, where p ̸= n+2
n−2 . In our case,

p = 3+2
3−2 = 5 ̸= 1, which also gives a = λ = 0, and therefore agrees with our result.
Case b: k = 3
In this case, we have C = 0, and (47) is trivially satisfied; therefore a stays unspecified.

Now, we use (42), from which follows

λ = 0 ⇒ a = 0 (50)

∆gb = −bk (51)

We conclude that the Lie symmetries are the same as in the case k ̸= 3.
Therefore the result of k ̸= 3 applies to all values of k.

8. Noether Point Symmetries

The Noether point symmetries are special Lie point symmetries, which in addition
satisfy Noether’s condition:

X[1]L + LDiξ
i = Diϕ

i (52)

where ϕj(x, u, ui, uij,...) is the Noether function,

Diϕ
j =

∂ϕj

∂xi + uk
∂ϕj

∂u
+ uks

∂ϕj

∂us + . . .

and X[1] is the first prolongation of the vector field X.
The nonlinear Poisson equation in a general space with metric gij follows from the

Lagrangian [4]

L =
√

g
(

1
2

gjkujuk − F(u)
)

where
Fu =

dF
du

= f (u). (53)

Using the relations

(
√

ggjk),k =
√

ggrsΓi
rs (54)

(
√

g),i =
√

gΓk
ik (55)

(
√

ggsk),i = −√
g(gslΓk

li + gklΓs
li) +

√
ggskΓl

il (56)

and the Lie symmetry condition η = a(x)u + b(x) (see (35)), one computes

X[1]L =
1
2

ξ i
(
−gjlΓk

li − gklΓj
li + gjkΓl

li

)
ujuk +

√
g(aδk

i − ξk
,i)gijujuk

+
√

g(bk + uak)uk −√
g(au + b)F,u − ξ i(

√
g),iF(u)
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while

LDiξ
i =

√
g
(

1
2

gjkujuk − F(u)
)

ξ i
,i

Replacing the lhs of the Noether condition (52) and collecting terms, it follows the
general result:

X[1]L + LDiξ
i =

1
2
√

g
[
−Lξ gjk + (2a + ξ i

;i)gjk
]
ujuk +

√
g(bk + uak)uk −√

g(au + b) f (u)−√
gξ i

;iF(u). (57)

In Section 7, it has been shown that the Lie symmetry conditions for the homogenous
wave equation on the sphere require that a = λ = 0 and ξ i is a KV; therefore ξ i

;i = 0.
Replacing these in (57) and using f (u) = ku, we find

X[1]L + LDiξ
i =

√
g(bkuk − bku). (58)

Then, the Noether symmetry condition (52) becomes

√
g(bkuk − bku) ≡ ∂ϕi

∂xi + uk
∂ϕi

∂u
+ uks

∂ϕi

∂us + . . .

from which follows

ϕi(x, u) (59)

∂ϕj

∂xi = −√
gbku (60)

∂ϕj

∂u
=

√
ggkibk. (61)

Condition (61) implies
ϕi =

√
ggkibku + R(u) (62)

from which follows
∂ϕj

∂xi =
√

ggkiub;ki =
√

gu∆gb

Comparing with (60), we find

∆gb + ku = 0 (63)

which means that b(xi) is a solution of Equation (3). Therefore, for the KVs, the Noether
condition is trivially satisfied, which means that for the homogenous wave equation on the
sphere, the Lie symmetries are also Noether symmetries.

9. Conserved Noether Currents

The conserved vector corresponding to a Noether symmetry is given by the general
expression [10]

Ci = Lξi + (na − ξkua
k)

(
∂L
∂ua

i
− Dj

∂L
∂ua

ij

)
+

∂L
∂ua

ij
Dj(na − ξ iua

j ) (64)

where L is the Lagrangian. In the present case, a = 0 and

L(xi, u, ui) =
1
2

sin xu2
t −

1
2

sin xu2
x −

1
2 sin x

u2
y +

1
2

k sin xu2

Therefore, (64) reduces to

Ci = Lξi − ξkuk
∂L
∂ui

. (65)
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We compute

∂L
∂u

= k sin xu;
∂L
∂ut

= sin xut;
∂L
∂ux

= − sin xux;
∂L
∂uy

= − 1
sin x

uy (66)

Using (64) and (66), one computes the conserved currents for the KVs of the metric (19).
We demonstrate the computation for the vector ∂t and refer the reader to [3] for the

remaining conserved vectors.
Let Ct = (A1, A2, A3) be the conserved vector for the KV ∂t. Then, from (64) and (66),

we compute
A1 = −L

A2 = −ut(− sin xux) = sin xutux

A3 =
1

sin x
utuy

Therefore,

Ci = −L
∂

∂t
+ sin xutux

∂

∂x
+

1
sin x

utuy
∂

∂y
. (67)

10. Conclusions

We addressed the problem of finding the Lie point symmetries of the partial differential
equation

H = Aij(x)uij − F(xr, u, ui) = 0 (68)

where
F(xr, u, u1) = Bk(x, u)uk − f (x, u). (69)

and Bk(x, u), f (x, u) are arbitrary functions of their argument. In (68), there are two sets of
unknown quantities, that is, the tensor Aij and the functions Bk(x, u), f (x, u). This means
that in order for it to be possible for the Lie point symmetries to be determined, one of these
sets must be specified. If the functions of the second set are assumed, one determines the
CKVs of the metrics for which Lie point symmetries are admitted. Because the CKVs do
not specify completely the metric, one finds essentially families of metrics. This approach
has been taken in [4]. Here, we are given the metric, which we read from the Equation (3),
which is a special case of (68), and we assume that Bk(x, u) = 0, f (x, u) = f (u). Therefore,
we compute the Lie point symmetries, and consequently, we determine the functions f (x, u)
for which Lie point symmetries are admitted. This completes the work of [3].

