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Abstract: Chromatin is the complex of DNA and associated proteins found in the nuclei of living
organisms. How it is organized is a major research field as it has implications for replication, repair,
and gene expression. This review summarizes the current state of the chromatin organization field,
with a special focus on chromatin motor complexes cohesin and condensin. Containing the highly
conserved SMC proteins, these complexes are responsible for organizing chromatin during cell
division. Additionally, research has demonstrated that condensin and cohesin also have important
functions during interphase to shape the organization of chromatin and regulate expression of
genes. Using the model organism C. elegans, the authors review the current knowledge of how these
complexes perform such diverse roles and what open questions still exist in the field.

Keywords: chromatin architecture; SMC proteins; condensin; cohesin; TADs; C. elegans; dosage
compensation

1. Introduction: Chromatin Organization

The word chromatin comes from the Greek word for color, khroma. In the late 1880s,
Walter Flemming used this term to describe the dark stained material found in the cell
preparations he treated with basophilic dyes [1]. Chromatin is now defined as the complex
of DNA and associated proteins found in the nuclei of living organisms. The most discrete
unit of eukaryotic chromatin is a nucleosome [2]. Discovered in the 1970s, nucleosomes
are structures made up of an octamer of histone proteins and approximately 160 base
pairs of DNA wrapped around the octamer, like thread on a spool [3,4]. As the cell is
preparing to undergo mitosis, these nucleosomes are tightly condensed until they become
the stereotypical chromosomes that can be seen under a microscope. Once cell division is
completed, the chromosomes lose this degree of compaction [5].

However, that does not mean that interphase nuclei have no structure or organization.
Instead, we now understand that how the chromatin is organized has a major impact
on gene expression, tissue specification, and cell homeostasis [6–9]. In fact, long-range
communication is known to be essential for gene expression, where a necessary enhancer
may be many kilobases away from the promoter and must be brought in contact with
the RNA transcription machinery for transcription to proceed [10,11]. One way in which
this can be accomplished is through the recruitment of enhancer-binding proteins, such as
CCAAT/the Enhancer-Binding Protein Family. Members of this family use their highly
conserved basic-leucine zipper domain to both bind DNA and dimerize with other members
of the same family or even other transcription factors to bring segments of DNA together
by bending the DNA strands physically [12]. These chromatin-organizing events are
often transient [13]. Some transcription factors, like those in the WNT signaling family
are sequestered in the cytoplasm until circumstances are reached that promote them to
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translocate into the nucleus [14]. Therefore, transcription factors and enhancer-binding
proteins alone are not the sole drivers of chromatin organization [15].

Instead, there are specific orders of chromatin organization, each accomplished through
a variety of drivers. At the lowest level, the positioning of nucleosomes is specific. Nu-
cleosomes are unlikely to be present at transcriptional start sites of actively transcribed
genes, but instead, they are found in well-characterized patterns along the rest of the
gene body [16]. The next level of organization is the clustering of nucleosomes. Known
as “clutches”, these are defined as a group of more than three nucleosomes that are dis-
tinctly separated from other groups of nucleosomes by a distance more than 20 nm [17,18].
Clutches are often of variable number and density, the latter correlated with cell potency [19].
In somatic cells, clutches tend to have more nucleosomes that are packed in tighter, result-
ing in higher density. This contrasts with pluripotent cells, where the clutches are smaller
and less dense, resulting in more open chromatin [17]. Open chromatin, or euchromatin, is
also defined as accessible DNA, where the histone tails of the nucleosomes are modified
to prevent tight packaging. This contrasts with heterochromatin, or inactive chromatin,
where the nucleosomes can be packed very tightly, facilitated by different post-translational
modifications on the histone tails [20].

The next level of chromatin organization is the formation of topologically associated
domains, TADs. TADs are higher-order structures that are caused by the increased inter-
action of DNA within a genomic region with itself compared to interactions with DNA
in a different genomic region [21,22]. Genes within a TAD are generally of the same tran-
scriptional state, resulting in enrichment of histone modifications reflecting that state in the
TAD [23,24]. TADs have a well-defined size, with the median in mouse cells at 880 kb and
similar sizes in non-mammalian cells [21]. TADs are thought to promote gene expression
through the close-range organization of enhancers and promoters while also insulating
these from other DNA sequences [25]. This has been demonstrated through the removal
of a TAD boundary, where the lack of a boundary resulted in new promoter–enhancer
interactions and misregulated gene expression [26–28]. TAD boundaries are also very
stereotypical and surprisingly well conserved between species [29,30]. However, plants
have been shown to not utilize TADs as a method of genome organization [31]. In fact,
even in species that do utilize TADs, it has been demonstrated that a large-scale disruption
of TADs by depleting the key proteins responsible results in little disruption of gene ex-
pression. These results demonstrate that TADs are not the primary way to regulate gene
expression, making the goal of understanding the link between chromatin organization
and gene regulation still a work in progress [32,33].

