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Abstract: Studying the spatial response of a single-axis magnetometer could be the key parameter
to optimize the ultimate performances of magnetic heads of detection. Indeed, the problem of non-
orthogonality, misalignment, and 3D spatial response could be improved based on the knowledge of
the 3D sensor spatial response. In that way, we have investigated the latter for our giant magneto-
impedance (GMI) magnetometer, as a far-field pattern, by using a three-axis Helmholtz coil system.
Firstly, we calibrate our device and secondly, we apply a specific 3D magnetic field to obtain this
pattern. The latter helps to observe the directional or angular dependence of the sensor sensitivity
versus the applied magnetic field, as we exemplified. The results confirm the excellent directivity of
our off-diagonal GMI magnetometer. The evaluation of the associated error compared to an ideal
vector magnetometer is also given and discussed.

Keywords: GMI; magnetometer; equivalent magnetic noise; stability; far-field pattern;
source localization

1. Introduction

The giant magneto-impedance (GMI) magnetometers present numerous interests in
terms of magnetic field detection based on their intrinsic low noise, high bandwidth, long-
term stability, and high slew rate. Also, their sensitivities are increased, and their intrinsic
equivalent noises are reduced, notably, by using the off-diagonal configuration. Numerous
developments show the potential of these types of sensors in terms of detection (lane
guidance systems, non-destructive testing, sensing devices, geomagnetism exploratory,
satellite observations, etc.) [1–4]. In the past, we have studied a GMI magnetometer spatial
response in the case of nanoparticle detection [5]. Meanwhile, there are few measurements
and analyses on their 3D far-field spatial response. However, it could notably impact the
sensor head performances for the localization of magnetic field sources [6–8]. We notice that
some magnetic sensors present clear inhomogeneous responses, induced by their geometry.
Here, we focus on the analysis of the homogenous or far-field 3D spatial response of our
magnetometer to evaluate its directivity, clearly.

The paper is organized as follows. Section 2 describes the magnetometer and summa-
rizes its performance. Section 3 details the experimental setup. Finally, results and analysis
are detailed in Section 4, which is followed by a conclusion.

2. Magnetometer
2.1. GMI Sensor

The sensing element consists of a 24 mm long CoFeSiB amorphous wire, with a radius
of 100 µm. The GMI sensor is implemented in off-diagonal mode. So, a monolayer pick-up
coil is wrapped around the wire and has around 450 turns. More details can be found in [9].
Notice that the GMI sensing element could, usually, be fully described by its impedance
matrix [10].
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2.2. Magnetometer Characteristics

The electronic conditioning circuitry is made with two boards. It helps to separate
analog (low noise) and digital parts for electromagnetic compatibility optimizations. The
digital part manages the double excitation frequency (1 MHz, 10 kHz) by using two direct
digital synthesizers (DDS) in order to improve sensor temperature stability [11]. Some
DC bias current or voltage sources and switches are used to reach an automatic weak-up
and full system control. The analog part implements, mainly, two peak detectors as a
demodulator, some amplifier stages, and the magnetic field-locked loop.

The set (sensor, amplifier, DC and AC bias current or voltage sources, DDS, etc.), is
managed by a microcontroller unit. Figure 1 gives a view of the electronic board. It has
been optimized to achieve low noise and long-term stability [11]. The main magnetometer
characteristics are summarized in Table 1.
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Table 1. Main magnetometer characteristics.

Characteristics Units

Sensitivity 54,000 V/T
White noise level 15 pT/

√
Hz

Bandwidth 30,000 Hz
1/f noise corner 5 Hz
Dynamic range ±60 µT

Long-term stability >5 nT/h

3. Setup

To generate the reference applied field, the setup consists of a three-axis Helmholtz
coil system. (Figure 2) The latter is used in the calibration of our magnetic field sensors and
helps to create a rotational spheric magnetic field, presently, to obtain the far-field pattern
of our sensor, as we detailed hereafter. We notice that Earth’s magnetic field components
are considered spatially and temporally steady enough. So, they appear as offsets that are
nullified before the digitalization step.
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3.1. Three-Dimensional Helmholtz Coil System

The three coils of the system are composed of diameters of ~1 m. They are supplied
with a power amplifier and a control unit. Both DC and AC magnetic fields can be
generated in any direction (X, Y, Z). The system can serve for calibrating magnetic field
sensors or generating a stable and defined magnetic field. All were managed with a
National Instruments multifunction card, enabling software control.

