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Abstract: Data protection issues stemming from the use of machine learning algorithms that are
used in automated decision-making systems are discussed in this paper. More precisely, the main
challenges in this area are presented, putting emphasis on how important it is to simultaneously
ensure the accuracy of the algorithms as well as privacy and personal data protection for the indi-
viduals whose data are used for training the corresponding models. In this respect, we also discuss
how specific well-known data protection attacks that can be mounted in processes based on such
algorithms are associated with a lack of specific legal safeguards; to this end, the General Data
Protection Regulation (GDPR) is used as the basis for our evaluation. In relation to these attacks,
some important privacy-enhancing techniques in this field are also surveyed. Moreover, focusing
explicitly on deep learning algorithms as a type of machine learning algorithm, we further elaborate
on one such privacy-enhancing technique, namely, the application of differential privacy to the
training dataset. In this respect, we present, through an extensive set of experiments, the main
difficulties that occur if one needs to demonstrate that such a privacy-enhancing technique is, indeed,
sufficient to mitigate all the risks for the fundamental rights of individuals. More precisely, although
we manage—by the proper configuration of several algorithms’ parameters—to achieve accuracy
at about 90% for specific privacy thresholds, it becomes evident that even these values for accuracy
and privacy may be unacceptable if a deep learning algorithm is to be used for making decisions
concerning individuals. The paper concludes with a discussion of the current challenges and future
steps, both from a legal as well as from a technical perspective.
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1. Introduction

Machine learning (ML) and, especially, deep learning algorithms, as a type of artifi-
cial intelligence (AI) algorithms, are widely used in various fields, such as digital image
processing [1], data analytics [2], autonomous systems [3], text and speech recognition [4],
face recognition [5], robotics [6], traffic prediction [7], intrusion detection [8], etc. It is still
a highly evolving field with a variety of innovative applications [9,10]. However, when
these algorithms are used in automated decision-making systems concerning individuals,
several risks of a high severity occur with regard to human rights; for example, if such a
system is used to decide whether a person, who is a candidate employee for a specific job,
fits well with the job in question, its decision highly affects this person, and an erroneously
negative response from this system yields a significant impact for the individual, posing
restrictions on one’s rights.

More generally, errors in the output of an automated decision-making system may
have serious consequences for individuals, such as [11] (a) legal effects, e.g., the denial
of a particular social benefit, such as child or housing benefit, refusal of entry at the
border, extensive supervision by authorities that should not have taken place, etc., and
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(b) other significant effects, e.g., the automatic refusal of an online credit application,
intrusive profiling for various purposes, etc. Although several legal frameworks, such
as the prominent General Data Protection Regulation (GPDR) in Europe [12], do not
allow decisions that significantly affect individuals to rely solely on automated decision-
making systems (i.e., human intervention is necessary before the final decision, even if such
systems are used) (see Art. 22 of the GDPR), it is essential—even in these cases—to ensure
that the underlying ML algorithms provide unbiased and accurate results to the greatest
possible extent.

Moreover, such systems also yield several challenging issues for the rights of privacy
and personal data protection [13,14]. Indeed, making a decision about an individual
necessitates the processing of one’s personal data, and this entails risks with regard to
the aforementioned rights if no sufficient safeguards are in place, such as transparency
of the overall processing (including information about the underlying logic involved), as
well as the informed consent of individuals (although this may not be applicable when
decision-making is authorized by law). Apart from this aspect, one should also consider
that ML algorithms are constantly trained according to a specific training dataset; if this
dataset is based on personal data, further risks occur with respect to the individuals related
to these data. More precisely, it may be questionable whether these individuals are aware
of this processing, as well as whether these data are used only for training and not for
other purposes; additionally, these data should not be more than are needed for training
the model, and this, in turn, typically necessitates the requirement that these data should
not allow identification of the corresponding individuals (since such an identification is
not necessary for the training purposes and would yield “excessive” processing). Hence, it
seems that using “anonymised” data as the training set is a prerequisite to address such data
protection and privacy risks (which could involve either direct anonymization methods,
such as differential privacy (see, e.g., [15]) or other advanced cryptographic techniques
that suffice to perform operations on “hidden” data, such as homomorphic encryption
or secure computations (see, e.g., [13,16])). However, by these means, the accuracy of the
ML algorithm may be affected since “anonymisation” as a process is related to a type
of modification of data, and thus, due to this modification, one could say that there is a
trade-off between privacy and accuracy that needs to be efficiently accommodated.

It should be clarified that automated decision-making systems may not necessarily
involve ML techniques or other types of AI; see, e.g., [17]. Such systems may also lead to
data protection risks [11]. However, this paper focuses explicitly on systems based on ML
(with emphasis on deep learning techniques).

1.1. Research Objectives and Methodology

This paper aims to discuss the main challenges and risks, from a data protection point
of view, when automated decision-making systems based on ML systems are employed,
thus providing the necessary background as a survey and paving the way for subsequent
research that is needed. To understand the data protection risks, the paper will be based
on the legal provisions stemming from the European legal framework, and, especially, the
GDPR, which, as it has been stated (see, e.g., [18]), can serve as a useful model for other
regulations to follow in terms of rights and principles. More precisely, this paper aims to
address the following research objectives:

1. A classification and description of the privacy and data protection threats when using
ML algorithms for automated decision-making systems, associating each of them
with the nonfulfillment of specific legal provisions;

2. A review of the data protection engineering techniques that have been proposed to
alleviate the aforementioned privacy and data protection threats;

3. Further investigation of the application of differential privacy (DP) techniques to the
training dataset via exploring the effect that each parameter of an algorithm has when
evaluating both the accuracy of the output as well as the privacy achieved for the
training dataset.
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On the basis of the above, the methodology and the contributions of this paper are
as follows:

(a) First, important results in the field of data protection attacks on ML systems are
surveyed in conjunction with relevant data protection engineering techniques that
have been proposed. In this respect, for each known privacy threat in ML systems,
we associate the relevant provision of the GDPR that seems to not be in place, thus
establishing direct connections on how the nonfulfillment of legal requirements yields
specific weaknesses (allowing effective privacy attacks) in practice;

(b) Additionally, based on the work in [15] that applies DP to the training dataset of
deep learning algorithms, some new results are also given, based on a set of extensive
experiments relying on the above work that we carried out, indicating that there is still
much room for further research since we, indeed, manage to achieve better accuracies
for the algorithms by appropriately configuring several hyperparameters. However,
we also address the challenge of what should be considered “acceptable” accuracy
when we refer to decision-making systems concerning individuals.

Our preliminary analysis reveals that the research outcomes need to be meticulously
considered by the relevant stakeholders when ML systems are deployed, i.e., the corre-
sponding algorithmic impact assessments should be conducted based on deep knowledge
of whether and how State-of-the-Art privacy-enhancing technologies, indeed, suffice to
alleviate data protection risks. The paper concludes with future steps that are suggested
concerning both research as well as governance aspects.

1.2. Structure of the Paper

The paper is organized as follows: Section 2 presents the background on auto-
mated decision-making systems in general, illustrating—based on some well-known
incidents—how severe the impact can be on individuals if the system’s output is not correct,
thus establishing the importance and the inherent difficulty of this issue (see Section 2.1).
Moreover, it presents the necessary legal background on personal data protection based
on the corresponding framework in Europe (see Section 2.2), whilst it concludes with a
summary of the main challenges. Section 3 briefly surveys the main data protection threats
for automated decision-making systems that are based on ML techniques concerning pri-
vacy attacks related to the training dataset; for each such threat, the relevant association
with the legal provision is provided in terms of illustrating how the nonfulfillment of a
specific legal provision gives rise to each threat. Subsequently, Section 4 briefly surveys the
main techniques that can be used to alleviate these data protection threats. Subsequently,
in Section 5, emphasis is placed on analyzing the application of differential privacy on
the training dataset, which consists of one of the main data protection engineering tech-
niques, by further elaborating on the results in [15] by executing a more extensive set of
experiments. Finally, the overall discussion points and concluding remarks are given in
Sections 6 and 7, respectively.