The next order of chromatin organization is controversial. Initial studies suggested
that chromatin at this level is separated into two compartments, A and B. The A compart-
ment is made up of active chromatin, while the B compartment is made up of inactive
chromatin [34,35]. DNA is classified into these compartments based on calculating princi-
pal eigenvectors of the frequent contacts in a Hi-C map [36,37]. However, recent work in
human lymphoblastoid cells argues that the compartments are much smaller than what
was previously defined. The newer smaller size puts compartments at the same resolution
as TADs or even smaller, but unlike TADs, their boundaries do not line up with the same
protein-enriched loops [38].

The final and highest order of chromatin are chromosome territories. Each chromo-
some is found in a discrete region of nucleus, and the only instances of overlapping between
chromosomes is at the boundaries of their territories [39,40]. Generally, these territories
are spherical, as in many mammalian and Arabidopsis cells [41,42]. How these chromo-
some territories are positioned in the nucleus has been found to be non-random, with
euchromatin-rich chromosomes more central and heterochromatin-heavy chromosomes
located at the nuclear periphery [43,44]. This organization results in a very complex nuclear
architecture, one that is still being dissected to understand the nuances and implications.

This review will focus on chromatin organization and its impact on gene expression.
While the focus of the review is condensins in Caenorhabditis elegans, this review will
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also summarize the literature on cohesins and the role of both complexes in chromatin
organization in C. elegans as well as other organisms to provide broader context.

2. Structural Maintenance of Chromosome Proteins Are the Backbone of Chromatin
Motor Complexes

Structural Maintenance of Chromosome (SMC) proteins are a family of highly con-
served proteins found from bacteria to eukaryotes [45]. SMC proteins share a characteristic
tertiary structure that allows them to accomplish their various functions [46–48]. Each SMC
protein has two globular domains at each terminus that are separated by an alpha-helical
region, then a “hinge”, and another alpha helix. The SMC proteins fold on their hinges, and
the two alpha helices come together as coiled-coil (Figure 1). The coiled-coil brings the two
globular domains in contact with each other, where they make up the ATPase “head” [49].
The ATPase is a key functional domain, as studies have shown that preventing ATP hy-
drolysis will also abolish loop extrusion and other functions of the SMC proteins [46,47].
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Figure 1. SMC protein folding. An SMC protein is shown at the top with globular N and C terminal
domains that are separated by a pair of alpha-helices on either side of a “hinge” domain. Once the
hinge folds on itself, the two alpha-helices make up a coiled-coil, which allows for the N and C
terminal domains to interact as the ATPase “head”. The coiled-coil is sometimes referred to as an
“arm” with an “elbow”, where flexible bends can occur.

In eukaryotes, there are generally six SMC proteins, named SMC1-6 [50]. These are
found in three chromatin motor complexes, with differing functions [50]. SMC-1 and SMC-3
are the SMC protein pair found in cohesin [49]. SMC-5 and SMC-6 are found with a few
other proteins in the SMC-5/6 complex, which functions in double-stranded break repair,
restarting a stalled replication fork, and maintaining telomeres [51]. The final pair, SMC-2
(known as MIX-1 in C. elegans) and SMC-4 are found with three other proteins in complexes
known as condensins [50,52]. All SMC proteins function in pairs, as their ATPase head
domains require dimerization [46,53]. This dimerization is carried out through specific
residues found in the hinge domain. Each hinge domain will interact with the hinge domain
of the partnering SMC protein [49,54]. All three SMC protein-containing chromatin motor
complexes can loop-extrude DNA. However, they perform very different functions from
each other, not all of which contribute to chromatin architecture [45,55].

Along with the SMC proteins, another protein found in chromatin motor complexes
is the kleisin. Kleisin comes from the Greek word for closure, kleisimo [56]. Kleisins are a
superfamily of proteins, but all members are generally known to be SMC partners. There
are three eukaryotic families and a single bacterial family. Despite the wide variety in these
families, the main motifs that allow the kleisin to bind an SMC head at each terminus are
well conserved [57].
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The two chromatin motor complexes capable of modifying chromatin architecture,
cohesin and condensin, comprise a pair of SMC proteins and a kleisin, along with different
regulatory subunits. Cohesin resembles a “ring”, through which DNA is loop-extruded
(Figure 2A). In C. elegans, this ring is made up of SMC-1; SMC-3; the kleisin subunit
SCC-1 (sometimes referred to as COH-2); and a HEAT-repeat domain containing regulatory
protein, SCC-3 [58]. There are homologues for all cohesin subunits found throughout
eukaryotic organisms (see Table 1), with some eukaryotes containing multiple homologues
of SCC-1 and SCC-3 [59–61]. These homologues allow for differential regulation and
loading of cohesin complexes, which is especially important given the many roles cohesin
is responsible for (discussed later in Section 3).
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Figure 2. Chromatin motor complexes in Caenorhabditis elegans. SMC proteins that interact with the
N-terminus of the kleisin are in pink or purple, while SMC proteins that interact with the C-terminus
of the kleisin are in orange or yellow. Kleisins are in shades of blue. HAWKs are in shades of green,
and Kites are in shades of red. (A) The 4 subunits of cohesin in the closed ring conformation, shown
here with the C. elegans subunit names. (B) Condensin I, condensin II, and condensin IDC are shown
in the closed ring conformation, shown here with the C. elegans subunit names. (C) The SMC-5/6
complex is shown here with the characteristic “boomerang” shape and C. elegans subunit names.
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Table 1. Cohesin mitotic and meiotic homologues, and cohesin regulator CTCF.