3.2. The Rotating Magnetic Field

To plot the required pattern, we applied a field carried by the three field components
(Bx(t), By(t), Bz(t)). The applied magnetic field functions are given, respectively, as

Bx(t) = Bx0 cos(ωa t) sin(ωb t)
By(t) = By0 sin(ωa t)sin(ωb t)
Bz(t) = Bz0 cos(ωb t)

(1)

where ωa and ωb are two angular frequencies ( ωa> ωb). Their value and ratio are con-
trolled to optimize the plot. The amplitude of the applied field, B0, is a constant. It yields√

B2
x(t) + B2

y(t) + B2
y(t) = B0. So, these parametric equations produce the plot of a sphere

in the ideal case when it was sensed by a “true” 3D magnetometer.

3.3. The Sensed Magnetic Field

Experimentally, we expect that our magnetometer is sensitive to its main axis, only,
as Bx(t), for example. In that way, it could be considered as a perfect vector magnetome-
ter. Meanwhile, some discrepancies in its spatial response could be associated with the
nature of the sensing element (size, geometry, volume, etc.). Indeed, magnetic sensors are
mainly made with magnetic materials. So, its nature or form could imply a spatial shape
deformation of the sensed magnetic field.

To summarize, the magnetometer output, up to a certain point, could be proportional
to the field components, Bx(t), By(t), and Bz(t). Its output voltage might be given by

Vout(t) = Tx(θ, φ) Bx(t) + Ty(θ, φ) By(t)+Tz(θ, φ) Bz(t) (2)

where Tx, Ty, and Tz are the sensor sensitivity per field direction (x, y, z). Also, the latter
could depend on θ and φ, which are the angular directions of the sensed field given in
spherical coordinates. Ideally, Tx is a constant and Ty and Tz are null. For improved
comprehension, we provide two examples, hereafter.

Firstly, if we consider Tx, Ty, and Tz as constant terms, Equation (2) could be reduced.
So, the equivalent magnetic sensed field is given by

BS(t) = Bx(t) + kyx By(t)+kzx Bz(t) (3)

where kyx = Ty/Tx and kzx = Tz/Tx are <<1. Based on these assumptions, we can plot the
response of the magnetometer that we named ‘’far-field-pattern”. It yields a parametric
plot of the projection of the sensed field modulus, |BS(t)|, it follows the angular spatial
direction of the applied field. It yields three main components given, as far-field pattern
(FFP), by 

FFPx(t) = |BS(t)| Cos(ωa t) Sin(ωb t)
FFPy(t) = |BS(t)| Sin(ωa t)Sin(ωb t)
FFPz(t) = |BS(t)|Cos(ωb t)

, (4)

respectively. A simulation of this behavior is given in Figure 3a. It shows the ideal and
non-ideal response of a vector magnetometer, and blue and red curves, respectively. We
can observe a rotation of the main sensitivity axis associated with this imperfection, which
we named the “common mode effect”.
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Figure 3. (a) Normalized ideal far-field pattern (blue curve) compared to the non-ideal far-field
pattern response (red curve) having kyx = kzx = 0.2. (b) The orange curve shows the difference
between both.

To improve the analysis, we notice that all given curves are normalized by the ampli-
tude of the applied field, B0. Up to a certain point, a 3D rotation matrix could be associated
with this effect and used to correct or compensate for this behavior. Taking into account the
assumptions, the difference between an ideal and non-ideal response is given in Figure 3b.
It shows the variability of the error versus the applied field angular directions.

Secondly, if we consider Ty and Tz null, we have only taken account of Tx dependence
versus the angular direction of the sensed field. To exemplify, a 2D modeling of one
sensor response is detailed hereafter. Ideally, a vector magnetometer sensitivity has a
Cos[θ] dependence. It yields a parametric plot of Tx(θ). In 2D, its coordinates are given by
0.5 Tx0{1 + Cos(2θ), Sin(2 θ) }Sign(cos(θ)) . It corresponds to a two-lob circular response
as given by the blue curve in Figure 4a.
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coil system 

D.U.T. 