2. Background
2.1. Automated Decision-Making Systems and Relevant Risks for Fundamental Rights

Many automated decision-making systems operate in a nontransparent manner (see,
e.g., [19]) without giving the opportunity for human intervention if needed. For example,
a citizen’s application to rent a house can be rejected by an automated decision-making
system, which is related to the process of screening tenants who are suitable to rent a house
without the candidate ever having knowledge of the reason for this rejection. Moreover,
it is also known that governments regularly adopt automated decision-making systems
without public knowledge [20].

In 2014, a tool implementing an algorithm that could review resumes and determine
which applicants a well-known company should bring on board was abandoned since it
turned out that the tool systematically discriminated against women applying for technical
jobs [21]. According to [20], thousands of American citizens have lost access to social
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benefits as a result of “bugs” in the relevant source code since translating complex and
often ambiguous regulatory requirements into computer code is not an easy task; for
example, such errors resulted in hundreds of thousands of erroneous decisions, including
improper denials of health care to pregnant women and women with breast and cervical
cancer, as well as improper denials of food stamps to the disabled. More recently, the
Dutch tax authority had been wrongly accusing families of fraud, forcing them to repay
benefits, due to the discriminatory problems arising from an algorithm in a decision-making
system [22]. Another important factor that affects an algorithm’s bias is the “quality” of the
datasets that feed it since they may reflect structural inequities, which, in turn, may yield
discrimination [23]. An overview of the ways big data can harm marginalized communities
is given in [24]. For example, a commercial healthcare algorithm was identifying specific-
type patients based on their ethnicity for more intensive medical care than other patients
with similar health issues [25], and this occurred due to the fact that the algorithm was based
on data about past healthcare expenditures in order to make predictions about patients’
future need. This past information resulted in misconceptions since some individuals
suffered numerous logistical, institutional, and cultural barriers to healthcare access and
thus had lower cost histories [20]; a proper modification of the algorithm in order to
exclude past expenditures as a factor for the decision process sufficed to eliminate this
algorithm’s biases on its outcomes [20]. More generally, there are several known cases
of disabled people being denied desperately needed state support due to an algorithmic
decision (see [20] and the references therein). As stated by Philip Alston, a UN Special
Rapporteur on extreme poverty and human rights, we have entered a digital dystopia in
which “systems of social protection and assistance are increasingly driven by digital data
and technologies that are used to automate, predict, identify, surveil, detect, target and
punish” [20].

More generally, ML techniques can be used in various critical applications involving
decision-making, which include, amongst others, applications in the medical/health sector
(see, e.g., [26–28]).

Therefore, it becomes essential that decisions made by automated decision-making
systems should also be checked/verified by a human to avoid erroneous outcomes (e.g.,
approvals or rejections of applications). This conclusion is further accentuated by the fact
that entities (i.e., public or private organizations) that are provided with such algorithmic
software may not have a deep knowledge of how the underlying algorithms actually work,
and they do not implement mechanisms for regularly monitoring their effectiveness. The
need for human intervention is provisioned in the GDPR, as described next.

2.2. Personal Data Protection—Legal Provisions

The right to privacy has been recognized as a fundamental human right by the United
Nations Declaration of Human Rights [29], the International Covenant on Civil and Political
Rights [30], the Charter of Fundamental Rights in the European Union [31], and other
international treaties. Privacy is strongly related to personal data protection; as stated in the
Charter of Fundamental Rights, personal data “must be processed fairly for specified purposes
and on the basis of the consent of the person concerned or some other legitimate basis laid down by
law” (see Article 8(2) of the Charter).

In Europe, as stated above, the main legal instrument for personal data protection is
the General Data Protection Regulation (GDPR). The GDPR also applies to the processing of
personal data by organizations not established in the European Union in the case of when
they process the data of individuals in the Union, and the processing activities are related
to either “the offering of goods or services” or “the monitoring of their behavior as far as their
behavior takes place within the European Union” (see Art. 3, par. 2 of the GDPR). As explicitly
stated in [32], the intentionally global reach of the GDPR, with the threat of the huge fines it
sets if fundamental rights are not properly protected, has led companies around the world
to amend their privacy practices, as well as countries around the world to update their
privacy laws.
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According to the GDPR (see Art. 4(1)), the term personal data refers to any information
relating to an identified or identifiable natural person, that is a person who can be identified
(referred to as a data subject); as explicitly stated in the same provision (i.e., Art. 4(1)) in
the GDPR, an identifiable natural person is one who can be identified, directly or indirectly, in
particular by reference to an identifier such as a name, an identification number, location data, an
online identifier or to one or more factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person. It should be pointed out that this
definition goes beyond the well-known definition of personally identifiable information
(PII), which is generally considered information that can be used to distinguish or trace
an individual’s identity; all PII is considered personal data, but the reverse does not hold
(see, e.g., [33]). Personal data processing means any operation that is performed on personal
data, including the collection, recording, structuring, storage, adaptation or alteration, retrieval,
use, disclosure by transmission, dissemination, combination and erasure (see Art. 4(2) in the
GDPR). The entity that, alone or jointly with others, determines the purposes and means
of the processing of personal data, is the so-called data controller, whereas the entity that
processes personal data on behalf of the controller is the data processor (see Art. 4(7) and
4(8), respectively, in the GDPR).

If personal data are modified in such a way that the person(s) is (are) no longer
identifiable, then the data should be considered anonymous, i.e., nonpersonal. In such a
case, as stated in Recital 26 in the GDPR, the GDPR’s provisions do not apply since we
do not have personal data (although the process of anonymization, by itself, constitutes
personal data processing). However, to determine whether a natural person is identifiable
from a dataset that is considered anonymous, “account should be taken of all the means
reasonably likely to be used to identify the natural person directly or indirectly”. (This is described
in Recital 26 of the GDPR.) In other words, performing truly effective anonymization is
typically a difficult task; therefore, the GDPR actually “confirms” the research on known
anonymization fallacies (see, e.g., [34]).

The GDPR codifies the basic principles that need to be in place when personal data
are processed, setting specific obligations to data controllers (and there are also some
obligations for data processors). More precisely, according to Article 5, par. 1 of the GDPR,
the personal data shall be processed fairly and in a transparent manner, being adequate, relevant
and limited to what is necessary in relation to the purposes for which they are processed (purpose
limitation principle), whereas the purpose shall be specified, explicit and legitimate. Moreover,
the personal data shall be adequate, relevant and limited to what is necessary in relation to the
purposes for which they are processed (data minimization principle). Other basic principles are
also defined in the same article, such as the accuracy of the data (i.e., the data shall be accurate
and, where necessary, kept up to date), the storage limitation (i.e., data shall not kept in a form which
permits identification of data subjects for longer than is necessary for the purposes for which the
personal data are processed) and the security of the data.

An important requirement for personal data processing that should always be in
place regardless of the legal basis is the so-called data protection by design principle (also
known as privacy by design). According to this principle (see Art. 25, par. 1), the data
controller shall, both at the time of the determination of the means of processing and at
the time of the processing itself, implement appropriate technical and organisational measures,
such as pseudonymisation, which are designed to implement data protection principles, such as data
minimisation, in an effective manner and to integrate the necessary safeguards into the processing
in order to meet the legal requirements and protect the rights of individuals. In simple words,
personal data protection should be taken into account from the very beginning of the design
of data processing. It is clear that this provision implies that when an automated decision-
making system is to be used, the data controller should be very cautious from the very
beginning with respect to the use of this system, considering whether it is fully necessary
with respect to the desired purposes and, if yes, with which properties/characteristics, as
well as establishing that the rights and freedoms of individuals are respected.
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The GDPR defines several rights of the individuals that can be exercised at any
time, and the respective data controller is obligated to respond within specific timeframes.
A notable one is the right to access (Art. 15 in the GDPR), which is also enshrined in Art.
8 of the EU Charter of Fundamental Rights; the overall aim of the right of access is to
provide individuals with sufficient, transparent, and easily accessible information about
the processing of their personal data so that they can be aware of and verify the lawfulness
of the processing and the accuracy of the processed data, whereas, for data controllers, the
main modality for providing access is to provide the data subject with a copy of their data.
Another important right is the right of data erasure (deletion) pursuant to Art. 17 in the
GDPR; if specific circumstances occur, data subjects may ask a data controller to delete their
data, and the controller is obligated to fulfill this requirement.

