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Abstract: The liver is structurally organized into zonation, where Liver Sinusoidal Endothelial Cells
(LSECs) play a crucial role during chronic liver injury and the early stages of fibrosis. Fibrosis can
be reversed if diagnosed early at the molecular level in zonation before progressing to advanced
stages like bridging fibrosis. This study identified zonation marker genes using scRNA-seq and
spatial transcriptomics molecular profiling technologies in a normal and diseased fibrotic human
liver. DGE analysis was performed over LSECs, and we identified the top 20 expressed genes in the
periportal, perivenous, and intermediate acinar zones. Multi-omics and scRNA-seq analysis over
Visium images and ECs liver cells showed OIT3, DNASE1L3, CLEC4G, LYVE1, FCN2, and CRHBP
as commonly expressed mid-lobular zonation-specific genes. Also, this study detected STAB2, F8,
AQP1, TEK, TIMP3, TIE1, and CTSL genes as expressed in DILI and NASH EC populations. The
connection between LSEC marker genes in zone 2 and liver fibrosis holds significant promise for
advancing our understanding in developing new therapeutic strategies for fibrosis reversal and
designing computational molecular biomarkers in NASH and DILI fibrotic liver diseases.

Keywords: NASH; DILI; LSEC; DGE; liver zonation marker; bridging fibrosis; spatial transcriptomics;
liver injury; computational biomarker

1. Introduction

Liver disease contributes to approximately 4% of global deaths annually, accounting
for over two million fatalities. The significant global burden of liver disease is exerting
considerable pressure on public healthcare systems. Major contributors to this burden
include cirrhosis and hepatocellular carcinoma (HCC), as well as metabolic dysfunction-
associated steatotic liver disease (MASLD) and drug-induced liver injury (DILI), which are
common causes of liver-related deaths [1].

The liver is the largest organ in the human body and is responsible for vital functions,
including the metabolism of nutrients and xenobiotics. Structurally, the liver comprises
small anatomical units known as liver lobules. Each lobule is histologically organized
into a unique hexagonal architectural arrangement of hepatocytes (parenchymal cells:
PCs) into three zones that exhibit distinct functionalities, a phenomenon known as liver
zonation. Venous blood from the gut mixes at the portal vein with oxygenated atrial
blood and flows towards the central vein through sinusoids. The liver tissue area around
the portal triad, i.e., peri-portal recognized as zone 1 (oxygen enriched), is involved in
metabolic functions and specialized in gluconeogenesis. In contrast, the tissue area around
the central vein recognized as zone 3 (less oxygen) is involved in bile acid production drug
metabolism and glycolysis. The area in between, i.e., midlobular, known as zone 2, is a
transitional region where the concentration of oxygenated blood, nutrients, metabolites,
and gut-derived toxins varies along the portal–central vein axis. Spatially, heterogeneous
hepatocytes are distinguished by the gene expression profiles, where 50% of the genes are
expressed along the lobular zonation axis [2]. The zone 2 is believed to play an essential
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role in the homeostatic renewal of hepatocytes, liver mass regeneration, and proliferation
upon liver injury [3,4]. The spatial heterogeneity of parenchymal and non-parenchymal
cells (NPCs) is zones is dependent on which modulates differential gene expression (DGE)
and initiates several liver diseases, including nonalcoholic steatohepatitis (NASH), DILI,
HCC, and liver regeneration [5].

Apart from hepatocytes, LSECs, which constitute around 15–20% of the total number
of liver cells, are highly specialized non-parenchymal endothelial cells. They act as a
physical barrier between blood substrates and hepatocytes. Liver endothelial cells (ECs)
include LSECs, vascular ECs, and lymphatic ECs (LyECs) [6,7]. As chronic liver disease
advances, hepatocyte functioning is impaired by crosstalk between other liver cells, which
initiates an important role in regulating fibrosis. LSECs have unique fenestrae (pores) that
allow for the efficient clearance of pathogens, debris, and toxins from the blood, keeping
the liver clean and functional. LSECs act as determinants of hepatic fibrosis, where the
process of capillarization precedes fibrosis in which LSECs lack fenestration and develop
an organized basement membrane [8]. LSECs are the major drivers in fibrosis [9–12], and
differential gene expression is observed between the different zones of the liver lobule
during fibrosis [13]. For example, the periportal zone 1 expresses genes involved in the
uptake of nutrients, the midlobular zone 2 expresses genes involved in the metabolism
of nutrients, and the pericentral zone 3 expresses genes involved in the secretion of bile.
The gradient of DGE is observed in LSECs and hepatocytes following disrupted zonation
architecture and liver functionalities in most liver diseases, including MASLD, NASH, and
DILI. DGE manifests around pericentral zone 3 and later progresses towards advanced
stages of fibrosis, bridging fibrosis, and cirrhosis [14,15]. Liver bridging fibrosis, a specific
advanced NASH feature, is a type of scarring caused by the accumulation of excess collagen
around the hexagonal portal triad–central vein region in the later stages of liver fibrosis.
These collagen bands connect different areas of the liver and block the flow of blood and
bile, which leads to liver failure. Early liver fibrosis, a condition where scar tissue builds up,
can indeed be reversed if detected early in zonation at the molecular level and addressed
promptly. However, it is crucial to remember that this reversal is contingent on preventing
the progression to more advanced stages, like bridging fibrosis, where the scar tissue
becomes more organized, and the damage is irreversible.