From the Lie symmetry condition (34), it follows that the Lie point symmetries are
the CKVs of the metric gij = diag(−1, 1, sin2 x). This is a 1 + (3 − 1) decomposable metric
whose reduced 2D metric is a metric of maximal symmetry with curvature scalar R = 2.
Using Theorem 2, we computed the CKVs of (34), and consequently, the Lie point symme-
tries. Using the rest of the Lie symmetry conditions, we found that f (u) = ku, where k is a
constant. Finally, it has been shown that the Lie symmetries are also Noether symmetries,
and it has been demonstrated how one computes the conserved Noether currents.

The geometric method we have considered in computing the Lie point symmetries
and the functions Bk(x, u), f (x, u) is general and can be applied to other known differential
equations of the form (68), especially to the ones in which the metric defined by Aij is more
complex and of a higher dimension where the algebraic computing programmes might
not answer.
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Appendix A

We write the metric (2) as
ds2

2+1 = −dt2 + ds2
2 (A1)

where
ds2

2 = dx2 + sin2 xdy2 (A2)

is the metric of a maximally symmetric 2D Euclidian space with the curvature scalar R = 2.
Therefore, ds2

2 can be written in the form

ds2
2 =

1[
1 + 1

4 (x2
1 + y2

1)
]2 (dx2

1 + dy2
1) (A3)

for some coordinates x1, y1. ds2
2 is given in the coordinates x, y. To bring ds2

2 to the form (A3)
and use the results of Section 5, we consider the coordinate transformation

x1 = 2 tan
x
2

cos y; y1 = 2 tan
x
2

sin y (A4)

with inverse

tan
x
2
=

1
2

√
x2

1 + y2
1; y = tan−1

(
x1

y1

)
. (A5)

The six CKVs of the metric ds2
2 in the coordinates x1, y1 are known (see Section 6).

They are the three KVs:

Iy1 = Py1 +
K
4

Ky1 =

[
1 +

1
4
(y2

1 − x2
1)

]
∂y1 +

1
2

x1y1∂x1 (A6)

Ix1 = Px1 +
K
4

Kx1 =
1
2

y1x1∂y1 +

[
1 +

1
4
(−y2

1 + x2
1)

]
∂x1 (A7)

ry1x1 = 2δc
[y1

δd
x1]

x1c∂d = (−y1)∂x1 − x1∂y1 = −(y1∂x1 + x1∂y1) (A8)

and the three proper gradient CKVs:

H = y1∂y1 + x1∂x1 (A9)

Cy1 = Py1 −
K
4

Ky1 =

[
1 − 1

4
(y2

1 − x2
1)

]
∂y1 −

1
2

y1x1∂x1 (A10)

Cx1 = Px1 −
K
4

Kx1 = −1
2

y1x1∂y1 +

[
1 − 1

4
(−y2

1 + x2
1)

]
∂x1

(A11)

whose conformal factors are

ψH =
1 − 1

4 (y
2
1 + x2

1)

1 + 1
4 (y

2
1 + x2

1)

ψCy1
=

−y1

1 + 1
4 (y

2
1 + x2

1)

ψCx1
=

−x1

1 + 1
4 (y

2
1 + x2

1)
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and satisfy the condition
ψCI ;µν = −ψgµν (A12)

where gab = −1
1+ 1

4 (y
2
1+x2

1)
δab. These CKVs in the coordinates x, y are

ξ4 = sin x∂x, ξ5 = − sin y cos x∂x −
cos y
sin x

∂y, ξ6 = cos y cos x∂x −
sin y
sin x

∂y (A13)

with conformal factors

ψ4 = cos x, ψ5 = sin y sin x, ψ6 = − cos y sin x. (A14)

The conformal factors ψ4,5,6 satisfy relation (A12).
Now that we know the gradient CKVs of the two-space ds2

2 in the coordinates x, y, we
are able to compute the CKVs of the decomposable metric ds2

1+2

ds2
1+2 = −dt2 +

1[
1 + 1

4 (x2
1 + y2

1)
]2 (dx2

1 + dy2
1). (A15)

using Theorem 2.
In order to apply Theorem 2, we read from (A12) p = −1. Also, the sign of x1 = t is

ε = −1; therefore, εp = 1 and m(t) = sin t, cos t. Because there is no HV, b = 0. Finally, we
have that f4,5,6(t) = −(sin t, cos t)ψ4,5,6.

It is well known that if a 1 + (n − 1) decomposable metric is such that the n − 1 metric
is maximally symmetric, then the 1+ (n − 1) metric is conformally flat. This is the case here
(equivalently one calculates the Cotton tensor of (2) and shows that vanishes). Therefore,
the metric ds2

1+2 has 10 CKVs, which can be computed using Theorem 2. Concerning the
KVs, they are the ones of ds2

2, that is, ∂t, ∂y, Ix1 , Iy1 .
Concerning the CKV, we find the following six CKVs:

X5 = sin t cos x∂t + cos t sin x∂x

X6 = − cos t cos x∂t + sin t sin x∂x

X7 = sin t sin y sin x∂t − cos t sin y cos x∂x − cos t
cos y
sin x

∂y

X8 = − cos t sin y sin x∂t − sin t sin y cos x∂x − sin t
cos y
sin x

∂y

X9 = − sin t cos y sin x + cos t cos y cos x∂x − cos t
sin y
sin x

∂y

X10 = cos t cos y sin x + sin t cos y cos x∂x − sin t
sin y
sin x

∂y

with conformal factors

ϕ5,7,9 = cos tψ4,5,6

ϕ6.8.10 = sin tψ4,5,6.

The conformal factors ϕ5,...,10 satisfy condition (A12).
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