Organism C. elegans Saccharomyces
cerevisiae

Saccharomyces
pombe Mammals Drosophila

melanogaster Xenopus

SMC1 SMC-1 Smc1 Psm1 SMC1α,
SMC1β * DmSMC1/Smc1 XSMC1a/Smc1a

XSMC1b/Smc1b

SMC3 SMC-3 Smc3 Psm3 SMC3 Cap/Smc3 XSMC3/Smc3

Kleisin

SCC-1/COH-2
COH-1
REC-8 *
COH-3 *
COH-4 *

Scc1/Mcd1
Rec8 *

Rad21
Rec8 *

RAD21
RAD21L *

REC8 *

DRAD21/Rad21
c(2)M *

XRAD21/Rad21
XREC8/Rec8 *

HAWK SCC-3 Scc3/Irr1 Psc3
Rec11 *

SA1/STAG1
SA2/STAG2

SA3/STAG3 *

DSA1/Sa1
SA-2/Sa2 *

XSA1/Sa1
XSA2/Sa2

CTCF - - - CTCF DmCtcf/Ctcf XCTCF/Ctcf

* indicates paralogues functional only during meiosis.

The full condensin complex (now called condensin I in eukaryotes) was originally
found in Xenopus extracts, where co-immunoprecipitation using antibodies against the
SMC proteins was used to pull down the non-SMC protein members of the complex [52].
These non-SMC proteins are now identified as CAP-D2, CAP-G, and CAP-H (DPY-28,
CAPG-1, and DPY-26 in C. elegans). CAP-D2 and CAP-G are both HEAT-repeat domain
containing proteins, whereas CAP-H is the kleisin [62]. The binding of the kleisin to the
SMC proteins directly regulates the ATPase and loop-extruding function of the condensin.
The current predicted mechanism suggests that the N-terminal tail of CAP-H relaxes its
hold on SMC-2, which allows the SMC heads to work together to bind and hydrolyze ATP,
opening the condensin ring to load onto DNA [63,64].

While the SMC/kleisin proteins are highly conserved from bacteria to eukaryotes,
the non-SMC/kleisin regulatory proteins are not. A key difference between bacterial and
eukaryotic condensins is that eukaryotic condensins have these HEAT-repeat domain
containing proteins. Bacterial condensins instead have Kite (kleisin interacting winged-
helix tandem elements) dimers to finish out their condensin rings with the SMC proteins
and kleisin, and these Kites do not contain heat repeats [65]. Instead, the HEAT-repeat
domain containing proteins found in present-day eukaryotic condensins and cohesins
are now considered part of a unique subgroup of HEAT-repeat proteins; HAWKs (HEAT
proteins associated with kleisins) [66]. Interestingly, these HAWKs are assumed to have
replaced Kites in the condensin inherited from the last common eukaryotic ancestor [66].

Unlike cohesins that have multiple paralogous subunits to differentiate between
functions, there are just two distinct condensin complexes with different functions in most
eukaryotes, known as condensin I and condensin II [67]. Condensin I and II share the same
SMC proteins, SMC2/4, but contain different non-SMC proteins (Figure 2B). Condensin I
consists of CAP-D2, CAP-G, and CAP-H (see Table 2). Condensin II replaces those with
CAP-D3, CAP-G2, and CAP H2 (see Table 3). One main difference in the two sets of
non-SMC proteins is how they regulate condensin function. As mentioned previously,
the ring-opening of condensin I is controlled by the kleisin CAP-H. Moreover, mitotic
loading of condensin I onto DNA has been shown to be regulated by phosphorylating
the N-terminal tail of CAP-H [63]. In contrast, CAP-H2 of condensin II does not have an
N-terminal tail. Instead, the unique regulatory elements are found in one of the HAWK
proteins, CAP-D3. CAP-D3 contains an additional helical HEAT “docker”, not found in
CAP-D2, that can be phosphorylated [68].
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Table 2. Condensin I eukaryotic homologues.

Organism C. elegans S. cerevisiae S. pombe Mammals D. melanogaster Xenopus

SMC2 SMC-2 Smc2 Cut14 SMC2 DmSmc2/Smc2 XCAP-E/Smc2

SMC4 SMC-4
DPY-27 * Smc4 Cut3 SMC4 DmSmc4/Smc4 XCAP-C/Smc4

Kleisin DPY-26 Brn1 Cnd2 CAP-H Cap-H/Barren XCAP-H/Cap-H

HAWKs DPY-28
CAP-G1

Ysc4
Ysc1

Cnd1
Cnd3

CAP-D2
CAP-G

dCap-D2/Cap-D2
dcap-g/Cap-G

XCAP-D2/Cap-D2
XCAP-G/Cap-G

* indicates paralogues functional only in dosage compensation.