It is challenging to measure zonation-specific structural variations during the early
stages of fibrosis and later at the bridging fibrosis level. Our knowledge is limited and
poorly understood on the role of (1) zone 2 LSECs in early liver fibrosis, (2) LSEC-specific
marker genes in hepatotoxic DILI conditions, (3) DGE profiles within unclear boundaries
of liver zones under normal, NASH, and DILI disease fibrotic patterns. This study aims
to computationally characterize and quantify the spatial heterogeneity of hepatocytes
at the molecular level using single-cell RNA sequencing and spatial molecular imaging
techniques. This will enhance our understanding of zonal restructuring, the role of LSECs,
and marker genes in normal and diseased fibrotic conditions.

2. Methods and Materials
2.1. H&E Histopathology Image Classifications

Image analytics and experimental workflow, illustrated in Figure 1D, are designed to
classify hematoxylin and eosin (H&E) histopathology images under five categories, i.e.,
normal, steatosis, early fibrosis, bridging fibrosis, and cirrhosis. Machine learning widgets,
shown in the workflow, are executed to load, process, classify, cluster, and visualize the
imaging data. Open-source visual programming data mining framework, the Orange
toolbox, is used for the classification of H&E histopathology image tiles. Orange is a
machine learning data mining platform (http://orange.biolab.si, accessed on 22 December
2023) for image analysis and data visualization [16,17]. H&E-stained whole slide (WSI)
histopathology images were acquired from open-source National Cancer Institute (NCI)
USA Biorepositories and Biospecimen Research Branch’s (BBRB) Genotype-Tissue Expres-
sion (GTEx) Tissue Image library of annotated WSI with clinical data, publicly available

http://orange.biolab.si
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at https://brd.nci.nih.gov/brd/specimen/GTEX-117XS-0926 (accessed on 20 December
2023) and downloaded under five categories as normal, steatosis, early fibrosis, bridging
fibrosis, and cirrhosis. Each WSI was cropped into tiles for training machine learning
models and classified in Orange tool classification layout. Experimental workflow is shown
in Figure 1D.

2.2. Spatial Transcriptomics Data Analysis
2.2.1. DGE Analysis for NASH and Zonation

DGE analysis for NASH and zonation expression is performed over four independent
studies, GSE89632, GSE126848, GSE83990, and GSE105127, using the NCBI GEO2R analysis
tool. Two studies were selected in each group, i.e., GSE89632 and GSE126848, in the NASH
and control group, and GSE83990 and GSE105127 in the liver zonation group (zone 1,
zone 2, zone 3) from NCBI GEO (Gene Expression Omnibus) database to understand DGE
expression for NASH and zonation-specific genes. In the first step, patients in respective
studies were grouped as NASH and control groups and zone 1, zone 2, and zone 3 in
zone-specific DGE studies. The second step was to run the GEO2R tool (available at NCBI
GEO website) for DGE analysis, and then volcano plots were generated under respective
studies, as shown in Figure 2.

2.2.2. Single-Cell Clustering for NASH and DILI

Single-cell transcriptomic analysis is performed over liver cells (n = 9, i.e., three patients
in each group) in control, DILI (intrinsic), and NASH datasets, available at NCBI GEO
GSE166178 [18] and analyzed for the heterogeneity of inter- and intra-group endothelial
cells in healthy and diseased mouse livers, as illustrated in Figure 3.