Another important right for data subjects, highly relevant to automated decision-
making systems, is the one defined in Art. 22, par. 1 in the GDPR: “The data subject shall have
the right not to be subject to a decision based solely on automated processing, including profiling,
which produces legal effects concerning him or her or similarly significantly affects him or her”.
Therefore, according to the GDPR’s provisions, data controllers can carry out profiling
(defined as “any form of automated processing of personal data consisting of the use of personal data
to evaluate certain personal aspects relating to a natural person, in particular to analyse or predict
aspects concerning that natural person’s performance at work, economic situation, health, personal
preferences, interests, reliability, behaviour, location or movements” according to Art. 4(4) in the
GDPR) and/or automated decision-making as long as (i) they meet all the main principles
for legitimate processing (i.e., transparency, data minimization, etc.) and (ii) additional
safeguards are in place, with human intervention being a notable one, as well as the right,
for the data subject, to challenge the decision. Moreover, the transparency of this process
also means that the data subject shall always receive, from the beginning, meaningful
information about the logic involved, as well as the significance and envisaged consequences (see
Art. 13, par. 2(f) in the GDPR). Human intervention in a decision process could be omitted
only in very specific cases, as described in Art. 22, par. 2 in the GDPR; however, these
exceptions should be interpreted strictly, and even in these cases, other safeguards still
need to be in place.

The above right is actually an obligation for all data controllers using automated
decision-making systems; it concerns duties which the data controller has to fulfil without
any active involvement from the data subject (e.g., there is no need for an individual to ask
for human intervention with respect to the decision process; the data controller needs to
ensure that this is always the case).

In order to ensure fair and transparent processing, the data controller should ensure
that appropriate mathematical or statistical procedures are used so that factors that result
in inaccuracies in personal data are corrected, and the risk of errors is minimized, as well as
discriminatory effects on natural persons on the basis of racial or ethnic origin, political opinion,
religion or beliefs, trade union membership, genetic or health status or sexual orientation are pre-
vented (see Recital 71 of the GDPR). Hence, the GDPR associates the principles of fair and
transparent processing (which are prerequisites for legitimate processing) with the accuracy
and impartiality of the algorithm. Actually, data controllers are those that are accountable
for illustrating that all these requirements are fulfilled; the so-called accountability principle
is also an obligation for data controllers, pursuant to Art. 5, par. 2 of the GDPR. Taking into
account that software providers or developers are, typically, not the data controllers (since,
in a typical scenario, the data controllers adopt available software tools), it becomes evident
that there is a complex surface, consisting of different stakeholders with different roles and
responsibilities, whilst software developers and providers are not explicitly regulated by
the GDPR.

An important accountability tool for data controllers, as determined in the GDPR, is
the so-called data protection impact assessment (DPIA), pursuant to Art. 35 of the GDPR.
In simple words, a DPIA is a systematic approach to identify, at an early stage, all the data
protection risks stemming from intended personal data processing in order to consider the
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appropriate mitigation measures and to evaluate whether, after these measures, there are
still remaining risks. (If there are remaining high risks, the data controller needs to consult
with a competent data protection authority.) Clearly, conducting a DPIA facilitates, for
this processing, the controller’s compliance with the data protection by design principle.
A DPIA is obligatory for data controllers who aim to perform processes with high risks;
to this end, as stated in Art. 35, par. 3 of the GDPR, a DPIA is required, amongst other
cases, when “a systematic and extensive evaluation of personal aspects relating to natural persons
which is based on automated processing, including profiling, and on which decisions are based
that produce legal effects concerning the natural person or similarly significantly affect the natural
person”. Therefore, conducting a DPIA is another safeguard for the rights and freedoms of
individuals when automated decision-making systems are used.

2.3. Summary of the Main Challenges

As implied in Section 2.2, the GDPR seems to “be aware” of the relevant risks stemming
from automated decision-making systems and puts (legal) safeguards to alleviate these
risks. However, in practice, it is still challenging to implement the data protection principles
stemming from the GDPR in such systems; for example, it is not clear how one can ensure
and demonstrate that the data protection by design principle is in place in ML systems.

In relation to the above, it should be pointed out that the advance of ML algorithms—and
especially of deep neural networks—has resulted in a new ecosystem consisting of opaque
decision systems involving a huge parametric space, thus yielding complex black-box
models that are far from transparent [35]. This, in turn, leads to decisions that are not
justifiable and do not allow explanations of the logic that the ML algorithm follows to be
derived. This is inherently noncompliant with the provisions stemming from the GDPR,
which promotes transparency; moreover, even if human intervention is a prerequisite for
the final decision (as the GDPR determines), the individuals who make the final decisions
need to have explanations with respect to the output of the model [36]. Apart from this, an
understanding of a system can allow its amendment. Therefore, due to these issues, the
notion of explainable artificial intelligence (XAI) has been introduced [37] in order to allow
explainable ML models to be derived while maintaining a high level of output accuracy,
as well as to enable individuals to understand the systems (which is prerequisite for a
system’s trustworthiness). XAI can be seen in terms of its desired goals as a vehicle to
develop ML systems that can be considered compliant with respect to the requirement of
the fulfillment of human rights. As explicitly stated in [38], explainability implies that an
AI system should provide plain and easy-to-understand information on the factors and decision
processes that serve as the basis for its prediction, recommendation, or decision. However, there
is still a series of challenges for XAI that remain insufficiently addressed [35]. Apart from
explainability, other similar notions also exist (i.e., explanation, justification, accountability,
legitimacy, etc.); these are discussed and analysed in [39].

The above challenges are further accentuated by the fact that, in practice, there also
exist other specific data protection risks mainly related to personal data that are processed
in the context of training an ML algorithm through a dataset, for example, how the data
minimization principle is fulfilled for the process; which is the minimal amount of possible
information that the model needs to be efficiently trained, taking into account that, if this
information consists of personal data, appropriate safeguards for protecting these data
need to be in place; and whether it would be acceptable in terms of personal data protection
to use a training dataset that could allow identification of individuals. Such data protection
risks, as well as the relevant mitigation measures, will be discussed next.

3. Data Protection Risks of ML Systems and Relations with GDPR Provisions

From the previous discussion, it has become evident that automated decision-making
systems pose several risks with respect to the rights of privacy and personal data protection.
More precisely, the widespread use of ML algorithms that are used as “core primitives”
for these systems makes these systems even more vulnerable to new privacy threats; ML
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and, especially, deep learning algorithms by themselves, as also discussed in Section 2.3,
raise concerns with respect to these fundamental rights, whilst our understanding of their
nature and impact on individuals is still limited [13]. These algorithms aim to extract the
characteristics and properties, under a specific context, of individuals, toward reaching
specific conclusions that are subsequently used to derive a decision about them. To this end,
an ML algorithm is based on large volumes of input data, which, in turn, also correspond
to individuals, and thus, they are also personal data.

Bearing in mind the aforementioned provisions stemming from the GDPR, a main
data protection challenge for these systems stems from the data minimization principle.
Indeed, to ensure compliance with the GDPR, it is necessary to develop machine learning
applications that receive as input the absolutely necessary personal data; for instance, the
training dataset must, at any time, consist of samples that contain the absolutely necessary
personal data and no more than those that are necessary to achieve the purpose of each
application [40]. More precisely, the training dataset should not allow the reidentification
or singling out of an individual since such a process would violate the data minimization
principle. However, performing robust anonymization is not always an easy task as stated
above; the simple removal of direct identifiers (e.g., identity card numbers, names, etc.),
although it is a prerequisite, does not ensure an anonymous dataset (see, e.g., some famous
incidents related to improper anonymization, such as [34]).

From now on, we shall refer to the notion of an adversary as any entity that can mount
a so-called privacy attack, i.e., can extract more personal information than it is entitled to do
so. By considering the legal provisions of the GDPR, an adversary can be either a malicious
third party (i.e., an attacker) or even an entity that legitimately processes personal data and
does not have a malicious purpose (e.g., the ML service provider); if this legitimate entity
is practically able, e.g., to reidentify an individual in violation of the data minimization
principle, then it is still considered an adversary.