Table 3. Condensin II homologues in eukaryotes.

Organism C. elegans Mammals D. melanogaster Xenopus
SMC2 SMC-2 SMC2 DmSMC2/Smc2 XCAP-E/Smc2
SMC4 SMC-4 SMC4 Glu/SMC4 XCAP-C/Smc3
Kleisin KLE-2 CAP-H2 dCap-H2/Cap-H2 XCAP-H2/Cap-H2

HAWKs HCP-6
CAP-G2

CAP-D3
CAP-G2

dCAP-D3/Cap-D3
-1

XCAP-D3/Cap-D3
XCAP-G2/Cap-G2

1 A paralog for CAP-G2 has not been found in D. melanogaster.

C. elegans contain these condensins with their key structures, but unlike other eukary-
otes, C. elegans contain three condensins. Condensin I is made up of the SMC protein pair
MIX-1 (the commonly used name for C. elegans SMC-2) and SMC-4, along with the kleisin
DPY-26 and HAWKs CAPG-1 and DPY-28. Condensin II has the same SMC pair, but with
the kleisin KLE-2 and HAWKs CAPG-2 and HCP-6 [69]. The third condensin, condensin
IDC, is identical to condensin I, but for one subunit (Figure 2B). Instead of having the SMC
pair of MIX-1 and SMC-4, it has MIX-1 and a unique SMC protein DPY-27, and it is involved
in dosage compensation, which will be discussed in detail later [69].

The final SMC-protein-containing complex is a not a chromatin architecture-modifying
complex. Therefore, we will only discuss it briefly here. The SMC-5/6 complex is made
up of the final SMC proteins SMC-5 and SMC-6, a kleisin NSE-4, and up to five regulatory
proteins (see Table 4) [70,71]. Generally, the SMC-5/6 complex functions in DNA replica-
tion, DNA repair, and silencing of extra-chromosomal DNA [72,73]. In C. elegans, it has
been shown that the SMC-5/6 complex processes double-stranded breaks in meiosis and
prevents ectopic recombination [74]. The SMC-5/6 complex does not have a ring shape
and, instead, is more analogous to a “boomerang” (Figure 2C) [72]. Interestingly, some of
the regulatory subunits (NSE-1-3) are Kites, which could mean that the SMC-5/6 complex
diverged from other SMC complexes very early [66].

Table 4. SMC5/6 complex eukaryotic homologues.

Organism C. elegans S. cerevisiae S. pombe Mammals D. melanogaster Xenopus
SMC5 SMC-5 Smc5 Smc5/Spr18 SMC5 Smc5 XSMC5/Smc5
SMC6 SMC-6 Smc6 Smc6/Rad18 SMC6 Smc6 XSMC6/Smc6
Kleisin NSE-4 Nse4 Nse4/Rad62 NSE4/NSMCE4 Nse4 Nse4

Kites
NSE-1
NSE-2
NSE-3

Nse1
Nse2/Mms21

Nse3

Nse1
Nse2
Nse3

NSE1/NSMCE1
NSE2/NSMCE2
NSE3/NSMCE3

Nse1
Qjt/Nse2

MAGE/Nse3

Nse1
Nse2/Nsmce2/Mms21

Nse3

Other 1 -
-

Nse5
Nse6/Kre29

Nse5
Nse6

SIMC1, SLF1
SLF2

-
-

Slf1
Slf2/Fam178a

1 Proteins in this category are not related to proteins in other SMC complexes, and homologues have not been
found in all species.
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3. The Unique Chromatin Architecture of C. elegans and the Role of Chromatin Motor
Complexes in Cell Division

If chromosomes of model organisms were to be compared, most model organisms have
monocentric chromosomes [75–77]. Each chromosome has only a single centromere that holds
the sister chromatids together. The positioning of the centromere along the chromosome
can be varied, but the centromeric DNA and its surroundings are usually condensed into
heterochromatin during interphase [78]. The presence of multiple centromeres is typically a
result of chromosomal rearrangements and can lead to defects in chromosome segregation [75].
However, the nematode C. elegans has holocentric chromosomes [79]. These holocentric
chromosomes lack a single point centromere and instead have kinetochore attachments along
the entire length of the chromosomes [79]. Despite this difference, C. elegans chromosomes
follow principles of chromatin organization during interphase seen in other species [80].
Therefore, this section will highlight chromatin organization during cell division in the context
of C. elegans while also identifying those mechanisms unique to C. elegans.