2.2.3. Visium Data Analysis and Visualization

The Visium dataset used here is available at the Gene Expression Omnibus NCBI
GEO public database under accession number GSE192742. Visium 10x genomics Loupe
Browser image files were downloaded from liver cell atlas, available at https://www.
livercellatlas.org/download.php (accessed on 20 December 2023). The Visium ST images of
normal human liver samples were processed using Loupe Browser 7.0.1 (10x Genomics Inc.,
Pleasanton, CA, USA) and downloaded from https://www.10xgenomics.com/support/
software/loupe-browser/downloads (accessed on 20 December 2023). The gene expression
data for the k-mean clusters were generated by the Space Ranger software (Version # Loupe
Browser 7.0.1) for upregulated genes. The data consist of the median-normalized average
of gene expression, log2 fold changes, and statistical significance (p values) computed for
genes with a p value < 0.05.

2.2.4. Spatial Molecular Imaging

Spatial molecular imaging highlights DGE in human liver zonation. Imaging data were
acquired from an open-source publicly available multiplex dataset at http://nanostring.
com/CosMx-dataset (accessed on 20 December 2023) CosMxTM Spatial Molecular Imager,
which includes staining for a panel of morphological features.

2.3. Liver Cell Clustering and Analysis Tool

For liver cell clustering and LSEC marker analysis, National Institute of Health (NIH),
USA, Human BioMolecular Atlas Program (HuBMAP) Azimuth app is used. Azimuth is
a Seurat-based web application tool that uses an annotated reference dataset to automate
the processing, analysis, and interpretation of single-cell RNA-seq data. Azimuth utilizes
‘reference-based mapping’ pipeline that accept counts matrix file in multiple formats as input
and performs normalization, visualization, cell annotation, and DGE without any coding
requirement on web cloud. All results can be visualized within the app and are downloadable
for additional downstream analysis [19–23]. The development of Azimuth is led by the New
York Genome Center Mapping Component as part of the NIH HuBMAP consortium.

https://brd.nci.nih.gov/brd/specimen/GTEX-117XS-0926
https://www.livercellatlas.org/download.php
https://www.livercellatlas.org/download.php
https://www.10xgenomics.com/support/software/loupe-browser/downloads
https://www.10xgenomics.com/support/software/loupe-browser/downloads
http://nanostring.com/CosMx-dataset
http://nanostring.com/CosMx-dataset
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2.4. LSEC Markers

Cellxgene Differential Expressed Gene (DGE) tool is used to run expression analysis
for the cell types of PP-LSEC, PC-LSEC, and LSEC cells. CellxGene is an open-source, public
database available at https://cellxgene.cziscience.com/, a suite of tools to run an analysis
of the single-cell transcriptomic datasets. A list of ECs expressed exclusively for LSEC
cell populations is acquired from liver single-cell expression atlas of 28 human livers [24]
available at http://liveratlas-vilarinholab.med.yale.edu/ and plotted on LSECs HuBMAP
Azimuth reference-based single-cell analysis tool for expression analysis. The analyzed
results were then compared with the zonation browser tool to see the zonation profiles of the
same expressed genes in midlobular zone 2. All three plots are illustrated in Supplementary
Figure S3. Zonation browser tool is available at https://itzkovitzwebapps.weizmann.ac.il/
webapps/home/session.html?app=HumanandMouseHepatocyteZonation (accessed on 20
December 2023).

3. Results
3.1. Histopathology H&E Image Classification Experimental Workflow for Early
and Bridging Fibrosis

After predictive analysis, images are clustered based on the histologic disease features
learned by machine learning models, workflow design shown in Figure 1D. For instance, all
the bridging fibrosis images are grouped together, as shown in the t-SNE plot (Figure 1E)
and hierarchical clustering (Figure 1A–C). Other category images are grouped similarly as
per their disease morphology features. The confusion matrix shown in Figure 1F illustrates
correctly predicted images (diagonally highlighted blocks) under respective categories. Closely
clustered images share common morphological disease features in early fibrosis and steatosis
(NASH-specific feature), where white fat droplets are present in both images, shown as an
example in Figure 1C. Classification models’ performance is summarized in Table 1.

Figure 1. Experimental workflow, histopathology image classification, and analysis; (A) H&E image
classification for cirrhosis; (B) bridging fibrosis; (C) early fibrosis and steatosis; (D) workflow of
classification experiment study design; (E) t-SNE plot for clustered images; (F) confusion matrix of
classifier performance.

https://cellxgene.cziscience.com/
http://liveratlas-vilarinholab.med.yale.edu/
https://itzkovitzwebapps.weizmann.ac.il/webapps/home/session.html?app=HumanandMouseHepatocyteZonation
https://itzkovitzwebapps.weizmann.ac.il/webapps/home/session.html?app=HumanandMouseHepatocyteZonation
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Table 1. ML image classifier performance matrix.