3.1. Reidentification Attacks

When the computation unit is separated from the input unit, then the input data need
to be transferred to the computation unit through a secure channel. However, it is most
likely that the input data are already in the computation unit, e.g., in a cloud computing
service, but they are not encrypted or masked (i.e., we have data in plain sight). In any
case, the following risks occur: an adversary that manages to get access to these data (i.e., a
“malicious” ML service provider or a malicious external user) is able to extract information
from the input data itself or even from the features extracted from the said input data. This
risk becomes prevalent if the data minimization principle is not fulfilled, for example, if the
training dataset allows the reidentification of individuals. However, if the input data or the
ML algorithm are not correct, then the results of the ML model are incorrect, leading to a
wrong decision, such as making a decision that someone is not entitled to receive a social
benefit when in fact she/he is entitled to receive it. In other words, if full anonymization
was applied to the input data, then the results of the ML model could possibly resemble
random outputs [41].

3.2. Reconstruction Attacks

It should be pointed out that even if only the features extracted from the input data are
moved to and stored on the servers of the computation unit, there is still a risk of so-called
reconstruction attacks. In these attacks, the malicious user tries to reconstruct the input
data using the knowledge he can extract from the model’s feature vectors. Reconstruction
attacks occur when the feature vectors of the model are known; this is the case when the
feature vectors that have been used to train the model have not been deleted after building
the machine learning model [42,43]. Some examples of successful reconstruction attacks
include fingerprint reconstruction, where the image of a fingerprint was reconstructed
from features of the fingerprint, and screen unlock pattern reconstruction, where the screen
unlock pattern was reconstructed from features of the pattern, such as direction and speed.
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In both cases, the malicious user actually exploited a data protection threat (caused by not
protecting the characteristics of the extracted input data) and was able to mount a security
attack on mobile device user authentication systems since, in both cases, the attacker was
able to bypass the user’s authentication process, imitating the actual user of the mobile
devices. Although the goal of the attacks was to log into a mobile device as a specific user
by fooling the mobile device user authentication systems, such attacks may also reveal other
personal data of the user, such as the user age or the user location. Interestingly enough,
one could say that the “source” for instantiating such privacy risks is noncompliance with
the GDPR’s storage limitation principle.

3.3. Model Inversion Attacks

There are also cases where the feature vectors are not stored in the ML models them-
selves, e.g., in the case of neural networks. In such cases, an adversary can try to construct
feature vectors that mimic the actual feature vectors used to construct the ML model in
question using the response received from the ML model. This type of attack is known as a
model inversion attack. In other words, the adversary tries to infer personal information
about a data subject by exploiting the outputs of an ML model. Such attacks could use,
e.g., support vector machines (SVMs) and confidence values (e.g., probabilities or the
decision value of the SVM) along with a classification result to recover feature vectors that
were used to build the model [44]. These attacks aim to produce an average value that
represents a particular class of data, so it constitutes a privacy risk, for example, when a
particular class of data is associated with a particular individual, as in facial recognition
applications [45]. It is worth noting that an inversion attack can be used together with a
reconstruction attack, according to the researchers M. Fredrikson et al., in the case of face
recognition [44], where the input sample is identical to the feature vector. Such attacks are
mainly related to the security requirements stemming from the GDPR since the feature
vectors need to be protected.

3.4. Member Inference Attacks

Another important type of privacy attack is the so-called member inference attack,
which aims to infer, based on the corresponding output of the ML model, whether a sample
belonged to the training dataset (a good survey on these attacks can be found in [46]). For
example, an adversary can mount such an attack to find out if a particular person’s personal
data have been used to train a machine learning model that predicts whether a person has
a particular disease. Such attacks identify and exploit the differences in the ML model’s
predictions regarding the samples that were used to train the model in conjunction with
those samples that were not used. Such attacks are investigated in [47] through training
ML models that received, as input, the correct label of a sample and the machine learning
model’s prediction that predicted whether the sample belonged to the training dataset
or not. Interestingly enough, the researchers investigated this issue in the most difficult
setting, where the adversary’s access to the model was limited to “black-box” queries that
returned the model’s output on a given input.

All the above attacks actually illustrate how difficult it is to ensure the data minimiza-
tion principle in practice when all technically possible data protection risks are considered.

4. Mitigating the Data Protection Risks

To address the aforementioned data protection risks, the research community has
proposed several techniques. This section reviews the main approaches.

4.1. Protection against Reidentification Attacks

In principle, toward addressing such types of data protection threats, we need to cau-
tiously configure the whole system to strike a proper balance between the anonymization
of the training dataset and the accuracy of results. Such approaches are discussed next.
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4.1.1. Noncentralized Approaches

Probably the most notable approach, from a data protection engineering perspective,
for multiparty settings (i.e., in distributed learning and not in centralized learning), focusing
mainly on the risks related to the information that the adversary can extract from the input
data, is the so-called federated learning (FL) technique [48,49]. The underlying idea of
FL techniques is to build machine learning models in a distributed way; that is, each
entity, with its own data, uses these data to locally train the model without providing these
data to any other party and, similarly, without receiving data from other entities for this
training. (For example, in a case necessitating an ML model that is based on sensitive
health data from hospitals/medical centers, each such organization trains its own local
model independently based on its data.) By these means, training data are not shared at
all. However, there is a coordinated central aggregate server that receives the models and,
based on them, creates a global model which, in turn, is distributed to all the other entities.
Therefore, the data sharing that takes place does not involve personal data but only the
parameters of the model that is built. However, despite the obvious advantages of FL in
terms of privacy, there are still risks remaining; for example, it has been shown that data
could be inferred by considering only model weights [50], whilst even local personal data
can be reconstructed through inversion of the model gradients sent by the clients to the
server [51,52].

More generally, privacy-preserving techniques in distributed learning settings enable
the training of an ML model using aggregated data while maintaining the privacy of the
training datasets. Several research works propose ML techniques consisting of multiple
members and based on homomorphic encryption (i.e., advanced encryption that allows
mathematical operations on ciphertexts without necessitating decrypting them), while the
type of ML used is deep learning (see, e.g., [53,54]). By these means, taking as input a large
amount of encrypted data, the aim is to develop practical and efficient algorithms that
handle encrypted data.

In a similar principle of decentralizing the training model, researchers in [55] pro-
posed a technique called “Privacy-Preserving Bandits (P2B)”. This technique is mainly
focused on systems providing personalized services, e.g., a personalized news service that
would learn to recommend news articles based on past articles the user has interacted
with. Such recommender systems rely on an individual’s data obtained through his/her
interactions. The technique provided in [55] is based on the following idea: individual
agents run locally on users’ devices and are able to contribute useful feedback to other
agents through centralized model updates while providing privacy guarantees, namely,
differential privacy guarantees.

4.1.2. Centralized Approaches

Apart from these decentralization approaches, another way to alleviate data protection
risks with respect to training data is to anonymize them; however, this comes with a well-
known problem that is related to every anonymization, namely, how to answer affirmatively
with certainty the question “are the resulting data indeed anonymous?” Even if we can
ensure that proper anonymization has taken place, there is still another important question
that needs to be considered: “Are the anonymous data still useful for the training purposes?”
To this end, several techniques have been proposed. The researchers in [15] propose a
differential privacy (DP) technique for the training dataset that is based on the stochastic
gradient descent algorithm, i.e., noise is added into each iteration of the stochastic gradient
descent algorithm with the aim of preserving the privacy of the said algorithm at a minimal
cost in terms of software complexity, training efficiency, and ML model accuracy. DP focuses
on achieving the following: the inclusion or exclusion of a single individual from a dataset
should not significantly change the results of any analysis carried out on the dataset to
make it difficult to conclude anything about that individual; to achieve this, noise is added
appropriately to the data. For the ML algorithm, as the noise introduced into the stochastic
gradient descent algorithm increases, higher probabilities for achieving anonymization are
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achieved. But, as stated before, there is a need to configure the hyperparameters of the
model appropriately in order to find the proper balance between anonymization and the
validity of results [15].