Holocentric chromosomes have evolved multiple times independently throughout the
different phyla [79]. One hypothesis is that holocentric chromosomes having microtubule
attachments along their lengths allows for the correct segregation of fragments, fusion,
or translocated chromosomes [81]. However, this same physical characteristic is also the
source of a meiotic conundrum. When the bivalent is formed in meiosis I, the holocentric
chromosome can have spindle attachments that would pull the bivalents in multiple
different directions, leading to problems in segregation [79]. Therefore, there must be an
adaptation to overcome this potential pitfall. C. elegans accomplishes this through two
approaches. The first is that C. elegans bivalents have only one chiasma that is closer to
one end of the chromosome than the other [82–84]. This results in a cruciform-shaped
bivalent, like monocentric bivalents (Figure 3B). The second adaptation is that the bivalents
condense very tightly so that the short arms of the cruciform are no longer visible and
the entire bivalent becomes a capsule that is pulled along the spindle [85]. Now resolved,
meiosis proceeds as expected.
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Figure 3. Chromatin motor complex localization during C. elegans cell division. (A) In mitosis, cohesin
is already present on the chromosomes before S-phase. After replication, cohesin is responsible for
cohesion between the sister chromatids. Condensin II localizes to the chromosomes during prophase,
while condensin I localizes to the chromosomes after nuclear envelope breakdown in prometaphase.
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In anaphase, cohesin is removed and a portion of condensin I moves to the spindle midzone. (B) In
meiosis, cohesin is present along the chromosomes. After homologous recombination, condensin II
localizes to the chromosomes at the end of prophase I. Condensin I localizes after nuclear envelope
breakdown, specifically between the bivalents in metaphase I. In anaphase I, cohesin is removed
from the bivalent short arms to allow for homolog separation and condensin I remains in the
spindle midzone. Condensin II and cohesin remain on the long arm of the bivalent to keep sister
chromatids attached.

What roles do the chromatin motor complexes play? Biochemical (or single-molecule)
experiments with purified condensins from other organisms suggest that the mechanism
that both chromatin motor complexes employ to create higher-order structures is loop
extrusion [86,87]. One description of this mechanism hypothesizes that the base of the
loop is captured by the ATPase heads of the SMC proteins, while the hinge grabs a further
segment of DNA. Then, the hinge is “scrunched” back and transfers that DNA to the heads
to create a loop [88]. Another hypothetical mechanism is that the kleisin moves and allows
DNA to enter the ring of the chromatin motor complex [89], or that the DNA is pushed into
the ring by an ATP-dependent “stroke” [64,90]. A final hypothetical mechanism called “reel
and seal” argues that chromatin motor complexes do not hold DNA within the ring, but
instead, they hold DNA at two points, the interface of the kleisin and each HAWK and that
the SMC proteins “reel” more DNA and feed it into the loop [91]. While still debated, the
final product of loop extrusion are those same darkly stained bodies that Walter Flemming
saw in his microscope centuries ago.

After DNA replication, the two sister chromatids must be held together until metaphase
where they are oriented correctly for proper migration to opposing spindle poles [61,92].
Sister chromatid cohesion is accomplished by cohesin [49,58,93–95]. The sister chromatids
are contained within the cohesin ring until metaphase, when separase, a protease, cleaves
the SCC-1 subunit of cohesin and releases the sister chromatids [96,97].

In meiosis, the sister chromatids must be held together, but this differs greatly from
mitosis [98]. In prophase I, homologous recombination occurs, which results in crossover
of non-sister chromatid arms. Once the cell reaches anaphase I, the homologues must
divide. During this event, cohesin is removed from the chromatid arms distal to the
chiasma but maintained at the rest of the homologues. Cohesin is still present but only
maintains cohesion between the sister chromatids. Then, in metaphase II, cohesin will be
completely removed from the chromatids [99]. This diversity of cohesin’s roles in meiosis
is accomplished through the multiple paralogues of each subunit. In C. elegans, the meiotic
specific kleisins REC-8 and COH-3/4 replace SCC-1 [60,100,101]. Cohesins with REC-8 are
recruited through a replication-dependent mechanism to the chromosomes, while cohesins
with COH-3/4 are recruited during homologous recombination [60]. This is not unique to
C. elegans. In fission yeast cohesins, the meiosis-specific kleisin Rec8 replaces Scc1, while
the meiosis-specific HAWK Rec11 selectively replaces Psc3 [102,103]. Cohesin containing
Psc3 is found at centromeres, but not at chromatids arms. In contrast, Rec11 forms a
specific complex with Rec8 that is required for homologous recombination. Therefore, the
many paralogues of cohesin subunits work together to maintain chromosome integrity
during meiosis.

The condensin I and II complexes display different associations with DNA throughout
the cell cycle. For example, during mitosis in mammalian cells, condensin II associates
with DNA during prophase, while condensin I does not become DNA-localized until
after nuclear envelope breakdown in prometaphase [104]. This is also true for C. elegans,
where condensin II is present in the nucleus prior to nuclear envelope breakdown [105].
Metaphase onwards, condensin I and II are found in a mutually distinct pattern along
the length of mammalian chromosomes [106]. In C. elegans, condensin I has been shown
to “coat” mitotic chromosomes, whereas condensin II localizes near centromeric proteins
which face the spindle poles (Figure 3A) [69,92]. Interestingly, condensin I partially shifts
localization to the spindle midzone in anaphase where it delays cytokinesis to resolve
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chromatin bridges [107]. Somewhat contrary to the understanding that condensins are
major contributors to the condensation of DNA for cell division [5,83,92,108], it has been
shown in C. elegans that in condensin mutants, chromosomes are still able to condense, but
the lack of condensin results in segregation defects [83,92].