Model AUC CA F1 Precision Recall

KNN 0.876 0.592 0.609 0.645 0.592

Tree 0.659 0.460 0.467 0.477 0.460

SVM 0.896 0.660 0.692 0.667 0.660

Random Forest 0.774 0.518 0.520 0.525 0.518

Neural Network 0.877 0.644 0.642 0.640 0.644

Naïve Bayes 0.847 0.600 0.597 0.598 0.600

Logistic Regression 0.892 0.656 0.655 0.654 0.656

Constant 0.500 0.200 0.067 0.040 0.582

AdaBoost 0.748 0.582 0.580 0.582 0.582

3.2. DGE Analysis for NASH and Zonation Expression

Volcano plots for NASH vs. control are illustrated in Figure 2A, and zone 1 vs. zone 3
expressions are illustrated in Figure 2B. The volcano plots display statistical significance
(−log10 p value) versus the magnitude of change (log2 fold change) of differentially
expressed genes in NASH vs. control and zonation-specific expression studies. Details of
DGEs and the top up/down-expressed genes are summarized in Table 2.

Figure 2. Volcano plots of differential gene expression in: (A) NASH vs. control. (B) Zone 1 vs.
zone 3.
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Table 2. DGE of zonation-specific and NASH genes.

NCBI GEO
Study ID

Publication
PMID Year Patients (N) Differentially

Expressed Genes
Top UP/Down

Expressed Genes

GSE48452 23931760 2013
NASH vs.
Healthy

Control(N = 46)

NASH vs. Cntrl = 47
Steatosis vs. Cntrl = 32
NASH vs. Steatosis = 1

Up = H2AFY2, GALNT18;
Down = APOF, C8B
Up = RPS13, UBE2N;

Down = CCDC82, NCAM2
Up = ZMAT3;
Down = C8B

GSE89632 35166723 2016
NASH vs.

Healthy Control
(N = 63)

NASH vs. Cntrl = 2641
Steatosis vs. Cntrl = 3627
NASH vs. Steatosis = 11

Up = TYMS, FMO1;
Down = MIR21, AXUD1

Up = FOSB, MYC;
Down = RFXDC2, WNT5A

Up = AKR1B10, CDC2;
Down = IL6, CCL2

GSE126848 30653341 2019
NASH vs.

Healthy Control
(N = 45)

NASH vs. Cntrl = 1906
NAFLD vs. Cntrl = 1045
NASH vs. NAFLD = 5

Up = UQCRBP1,
SNORD140;

Down = FNBP1, GLUD1P2
Up = FNBP1, GLUD1P2;

Down = UQCRBP1,
SNORD140

Up = MRC2, GALNT18;
Down = ST3GAL6, MAT1A

Table 2. Cont.

NCBI GEO
Study ID

Publication
PMID Year Patients (N) Differentially

Expressed Genes
Top UP/Down

Expressed Genes

GSE83990 29244788 2018 Liver Zonation
(N = 12)

Zone1 vs. Zone2 = 27
Zone2 vs. Zone 3 = 4

Zone1 vs. Zone 3 = 323

Up = DPT, STAB1;
Down = OAT, SLCO1B3

Up = HAL, OIT3;
Down = GLUL, SRPX

Up = HAL, AQP1;
Down = OAT, CXCL6

GSE105127 30297808 2018 Liver Zonation
(N = 57)

Zone1 vs. Zone2 = 63
Zone2 vs. Zone 3 = 37

Zone1 vs. Zone 3 = 1010

Up = MGP, FGFR2;
Down = TBX15, SLCO1B7

Up = SPRYD4, D9;
Down = GLUL, PTGDS

Up = KRT19, AQP1;
Down = RSPO3, GLUL

3.3. Single-Cell Clustering and DGE Expression Profiles in DILI and NASH ECs

The single-cell clustering results for control vs. DILI are illustrated in Figure 3A,B, and
control vs. NASH are illustrated in Figure 3C,D. The DGE expression in DILI and NASH
EC populations is performed over eight commonly expressed genes, STAB2, OIT3, F8,
AQP1, TEK, TIMP3, TIE1, and CTSL. Expression profiles are illustrated in Supplementary
Figure S1.
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Figure 3. Single-cell clustering in DILI and NASH ECs (study GSE166178): (A) cell clustering
for control and DILI samples (combined); (B) cell annotations and clustering (separately); (C) cell
clustering for control and NASH samples (combined); (D) cell annotations and clustering (separately).
Abbreviations: endo—endothelial cells, DC—dendritic cells, Macro—macrophages, IM—immune
cells, MESN—mesenchymal cells, NK-T cell—natural killer T cells, Neutro—neutrophils.