In [56], a new technique is proposed, which applies a “confusion” function to the train-
ing dataset before the model training process takes place. This function either introduces
random noise into the samples of the training dataset or adds new samples to it, with the
aim of hiding personal information regarding the characteristics of individual samples
or the statistical characteristics of a group of samples. Clearly, this technique lies within
anonymization techniques; however, it should be stressed that by this method, the ML
model trained with the “confused” dataset can achieve accuracy to a high extent.

An alternative approach to making private computations over the training dataset
relies on the use of homomorphic encryption (see, e.g., [13,16,57]). As stated above, in the
context of decentralized settings, by these means, operations take place over encrypted
data so that the entity performing these operations, i.e., the training of the model, does not
have access to the actual training data.

4.2. Protection against Reconstruction Attacks

With respect to the risk of reconstruction attacks, an approach that could be considered
is to avoid using ML models that explicitly store the feature vectors, such as SVMs (support
vector machines). If such ML models are used, it is suggested that the feature vectors are
not given to the output module [42,45].

Since reconstruction attacks can also be seen as a specific instance of reidentification
attacks (see Section 4.1), other well-known data protection engineering techniques, like
DP mentioned above (and elaborated next), are also applicable in this case. Similarly,
distributed (i.e., noncentralized) settings can also help address such threats, although it
may still be necessary to employ other privacy techniques in such settings. In this respect,
DP may again have an important role.

4.3. Protection against Model Inversion Attacks

With respect to the risk of model inversion attacks, any access to the output module
needs to be restricted to “black-box” access, and the output of the model needs to be
limited to reduce the knowledge that a malicious user can gain from it. For example, the
success rate of such attacks was significantly reduced when the classification algorithms
presented approximate confidence values, as shown in [44], or only the predicted class
label, according to [45].

Again, model inversion attacks can be seen as a specific instance of reidentification at-
tacks (see Section 4.1), and thus, techniques like DP are also good candidates for alleviating
the relevant risks.

4.4. Protection against Member Inference Attacks

With respect to the risk of member inference attacks, it has been said that regularization
techniques, such as dropout [58], which are used to overcome overfitting in machine learn-
ing, can help address them in some cases. Moreover, if the training process is differentially
private, then the models are, in principle, secure against membership inference attacks that
are solely on the outputs of the model [47]; however, it is known that differentially private
models may significantly reduce the model’s prediction accuracy. Another approach has
been proposed in [59] based on models that depend on the causal relationship between
input features and the output.

5. Further Exploring Differential Privacy in the Training Dataset—Results

In this work, we put effort into elaborating on the work presented in [15]; more
precisely, we investigate how several parameters of the ML model affect the accuracy of
the model when applying DP to the training dataset. In this respect, an extensive set of
experiments was carried out, focusing on two different network architectures (“dense” and
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“cnn”) with two different sets of input data that are well-known in the literature, namely,
the MNIST dataset for handwritten digit recognition [60] and the CIFAR-10 dataset, which
consists of color images classified into 10 classes, such as ships, cats, and dogs [61]. For
each combination (i.e., architecture/dataset), we applied two different modes of operation
of the machine learning algorithms (i.e., without the addition of noise and, for the DP, with
the addition of noise) to accurately recognize the various characters with respect to the
input dataset MNIST and to accurately recognize the various objects with respect to the
input dataset CIFAR-10. Note that the “dense” architecture corresponds to a dense neural
network, whilst the “cnn” architecture corresponds to a convolutional neural network. The
ML algorithm used is the stochastic gradient descent algorithm.

As in [15], we rely on the following definition of DP, which is based on the application-
specific concept of adjacent databases. More precisely, each training dataset is a set of
image–label pairs, and we say that two of these sets are adjacent if they differ in a single
entry, that is, if one such pair is present in one set but not in the other [15]. Therefore, we
have the following definition based on the variant introduced by [62]:

Definition 1. A randomized mechanism M: D→R, with input domain D and output range R,
satisfies (ε,δ)-differential privacy if for any two d, d’ being adjacent in D and for any subset S⊆R,
it holds:

Pr[M(d) ∈ S] ≤ eε Pr[M(d’) ∈ S] + δ

where ε is the so-called privacy-loss parameter at a differential change in data (the smaller the value
is, the better privacy protection), and δ reflects the probability of a privacy leak where the added
noise (controlled by ε) does not provide sufficient protection. (If δ is low, it is less probable that an
individual’s privacy is going to be compromised, but this may yield a high noise to be added, which,
in turn, may affect the applicability of the data).

For our experiments, we provided as input to the ML algorithm (i) the images of the
input dataset MNIST and (ii) the images of the input dataset CIFAR-10, and we trained the
model using either the “dense” network architecture or the “cnn” network architecture,
both for the classical gradient descent algorithm as well as for the private stochastic
gradient descent algorithm (having added noise). The hyperparameters of the algorithms
are described as follows:

(i) Batch_Size: It determines the number of training samples used to train the network in
an iteration (i.e., before updating the model parameters);

(ii) Learning_Rate: This is an important hyperparameter of a neural network that controls
how much to change the model in response to the estimated error each time the model
weights are updated;

(iii) L2Norm_Bound: This hyperparameter specifies the bound value for the clipping of the
gradient descent algorithm (i.e., to not have too large weights while ensuring that the
important components in the weight vector are larger than the other components) [15];

(iv) Sigma: This hyperparameter specifies the noise scale to be added to the stochastic
gradient descent algorithm [15];

(v) Use_Privacy: This hyperparameter specifies whether the so-called private stochastic
gradient descent algorithm, which introduces noise in each iteration of the stochastic
gradient descent algorithm, will be used or not;

(vi) N_Epochs: This hyperparameter specifies the number of epochs for which the machine
learning algorithm will be trained. An epoch refers to one cycle through the full
training dataset;

(vii) Eps: This hyperparameter relates to privacy that can be controlled by the data analyst
to maintain the balance between privacy and accuracy. More precisely, it specifies the
initial value of the parameter “ε” (for differentially private settings) to be used when
training, testing, and verifying the machine learning algorithm;
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(viii) Delta: This hyperparameter specifies the initial value of the parameter “δ” (for differ-
entially private settings) to be used during the training, testing, and verification of the
machine learning algorithm;

(ix) Max_Eps: This hyperparameter specifies the maximum value of the parameter “ε” to
be used when training, testing and verifying the machine learning algorithm. A larger
value to this hyperparameter yields less noise into the stochastic gradient descent
algorithm, whilst a smaller value to this hyperparameter yields more noise into the
stochastic gradient descent algorithm;

(x) Max_Delta: This hyperparameter specifies the maximum value of the parameter
“δ” (for differentially private settings) to be used during the training, testing, and
verification of the machine learning algorithm;

(xi) Target_Eps: This hyperparameter specifies the value of the parameter “ε” that is
actually used. If this value becomes greater than the “Max_Eps” hyperparameter, the
program terminates.

Figure 1 illustrates the methodology we followed. Although this figure is based on
the CIFAR-10 dataset, the same approach was also followed for the MNIST database.
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Figure 1. The methodology adopted (CIFAR-10 dataset).

All the experiments that we performed, based on the software that is publicly available
in [63], are described in Table 1. Note that, for all the experiments, we set a learning rate
equal to 0.01, the L2Norm_Bound equal to 4.0, and the Sigma value equal to 4.0 (i.e.,
low–medium noise): these are the values of the hyperparameters that were also chosen
in [15]. Similarly, the value for the “δ” parameter (i.e., the Delta hyperparameter) was
chosen as 1 × 10−7 (i.e., 10−7) for all cases that were differentially private, similar to in [15].
Additional to the work in [15], we also examined, for the two datasets and the two models,
several values for the number of epochs, the batch size, and the value of the “ε” parameter.
(In [15], these parameters were chosen to be equal to 100, 64, and 1.0, respectively.) It should
be pointed out that, in [15], the hyperparameters Max_Eps, Max_Delta, and Target_Eps
were initialized using the values 16.0, 1 × 10−3, and 16.0, respectively; these were also the
starting values for our experiments.
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Table 1. The hyperparameters chosen for the set of experiments.