Condensin localization becomes even more specific in meiosis [109]. Using mammalian
meiosis as a paradigm, condensin I can first be visualized in metaphase I near centromeric
regions. Then, in anaphase I, condensin I localization spreads also to chromosome arms,
where it stays until metaphase II. In contrast, condensin II is visible from interphase
onwards. From metaphase I through metaphase II, condensin II is localized to the meiotic
chromosomes, except near centromeres. These distinct localizations have been shown
to be required for specific events and the successful progression of meiosis in mammals,
plants, and more [109–111]. In C. elegans, the pattern of condensin I and II localization
is similar to other organisms, where condensin II is present in prophase, but condensin
I only begins to localize to the meiotic chromosomes after nuclear envelope breakdown
(Figure 3B) [69,105,109]. Interestingly, in C. elegans, condensin I also plays a unique role in
protecting cohesin from premature degradation during meiosis [112].

4. Chromatin Motor Complexes Shape Chromatin Architecture during Interphase

While chromosome territories allow for an overall view of genomic dynamics in
interphase, TADs are a common unit of organization both at the broader genomic level
and in more discrete single gene–enhancer interactions [113,114]. Unlike the higher strata,
TADs have distinct physical features. Specifically, TADs are defined by the enrichment of
cohesin and CTCF at their boundaries [21]. Unlike cell division where condesin plays a
major role, it is cohesin that is responsible for the interphase chromatin architecture [108].
In mammals and Drosophila, cohesin continuously moves along DNA, extruding loops,
until it runs into CTCF [115]. CTCF is one of the most well-known chromatin organization
drivers. A transcription factor, it is expressed ubiquitously through many different tissue
types. Along with other transcription factors, CTCF creates strong boundaries that cohesin
cannot pass, resulting in TAD boundaries [116].

One of the largest differences in how chromatin is organized between C. elegans and
other species is the role of cohesion and CTCF. Unlike other organisms, where cohesin and
CTCF play a large role in defining chromatin architecture in interphase, this is not seen in
C. elegans. First, a CTCF homolog has not been identified in C. elegans [117]. Second, there
do not seem to be cohesin-defined TAD boundaries in the autosomal chromosomes [118].
Instead, C. elegans autosomal chromosomes have areas of high-density heterochromatin that
are located at the nuclear periphery [119]. These arms are tethered by interactions between
histone modifications, chromodomain reader proteins, and lamina proteins [119–122].
Regions of the chromosomes attached to the nuclear lamina are referred to as lamina-
associated domains (LADs), and they have also been observed in mammalian cells, plants,
and others [123,124]. Using Hi-C, it has been shown that these heterochromatin-containing
autosomal arms are organized in TADs, but they are smaller than in other organisms [118].
These smaller TADs are defined by an enrichment of histone modifications. Inactive
domains are enriched for H3K27me3 with a median size of 18 kb. Active domains are
enriched for a variety of “active” modifications, such as H3K36me3, and have a median size
of 13 kb [24,125]. These domains also interact preferentially with like-domains, reminiscent
of A/B compartments [24]. Taken together, it is apparent that C. elegans genomic architecture
utilizes familiar strategies, even without CTCF.

As for cohesin’s roles in C. elegans, not much is known about its interphase functions.
Like other eukaryotes, there are multiple SCC-1 homologs in C. elegans. SCC-1/COH-2
is the mitotic kleisin and SCC-1-containing cohesins are present in interphase [58], but
their interphase roles have not been investigated. However, there is an SCC-1 homolog,
COH-1, that plays a role in development that is not related to cell division. This protein
has been observed in somatic nuclei and is consistently localized to DNA, regardless of
cell cycle. Defects in COH-1-deficient worms result in muscular movement impairment,
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but not mitosis [58]. Whether this somatic COH-1 is found with members of cohesin and
whether that complex is involved in gene regulation are still under investigation.

The interphase localization and function of each condensin is even more varied by
species and even cell type. In Drosophila melanogaster, it has been found that condensin I is
required for proper gene expression in differentiated neurons [126]. In contrast, condensin
II is required for proper chromosome territory formation in D. melanogaster ovarian nurse
cells [127]. In human interphase cells, condensin II is found in the nucleus where it has
been linked to gene regulation and cellular senescence [128], while condensin I is not nu-
clear [104]. In fact, condensin II has been postulated to be the main determinant of spherical
chromosome territories in chordates. A study compared the chromosomal architecture
of 24 eukaryotic species, representing all subphyla of chordates, and found two distinct
groups of chromosomal architecture [129]. One group had spherical chromosome territories
while the other had what is known as the Rabl configuration. The Rabl configuration is
characterized by the clustering of all centromeres at one pole and all the telomeres at the op-
posite pole, resulting in chromosome arms with lengths equal to the nuclear diameter [130].
Strikingly, all the species with Rabl configuration lacked the homologs for condensin II
subunits [129]. While studies seem to agree on the requirement of condensin II during
interphase, the wide variety of functions, such as spatial organization between centromeres
and rDNA in plants or silencing retrotransposons in D. melanogaster, makes it difficult to
group these functions as conserved or unique [131,132].