Power amplifier 
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Figure 4. (a) Normalized ideal Tx(θ) 2D dependence (blue curve) compared to a non-ideal Tx(θ)

dependence (orange curve). (b) For two identical magnetometers placed orthogonally, the blue and
orange curves give a circular response in the ideal case (|T(θ)| = 1 ) and a distorted response in a
non-ideal case (Tx(θ) = 0.5 Tx0{1 + Cos(2θ), k1Sin(2θ)}Sign(cos(θ))), respectively.

Meanwhile, if we consider an irregular dependence of Tx(θ), as given by
0.5 Tx0{1 + Cos(2θ), k1Sin(2θ)}Sign(cos(θ)), as an example, the shape of the parametric
plot could change, notably, as exemplified by the orange curve in Figure 4a.
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With two orthogonally similar sensors having a response detailed in Figure 4a,
Figure 4b gives the angular dependence of the normalized ideal (blue curve) and non-ideal
sensor sensitivity (red curve) versus θ.

This analysis can be extended in 3D by including both examples and more complex
sensor responses.

4. Discussion

Based on the previous description, we qualify our magnetometers. The amplitude of
the applied magnetic field and the angular frequencies (ω a, ωb) are 10 µT, 2 π rad/s, and
2 π 0.1 rad/s, respectively. All sensor output voltages are acquired by using a homemade
24-bit ADC board. The sampling frequency is 717 Hz. The data acquisition system is
managed by a laptop. The latter acquires data for postprocessing. A global view of the
setup is given in Figure 5.
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Far-Field Pattern

To simultaneously qualify the setup and our GMI magnetometer, a 3D fluxgate mag-
netometer is used, firstly, to sense the applied field. The experimental normalized response
of the three-axis fluxgate is given in Figure 6.

Figure 6. Experimental three-axis fluxgate directional far-field patterns (or angular sensitivity depen-
dence) versus an applied rotating magnetic field having an amplitude, B0, of 10 µT. Notice that the
curve is normalized in amplitude by B0. Blue, red and green curves highlight the projection of the
magnetic sensor response in each plane (z, y), (x, y) and (z, y), respectively.
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As expected, the 3D fluxgate far-field pattern response is quasi-ideal and looks like
a sphere. In the same way, after aligning the GMI magnetometer to the z-axis, we have
observed its normalized response. The latter is given in Figure 7. Up to a certain point, the
latter corresponds to a true vector magnetometer.

Figure 7. Experimental GMI directional far-field patterns or angular dependence of their sensitivity
versus an applied rotating magnetic field having an amplitude of 10 µT. Notice that the curve is
normalized in amplitude by B0. Blue, red and green curves highlight the projection of the magnetic
sensor response in each plane (z, y), (x, y) and (z, y), respectively.

To quantify the measurement, it was possible to evaluate the uncertainties or precision of
this measurement based on the intrinsic limitations of our setup. It aims to plot the errors on
the sensed field associated with the far-field pattern. Here, we simply subtract the ideal pattern
from the normalized measurement response. Notice that both are very similar. The result of this
subtraction is given in Figure 8. It shows an observable error lower than ±0.5%.

Figure 8. Experimental GMI magnetometer error associated to the far-field pattern given in Figure 7.
Blue, red and green dots highlight the projection of the magnetic sensor errors in each plane (z, y), (x,
y) and (z, y), respectively.

5. Conclusions

To conclude, we have studied and analyzed the far-field pattern and angular sensitivity
dependence of a GMI vector magnetometer and showed its excellent directivity. Our GMI
magnetometer can be seen as a quasi-perfect vector sensor. We evaluated the error of
axis sensitivity lower than 0.5%. Notice that the given results are limited, certainly, by
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the environmental noise in the present results (cf. dots spatial distributions in Figure 6).
Furthermore, the angular error can be assessed. The development opens the doors to the
development of three-axis magnetic field magnetometers having excellent directivity for far
magnetic field source detection. Certainly, future enhancements should focus on refining
metrological analysis to expand the approach for error localization in source identification,
considering the acquired far-field pattern.
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