# Batch_Size Learning_Rate L2Norm_Bound Sigma Dataset Model Use_Privacy N_Epochs Eps Delta Max_Eps Max_Delta Target_Eps

1 64 0.01 4.0 4.0 MNIST dense False 100 ____ ______ _______ _____ ______

2 64 0.01 4.0 4.0 MNIST dense True 100 1.0 1 × 10−7 16.0 1 × 10−3 16.0

3 64 0.01 4.0 4.0 MNIST cnn False 100 ____ _____ _______ _____ _______

4 64 0.01 4.0 4.0 MNIST cnn True 100 1.0 1 × 10−7 64.0 1 × 10−3 64.0

5 64 0.01 4.0 4.0 CIFAR-10 dense False 100 ____ ______ _______ _____ _______

6 64 0.01 4.0 4.0 CIFAR-10 dense True 100 1.0 1 × 10−7 16.0 1 × 10−3 16.0

7 64 0.01 4.0 4.0 CIFAR-10 cnn False 100 ____ ______ _______ _____ _______

8 64 0.01 4.0 4.0 CIFAR-10 cnn True 100 1.0 1 × 10−7 64.0 1 × 10−3 64.0

9 64 0.01 4.0 4.0 MNIST dense True 100 1.0 1 × 10−7 64.0 1 × 10−3 64.0

10 64 0.01 4.0 4.0 CIFAR-10 dense True 100 1.0 1 × 10−7 64.0 1 × 10−3 64.0

11 64 0.01 4.0 4.0 MNIST dense False 250 ____ ______ _______ _____ _______

12 64 0.01 4.0 4.0 MNIST dense True 250 1.0 1 × 10−7 64.0 1 × 10−3 64.0

13 64 0.01 4.0 4.0 MNIST cnn False 250 ____ ______ _______ _____ _______

14 64 0.01 4.0 4.0 MNIST cnn True 250 1.0 1 × 10−7 64.0 1 × 10−3 64.0

15 64 0.01 4.0 4.0 CIFAR-10 dense False 250 ____ ______ _______ _____ _______

16 64 0.01 4.0 4.0 CIFAR-10 dense True 250 1.0 1 × 10−7 64.0 1 × 10−2 64.0

17 64 0.01 4.0 4.0 CIFAR-10 cnn False 250 ____ ______ _______ _____ _______

18 64 0.01 4.0 4.0 CIFAR-10 cnn True 250 1.0 1 × 10−7 64.0 1 × 10−3 64.0

19 64 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 4.0 1 × 10−3 4.0

20 64 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 1.0 1 × 10−3 1.0

21 64 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 10.0 1 × 10−2 10.0

22 128 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 8.0 1 × 10−2 8.0

23 32 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 16.0 1 × 10−2 16.0

24 16 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 32.0 1 × 10−2 32.0

25 8 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 32.0 1 × 10−2 32.0
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Table 1. Cont.

# Batch_Size Learning_Rate L2Norm_Bound Sigma Dataset Model Use_Privacy N_Epochs Eps Delta Max_Eps Max_Delta Target_Eps

26 4 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 64.0 1 × 10−1 64.0

27 2 0.01 4.0 4.0 MNIST dense True 250 0.5 1 × 10−7 64.0 1 × 10−1 64.0

28 64 0.01 4.0 4.0 MNIST cnn True 250 0.5 1 × 10−7 4.0 1 × 10−3 4.0

29 64 0.01 4.0 4.0 MNIST cnn True 250 0.5 1 × 10−7 1.0 1 × 10−3 1.0

30 64 0.01 4.0 4.0 MNIST cnn True 250 0.5 1 × 10−7 10.0 1 × 10−3 10.0

31 128 0.01 4.0 4.0 MNIST cnn True 250 0.5 1 × 10−7 2.0 1 × 10−3 2.0

32 32 0.01 4.0 4.0 MNIST cnn True 250 0.5 1 × 10−7 2.0 1 × 10−3 2.0

33 16 0.01 4.0 4.0 MNIST cnn True 250 0.5 1 × 10−7 4.0 1 × 10−2 4.0

34 64 0.01 4.0 4.0 MNIST cnn True 500 0.5 1 × 10−7 2.0 1 × 10−2 2.0

35 64 0.01 4.0 4.0 MNIST cnn True 1000 0.5 1 × 10−7 4.0 1 × 10−2 4.0

36 64 0.01 4.0 4.0 MNIST cnn True 2000 0.5 1 × 10−7 4.0 1 × 10−2 4.0

37 64 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 4.0 1 × 10−3 4.0

38 64 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 1.0 1 × 10−3 1.0

39 64 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 10.0 1 × 10−3 10.0

40 128 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 32.0 1 × 10−3 32.0

41 32 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 64.0 1 × 10−2 64.0

42 16 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 64.0 1 × 10−2 64.0

43 8 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 64.0 1 × 10−1 64.0

44 4 0.01 4.0 4.0 CIFAR-10 dense True 250 0.5 1 × 10−7 128.0 1 × 10−1 128.0

45 64 0.01 4.0 4.0 CIFAR-10 cnn True 250 0.5 1 × 10−7 4.0 1 × 10−3 4.0

46 64 0.01 4.0 4.0 CIFAR-10 cnn True 250 0.5 1 × 10−7 1.0 1 × 10−3 1.0

47 64 0.01 4.0 4.0 CIFAR-10 cnn True 250 0.5 1 × 10−7 10.0 1 × 10−3 10.0

48 128 0.01 4.0 4.0 CIFAR-10 cnn True 250 0.5 1 × 10−7 2.0 1 × 10−3 2.0

49 32 0.01 4.0 4.0 CIFAR-10 cnn True 250 0.5 1 × 10−7 4.0 1 × 10−3 4.0

50 64 0.01 4.0 4.0 CIFAR-10 cnn True 500 0.5 1 × 10−7 4.0 1 × 10−3 4.0

51 64 0.01 4.0 4.0 CIFAR-10 cnn True 1000 0.5 1 × 10−7 8.0 1 × 10−2 8.0
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The results of the experiments are shown in Table 2. For simplicity, we omitted from
this table the columns corresponding to the values of the hyperparameters “Learning_Rate”,
“L2Norm_Bound”, “Sigma”, and “Delta” since they are constant for all the experiments, as
shown in Table 1; however, we still keep, in Table 2, the values of the remaining hyperpa-
rameters despite the fact they are also described in Table 1 to facilitate the presentation of
the results. The last column of Table 2 indicates the execution times, and the experiments
took place in a Kali Linux virtual machine with two CPUs ((Intel(R) Core(TM) i7-8550U
CPU @ 1.80 GHz), 8 GB RAM, 80GB HDD (SATA), NTFS).

Table 2. Results of the experiments.
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3 64 MNIST cnn False 100 ___ ___ ____ ____ 98.21 98.22 99.54 ____ ___ 1 h 48 m
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6 64 CIFAR-10 dense True 100 1.0 16.0 1 × 10−3 16.0 15.64 15.71 13.73 16.0 1.4989 × 10−4 0 h 15 m

7 64 CIFAR-10 cnn False 100 ___ _____ _____ _____ 62.46 62.52 88.25 ____ _______ 2 h 0 m

8 64 CIFAR-10 cnn True 100 1.0 64.0 1 × 10−3 64.0 25.12 25.38 24.72 3.7747 1.5798 × 10−4 2 h 12 m

9 64 MNIST dense True 100 1.0 64.0 1 × 10−3 64.0 61.34 61.83 58.08 13.99 3.6839 × 10−4 0 h 55 m

10 64 CIFAR-10 dense True 100 1.0 64.0 1 × 10−3 64.0 15.32 15.46 14.97 36.5621 7.9777 × 10−4 1 h 57 m

11 64 MNIST dense False 250 _____ _____ _____ _____ 97.27 97.29 98.49 ______ _______ 0 h 34 m

12 64 MNIST dense True 250 1.0 64.0 1 × 10−3 64.0 66.39 66.68 64.74 22.1849 9.1887 × 10−4 1 h 50 m

13 64 MNIST cnn False 250 _____ _____ _____ _____ 98.28 98.28 99.83 ______ _______ 5 h 13 m

14 64 MNIST cnn True 250 1.0 64.0 1 × 10−3 64.0 81.44 81.68 78.95 3.6135 3.1085 × 10−4 6 h 08 m