In C. elegans, condensin I does not associate with chromosomes during interphase [69,105],
and while condensin II is present and binds some chromosomal sites [133], its function
in interphase has not been determined. However, the third condensin, condensin IDC, is
present. Condensin IDC gets its name because it is uniquely functional in dosage compen-
sation, where it is responsible for the unique chromatin architecture that separates the X
chromosomes from the rest of the genome.

5. TADs in C. elegans Are a Result of Dosage Compensation

The lack of CTCF does not mean that C. elegans do not have any strongly defined
TADs. Instead, strongly defined TADs are uniquely found on the X chromosomes [114,118].
C. elegans have two sexes, hermaphrodites and males, which are determined chromosomally.
There are two X chromosomes in hermaphrodites, but only a single X chromosome in
males [134]. This difference in chromosome copy, however, leads to a dosage imbalance
between the sexes.

Imbalance in gene dosage due to sex chromosomes is common among species that
have chromosomally determined sex [135–137]. In the XY system, females have two X
chromosomes and are therefore homogametic, while males have an X and Y chromosome
apiece and are heterogametic. Mammals, flies, some plants, and some fish use the XY
system [135,136,138,139]. In the ZW system, males are the homogametic sex with two Z
chromosomes, while females are the heterogametic sex with a Z and W chromosome apiece.
The ZW system is used in birds, amphibians, reptiles, and others [140,141].

To overcome the gene imbalance between homogametic and heterogametic sexes,
many species have evolved an adaptation known as dosage compensation. However,
while the end goal is the same, the actual dosage compensation mechanisms are incredibly
diverse [142]. For example, in mammals, dosage compensation is achieved through X-
inactivation, where one of the two X chromosomes in XX cells is silenced [135]. In contrast,
flies, despite also using the XY system, upregulate the expression of a single male X so that
the gene products produced are equal to the total gene products produced in XX cells [136].

C. elegans have a completely different dosage compensation mechanism [143,144]. The
dosage compensation complex (DCC) in C. elegans is a multi-protein complex that binds to
both hermaphrodite X chromosomes, downregulating each so that the total gene products
in the hermaphrodite are equal to the gene products in the male. The DCC is made up of
10 proteins (Figure 4). The first five are those of condensin IDC; the SMC proteins MIX-1 and
DPY-27, the kleisin DPY-26, and the regulatory HAWKs DPY-28 and CAPG-1 [69,145–147].
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Then, there are three proteins, SDC-1, SDC-2, and SDC-3, which get their names from their
dual roles in dosage compensation and sex determination [148–150]. The final two proteins
are DPY-21 and DPY-30. DPY-21 is a jumonji-domain-containing demethylase [151,152],
while DPY-30 is an essential regulator of H3K4 methylation [153–155], although its role in
dosage compensation appears to be independent of its role in H3K4 methylation [156].
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Figure 4. The C. elegans Dosage Compensation Complex (DCC). Condensin IDC is shown with the
other members of the DCC. Functions of the other members are highlighted in corresponding colors.
The SDC proteins SDC-1, SDC-2, and SDC-3 are colored similarly to highlight their shared function
in sex determination.

The localization of condensin IDC is not subject to the cell cycle like the other con-
densins. Instead, it is subject to the establishment of dosage compensation. Prior to dosage
compensation establishment, the members of condensin IDC are not DNA-associated.
Dosage compensation in C. elegans begins at the 30-cell stage, when SDC-2 expression
begins in hermaphrodite embryos [157,158]. DCC members bind to the X chromosomes in
a sequential pattern, beginning with the localization of SDC-2 to the X chromosomes [158].
It is followed by SDC-3 and DPY-30, then condensin IDC, and finally SDC-1 and DPY-
21 [144,145,151,153]. Once dosage compensation is established, condensin IDC will be
localized to the X chromosomes, regardless of cell cycle stage [69].

Localization of the DCC to the X chromosomes is dependent on rex sites. rex, or
recruitment elements on X, sites are sequences of variable length that contain clusters
of motifs that must act in combination to recruit the DCC [159–161]. These rex sites are
distributed along the length of the X chromosomes in a non-random pattern that includes
strong recruiting, weak recruiting, and non-recruiting regions based on DCC member
occupancy using ChIP-seq [162]. How the DCC localizes across the X chromosomes is
debated. One model is that the DCC binds initially to rex sites and then “spreads” to
coat non-rex chromatin [160,163–165]. This model is supported by a ChIP-seq analysis
of a fusion of the X chromosome with the fifth autosome (X:V) that demonstrates that
the DCC can “spread” from the X chromosome into chromosome V [164]. However, an
alternative model suggests that the rex sites are not recruitment elements, but they are
two-sided blocks to prevent condensin IDC from moving past them [166,167]. This model
proposes that condensin IDC is capable of loop-extruding randomly like other chromatin
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motor complexes and that the rex sites where SDC-2 binds and prevents condensin IDC

from proceeding are analogous to CTCF-binding sites where CTCF prevents cohesin from
looping further. Which model gives a more accurate understanding of the true mechanism
is still unclear and therefore an area of ongoing work.