15 64 CIFAR-10 dense False 250 _____ ______ _____ _____ 52.59 52.61 80.59 _____ _______ 6 h 0 m

16 64 CIFAR-10 dense True 250 1.0 64.0 1 × 10−2 64.0 16.90 16.99 17.31 5.79335 1.99118 × 10−3 4 h 39 m

17 64 CIFAR-10 cnn False 250 ___ ___ ___ ___ 62.70 62.70 94.68 ____ ___ 6 h 20 m

18 64 CIFAR-10 cnn True 250 1.0 64.0 1 × 10−2 64.0 30.06 30.26 19.49 5.9733 8.3994 × 10−4 6 h 24 m

19 64 MNIST dense True 250 0.5 4.0 1 × 10−3 4.0 54.52 54.60 57.98 4.0 2.0691 × 10−4 0 h 25 m

20 64 MNIST dense True 250 0.5 1.0 1 × 10−3 1.0 23.62 22.66 37.71 1.0 1.2940 × 10−4 0 h 2 m

21 64 MNIST dense True 250 0.5 10.0 1 × 10−2 10.0 67.72 67.49 66.10 8.4436 1.9570 × 10−4 1 h 59 m

22 128 MNIST dense True 250 0.5 8.0 1 × 10−2 8.0 66.83 66.97 65.23 5.9668 4.6011 × 10−4 0 h 59 m

23 32 MNIST dense True 250 0.5 16.0 1 × 10−2 16.0 69.59 72.11 72.33 11.9089 1.83497 × 10−3 3 h 50 m

24 16 MNIST dense True 250 0.5 32.0 1 × 10−2 32.0 75.43 75.65 73.84 16.7136 3.6697 × 10−2 7 h 07 m

25 8 MNIST dense True 250 0.5 32.0 1 × 10−2 32.0 78.80 78.94 77.17 23.7963 7.3353 × 10−2 8 h 09 m

26 4 MNIST dense True 250 0.5 64.0 1 × 10−1 64.0 81.49 81.26 80.52 32.355 1.467053 × 10−2 28 h 3 m

27 2 MNIST dense True 250 0.5 64.0 1 × 10−1 64.0 83.81 83.90 83.23 44.8134 2.933942 × 10−2 55 h 25 m

28 64 MNIST cnn True 250 0.5 4.0 1 × 10−3 4.0 80.25 80.06 80.24 1.3608 3.1085 × 10−4 6 h 21 m

29 64 MNIST cnn True 250 0.5 1.0 1 × 10−3 1.0 75.68 76.21 79.84 0.9996 1.6747 × 10−4 3 h 04 m

30 64 MNIST cnn True 250 0.5 10.0 1 × 10−3 10.0 83.46 83.65 80.78 1.3608 3.1085 × 10−4 6 h 16 m

31 128 MNIST cnn True 250 0.5 2.0 1 × 10−3 2.0 79.64 79.93 77.05 0.9655 1.5764 × 10−4 3 h 23 m

32 32 MNIST cnn True 250 0.5 2.0 1 × 10−3 2.0 81.24 81.42 78.31 1.9207 6.3528 × 10−4 11 h 09 m

33 16 MNIST cnn True 250 0.5 4.0 1 × 10−2 4.0 75.38 75.71 73.57 2.7538 1.24625 × 10−3 23 h 03 m

34 64 MNIST cnn True 500 0.5 2.0 1 × 10−2 2.0 85.84 85.90 83.90 1.9208 6.3540 × 10−4 10 h 54 m

35 64 MNIST cnn True 1000 0.5 4.0 1 × 10−2 4.0 85.84 85.90 83.80 2.7532 1.24579 × 10−3 22 h 47 m
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Table 2. Cont.
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36 64 MNIST cnn True 2000 0.5 4.0 1 × 10−2 4.0 89.62 89.63 87.71 3.8095 2.52171 × 10−3 42 h 01 m

37 64 CIFAR-10 dense True 250 0.5 4.0 1 × 10−3 4.0 12.53 11.82 10.45 4.0 6.215 × 10−5 0 h 9 m

38 64 CIFAR-10 dense True 250 0.5 1.0 1 × 10−3 1.0 9.77 9.41 7.81 1.0 3.88 × 10−5 0 h 1 m

39 64 CIFAR-10 dense True 250 0.5 10.0 1 × 10−3 10.0 13.67 13.66 13.99 10.0 3.8742 × 10−3 50 h 01 m

40 128 CIFAR-10 dense True 250 0.5 32.0 1 × 10−3 32.0 16.12 16.14 16.20 16.0331 9.9818 × 10−4 2 h 15 m

41 32 CIFAR-10 dense True 250 0.5 32.0 1 × 10−3 32.0 18.50 18.61 18.82 32.1464 4.02584 × 10−3 9 h 10 m

42 16 CIFAR-10 dense True 250 0.5 64.0 1 × 10−2 64.0 20.33 20.39 20.62 45.4614 7.96743 × 10−3 15 h 50 m

43 8 CIFAR-10 dense True 250 0.5 64.0 1 × 10−1 64.0 21.12 21.15 21.06 63.7962 1.560910 × 10−2 44 h 25 m

44 4 CIFAR-10 dense True 250 0.5 128.0 1 × 10−1 128.0 22.31 22.36 22.24 91.1240 3.364267 × 10−2 68 h 13 m

45 64 CIFAR-10 cnn True 250 0.5 4.0 1 × 10−3 4.0 29.59 29.69 30.16 2.2675 3.8994 × 10−3 6 h 09 m

46 64 CIFAR-10 cnn True 250 0.5 1.0 1 × 10−3 1.0 24.51 22.87 23.03 1.0 7.617 × 10−5 1 h 21 m

47 64 CIFAR-10 cnn True 250 0.5 10.0 1 × 10−3 10.0 29.14 29.25 29.04 2.2675 3.8994 × 10−3 1 h 0 m

48 128 CIFAR-10 cnn True 250 0.5 2.0 1 × 10−3 2.0 29.64 29.87 29.39 1.6026 1.9852 × 10−4 2 h 59 m

49 32 CIFAR-10 cnn True 250 0.5 4.0 1 × 10−3 4.0 19.54 19.54 19.89 3.1539 7.7702 × 10−4 11 h 26 m

50 64 CIFAR-10 cnn True 500 0.5 4.0 1 × 10−3 4.0 31.23 31.26 31.29 3.1524 7.7616 × 10−4 12 h 03 m

51 64 CIFAR-10 cnn True 1000 0.5 8.0 1 × 10−2 8.0 32.30 32.30 32.06 4.4014 1.66101 × 10−3 23 h 31 m

The results obtained with respect to the dense neural networks when DP is applied to
the training dataset are promising in the case of identifying characters (i.e., for the MNIST
input set). More precisely, for dense neural networks, we managed to achieve training
accuracy, validation accuracy, and testing accuracy of 83.81%, 83.90%, and και 83.23%,
respectively, for (44.8, 2.933942 × 10−2)-differential privacy (see the 27th experiment). This
was achieved for an increased number of epochs, namely, 250 (instead of 100 that were
used in [15]). Similarly, even when we used convolutional neural networks, we managed
to achieve training accuracy, validation accuracy, and testing accuracy of 89.62%, 89.63%,
and 87.71%, respectively, for (3.8095, 2.52171 × 10−3)-differential privacy (see the 36th
experiment). Again, this was achieved for an increased number of epochs, namely, 2000. As
can also be seen, a smaller value for the “ε” parameter was used in the latter case compared
to the former case, thus achieving better privacy in the convolutional neural networks than
in the deep neural networks.

The results significantly changed when we focused on the case of identifying ob-
jects within images (i.e., for the CIFAR-10 input set). More precisely, for dense neural
networks, the best case is the one achieving training accuracy, validation accuracy, and
testing accuracy of 22.31%, 22.36%, and 22.24%, respectively, for (91.1240, 3.364267 × 10−2)-
differential privacy (see the 44th experiment), and, as in the case of the MNIST dataset, this
was achieved for an increased number of epochs. The results slightly improved for the
convolutional neural networks, where we managed to achieve training accuracy, validation
accuracy, and testing accuracy of 32.30%, 32.30%, and 32.06%, respectively, for (4.4014,
1.66101 × 10−3)-differential privacy (see the 51st experiment). Hence, again, we see that
through convolutional neural networks, we achieve better privacy than in deep neural net-
works, but the input dataset seems to have a very crucial role with respect to the accuracy
of the model.

6. Discussion

The aforementioned extended set of experiments (see Tables 1 and 2) indicates how
difficult it is to find a proper balance between privacy and an algorithm’s accuracy due
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to the variety of hyperparameters that highly affect the overall results. Although there
are, indeed, promising techniques (and differential privacy is one of them), it seems that
currently, there is no one-size-fits-all solution, whilst the type of the input data seems to
also have a dominant role. In any case, it has become evident that it deserves attention to
further explore how the hyperparameters affect both privacy and accuracy, even on an ad
hoc basis.

However, it should be stressed that the context of the use of an ML algorithm is also of
high importance. For example, for automated decision-making systems, it is questionable
even if accuracy at 83%—as achieved by our experiments—can be considered acceptable
despite the fact that, in cases that do not involve personal data processing, it may, indeed, be
sufficient. Therefore, a systematic risk analysis is needed for each case, and special emphasis
should always be put on the transparency of the processing. This is a very challenging task
for all relevant stakeholders (AI product/software developers, organizations using such
tools, competent authorities, legislators, etc.).

The above challenges also include issues stemming from the obligations that the data
controllers have with respect to responding to specific individuals’ rights. For example,
what if a data subject asks to either access their data that are included in a training dataset
or to delete these data? Interestingly enough, according to the GDPR (see Art. 11), if the
data controller is able to demonstrate that they are not in a position to identify the data
subject, then the GDPR’s Articles 15 to 20, which correspond to data subject rights, such
as the right of access and the right of data erasure, shall not apply except where the data
subject, for the purpose of exercising the rights under those articles, provides additional
information enabling the data subject’s identification. Therefore, if the training datasets are
properly anonymized, and the data controller is able to prove this, there is no obligation
for the controller to “find ways” to respond to data subject requests, and actually, the data
controller is not obliged to maintain, acquire, or process additional information in order
to identify the data subject for the sole purpose of fulfilling data subject rights. Of course,
the provisions regarding the right that an individual will not be subject to a decision based
solely on automated processing still remain.

The above illustrates how important it is to establish proper systematic procedures
to evaluate a decision-making system based on ML algorithms in terms of its impact
on fundamental human rights. In our view, the GDPR’s provisions pave the way for
some important prerequisites that need to be fulfilled, including the prohibition of fully
automated decisions. Moreover, conducting a DPIA is necessary to identify, in time, all
the main risks with respect to personal data protection and privacy; however, such a
DPIA—which is a generic accountability tool for any personal data process with high
risk—should also meticulously consider all the main properties and characteristics of an
ML algorithm, striving to provide convincing answers to questions such as:

(a) Is the usage of an ML algorithm fully necessary? If yes, which type of ML algorithm
fits better with our needs and why?;

(b) Are the identities of the individuals whose data form the training dataset protected?;
(c) Is it possible to extract personal information concerning the training dataset from the

features/parameters of the ML model?;
(d) Is the model resistant to reconstruction attacks, model inversion attacks, and member

inference attacks?;
(e) Under the assumption that the above is ensured (which needs to be demonstrated), is

the algorithm accurate? How this can be proved?

Most importantly, many of the above questions cannot be directly addressed by data
controllers (i.e., the organizations using such tools, which have been developed by other
stakeholders). However, it is essential that before the use of such systems, systematic
procedures should be adopted to address all these risks within the context of a well-
established impact assessment. In Europe, the proposal for the EU Artificial Intelligence Act
(which had not finalized yet during the preparation and writing of this paper) introduces
the concept of the fundamental rights impact assessment (FRIA) (see, e.g., [64]). Due to



Network 2024, 4 109

this provision, the deployers of high-risk systems (such systems are also defined within
the AI Act) should conduct an FRIA and develop a risk mitigation plan in coordination
with the competent data protection supervisory authority and relevant stakeholders before
market entry (see Recital 58a of this proposal). This is a significant safeguard for personal
data protection and privacy but, in turn, sets several challenges:

(a) What should be the interplay between an FRIA and DPIA? For example, the questions
stated above concerning how privacy risks are mitigated by an ML algorithm seem to
be better addressed first in the context of an FRIA;

(b) How easy is it to conduct a robust FRIA/DPIA that demonstrates that all the State-of-
the-Art research outcomes on privacy-enhancing technologies for ML systems have
been meticulously taken into account? Note that, recalling our previous analysis
based on experimental results, this is a very challenging task.

7. Conclusions

The analysis in this paper indicates how challenging it is to ensure that personal data
protection principles, as provisioned in the GDPR, are in place when ML techniques are
used. Indeed, we focused on DP as a well-known privacy-enhancing technique to alleviate
relevant threats, and we confirmed, through an extensive set of experiments, that there is
no guarantee that all the desired goals (i.e., the accuracy of the algorithm’s output while
protecting personal data in the training dataset) can be achieved. Therefore, there exist
challenges related to the facts that (i) no privacy-enhancing technique should be considered
a panacea with respect to mitigating the relative risks stemming from the process of model
training, and (ii) the application of a privacy-enhancing technique may also affect the
overall accuracy of the model. This, in turn, in decision-making systems, also has an
impact on fundamental rights, including the right to personal data protection. Hence, the
experimental results in Section 6 further reveal the inherent difficulties in striking a proper
balance between privacy and accuracy. Therefore, a very careful assessment of the actual
data protection risks is needed for each specific case.

As a generic conclusion, it can be considered that the European legal provisions,
which (try to) embed safeguards, such as impact assessments before the start of any data
processing, could be considered a “nice model” globally for establishing appropriate legal
frameworks, whilst, especially the requirement for human intervention in automated
decision-making systems should be considered a prerequisite for respecting fundamental
human rights. Indeed, with respect, e.g., to personal data protection, adopting the data
protection by design principle—although it has its own challenges in terms of its proper
implementation—seems to be the proper way to alleviate data protection issues from
the very beginning of the process since posteriori privacy-enhancing solutions may not
be sufficient. On the other side, it is also essential that the different communities, i.e.,
researchers, AI systems developers, AI systems providers, AI systems users (i.e., data
controllers in terms of the GDPR’s provisions), and data protection authorities, should be
in a close relationship to eliminating any possible lack of understanding between them.
Especially the outcomes and methodologies from the research community need to be clearly
identified in the context of an impact assessment. More specifically, stakeholders that are to
conduct (either jointly or alone) an impact assessment should be fully aware of the relevant
State-of-the-Art research outcomes on data protection engineering in order to justify any
decision that is to be made with respect to the evaluation of the remaining risks. All these
constitute, in turn, new challenges that need to be addressed.

In a recent report [38], governance aspects in terms of the risk management process for
AI systems are elaborated and described as the key to achieving trustworthy AI. Governance
is described, therein, as an activity with two elements: the first concerns the governance
of the risk management process itself and includes monitoring, reviewing, documenting,
communicating, and consulting on the process and its outcomes, whilst the second ensures
the effectiveness of the risk management process by embedding it in the culture and
broader governance processes of organizations. Based on this, as well as on the discussion
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and findings in this paper, it is evident that the aforementioned governance procedures
should incorporate considerations for employing efficient data protection engineering in
AI systems, which—as stated above—entails the active involvement and collaboration
of several stakeholders, including the research community and academia. Clearly, data
protection engineering should not be considered an obstacle to ensuring XAI, which is also
important for accountability.

As a concluding statement, trust is a prerequisite for the secure adoption of ML
technologies, and personal data protection engineering provides the means to achieve trust.
However, well-known privacy-enhancing technologies may not necessarily alleviate all
the risks in such complex environments, and thus, further research should be definitely
deemed necessary. However, despite the need for further research, the requirement for
always taking appropriately into account existing privacy-enhancing technologies within
the framework of a systematic risk assessment is still (and will, of course, remain) essential.
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