6. C. elegans Dosage Compensation as a Paradigm for Chromosome-Wide Gene Regulation

As our knowledge of chromatin organization has increased, so have developed theories
of how gene regulation is no longer just about a single gene, but how the whole genome is
coordinated in the context of tissue type, developmental stage, or as a response to external
stressors [168–170]. Dosage compensation in C. elegans is an elegant paradigm for dissecting
the mechanisms involved in chromosome-wide gene regulation, as the DCC is specific to X
chromosomes only while also utilizing a highly conserved condensin so that the insights
made in this system can be applicable broadly. Therefore, this section will highlight the
many mechanisms used by the DCC to downregulate the X chromosomes.

At the gene level, binding of the DCC across the X chromosomes has been found to
localize to transcriptional start sites, presumably to antagonize transcriptional machinery bind-
ing [163,171]. It has been demonstrated in many other systems that occupying the promoter
region prevents the transcriptional machinery from binding and assembling [172,173].

At the nucleosome level, the DCC facilitates the post-translational modification of
histone tails in multiple different ways. First, DPY-21, a member of the DCC, is responsible
for the enrichment of H4K20me1 on nucleosomes of the X chromosomes [152,174,175]. This
pattern is set up in a cell-cycle specific manner. First, the entire genome is stripped of
H4K20me1 during DNA replication [176,177]. During mitosis, SET-1 will add H4K20me1
to the entire genome. After mitosis, that mark will be converted to H4K20me2/3 by
SET-4 [174]. However, DPY-21 and the DCC will specifically convert H4K20me2 back to
H4K20me1 on the X chromosome nucleosomes [143,152]. In fact, this strategy is not unique
to C. elegans. In mammalian nuclei, the inactivated X chromosome is also enriched for
H4K20me1 [178]. The other histone modification is H4K16ac, which is depleted on dosage-
compensated X chromosomes and found to be associated with open chromatin [175]. A
third modification which influences dosage compensation, H3K9me3, is not unique to the
X chromosomes, as it is associated with any heterochromatin [121]. However, a lamina-
associated chromatin reader, CEC-4, binds to H3K9me3-associated chromatin and, in
cooperation with the DCC, tethers the X chromosomes to the nuclear lamina [122,179]. Teth-
ering of heterochromatin is not unique to dosage compensation in C. elegans [121,122,180],
but in conjunction with the DCC, it has a unique impact on the compaction and subnuclear
localization of the X chromosomes. It has also been demonstrated that the nuclear RNAi
machinery is also involved in X chromosome compaction and repression, but whether this
effect is direct or indirect is not yet known [181]. A similar pathway involving Argonautes
to establish heterochromatin has been observed in D. melanogaster [182]. Finally, it has been
shown that one of the HAWKs, DPY-28, can interact with the tails of histone 3 and 4 [183],
and this function may be a conserved one [184].

At higher-order chromatin levels, condensin IDC restructures the X chromosome
into strongly defined TADs, whose boundaries are demarcated by rex sites and DCC
occupancy [118,164]. Many studies have demonstrated how condensins in other organisms
are capable of DNA-dependent loop extrusion [86,185–187]. In C. elegans, there is also
evidence of how condensin IDC works in cooperation with topoisomerase I and II to
create TADs [188]. Again, similar interactions between topoisomerases and chromatin
motor complexes have been noted in other models [189]. At the chromosomal level, the X
chromosomes in dosage compensated somatic cells are tightly condensed and located at
the nuclear periphery [143,179], and the gene expression of both X chromosomes equal that
of the male X [190]. The compaction and nuclear localization of the X chromosomes can be
seen as a model of heterochromatic sequestering to the nuclear lamina [182].

Despite all these recent advances, there are still open questions in the field. While
condensin IDC is structurally equivalent to mitotic condensins, we do not have the evidence
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to claim that DPY-27 is a true SMC protein. Instead, there is a possibility that condensin
IDC serves only as a scaffold for the rest of the DCC. If so, how does the DCC loop the
X chromosomes into the distinct TADs seen in Hi-C maps? Secondly, the developmental
necessity of the DCC has been demonstrated. However, whether maintenance of dosage
compensation requires active function of the DCC is not known. The recognition of DPY-21
as a demethylase and its function to enrich H4K20me1 are settled. However, it has been
shown that DPY-21 has a role that is independent of its jumonji domain [183]. What that
role entails is not known. Finally, mutating the DCC does not cause the nuclear occupancy
of the X chromosomes in hermaphrodites equal that of the male X [191]. Therefore, there
may still be other mechanisms unknown, waiting to be discovered and to be added to
our understanding of C. elegans dosage compensation. These future studies in C. elegans
will hopefully provide insights into our larger knowledge of chromatin organization and
chromosome-wide gene regulation.
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