3.4. Spatial Transcriptomics Data Analysis for Zonation Marker Genes
3.4.1. 10x Genomics Visium Image Analysis for Spatial Distribution of Zonation
Expression Markers

Spatial transcriptomics (ST) image analysis is performed using 10x genomics Visium
platform on H&E-stained healthy human liver images to identify zonation patterns based
on known markers [25]. 10x genomics uses the space ranger tool for automated image
detection, fiducial marker locations, and to identify tissue boundaries. Expressed dots (red)
are the 55-micron Visium spots. Transcriptomes (RNAs) are extracted for studying spatial
cellular populations and gene expressions at specific visium spot tissue locations. Figure 4A
shows marked zonation areas on H&E stained histopathology normal liver. Figure 4B–D
illustrates zonation-specific expressed genes, such as FGG, SAA1, and GLUL overlaid
Visium liver tissue images [26]. The expression profiles unraveled zonation expressions in
the peri-portal, midlobular, and peri-central zones.

3.4.2. Spatial Molecular Imaging to Demonstrate Liver Zonation Architecture

Nanostring’s CosMxTM Spatial Molecular Imager (SMI) platform, illustrated in
Figure 5A, is a high-plex spatial multiomics image generated from a 5 µm thick human
formalin-fixed paraffin-embedded (FFPE) liver section stained for both protein and RNA
analytes to demonstrate zone 1, zone 2, and zone 3 architecture. Figure 5B–D illustrate
differential gene expression with three target markers, i.e., FGG, SAA1, and GLUL, to
highlight the zonation boundaries in a healthy liver tissue at molecular resolution. Similar
equivalent patterns are demonstrated in 10x genomics Visium images for the same three
zonation-specific genes, which highlights zonation boundaries in a normal human liver.
However, in the diseased and chronic liver injury conditions, this zonation disruption
exhibits varying DGEs.
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Figure 4. 10x genomics Visium image analysis for zonation marker: (A) fiducial image of H&E-stained
normal liver, (inset) highlighting zonation areas of zone 1, zone 2, and zone 3, (B) gene expression for
FGG in zone 1, (C) expression for SAA1 in zone 2, (D) expression for GLUL in zone 3.

Figure 5. Nanostring’s CosMx Spatial Molecular Imager (SMI) of normal human liver demonstrates
zonation architecture: (A) zonation boundaries for zone 1, zone 2, zone 3 and portal and central veins;
(B) zonation-specific gene expression, FGG (pink marker) expressed as in zone 1 (spreads across
zone 2); (C) SAA1 (aqua marker) expressed as in zone 2; (D) GLUL (white marker) expressed as in
zone 3.
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3.5. Liver Cell Clustering and LSEC Markers

Endothelial cell (EC) clustering data analysis is executed here to demonstrate LSEC
gene expression markers on integrated scRNA-seq data of 28 healthy human liver samples.
The single-cell scRNA-seq data used here were acquired from five separate independent
studies reported elsewhere in [19–21,24,27]. Figure 6A illustrates the UMAP clustering of all
normal liver cells. The LSEC clusters shown in Figure 6B are picked as a subset of clustered
EC cells shown in Figure 6A. Vascual Central Venous ECs (VCVEC) and Vascual Portal
Venous ECs (VPEC) are clustered along with LSECs, shown in Figure 6C, which are further
separated as subsets and highlighted using ECs and LSECs separately with the CLEC4G,
FCN2, OIT3, and LYVE1 expression marker genes illustrated in Figure 6D–E. VCVEC
and VPEC clusters were further separated and highlighted using MGP, VWF, and CD34
expression marker genes, illustrated in Figure 6F. VCVEC and VPEC shown in Figure 6C,D
are identified based on the list of endothelial cell markers selected from the FindAllMarker()
list and plotted at National Institute of Health’s (NIH), Human BioMolecular Atlas Program
(HuBMAP) Azimuth app, which is a Seurat-based web application tool that provides
clustering of all human normal liver cells (including VCVEC and VPEC).

Figure 6. LSEC cell clustering and markers: (A) clustering of all the normal liver cells; (B) LSEC
cluster; (C) VCVEC, VPEC, and LSEC subset under EC cluster; (D,E) LSEC marker gene expressions;
(F) VCVEC and VPEC marker gene expression clusters.

3.6. DGE Profiles in Zonated LSECs

The DGE profiles identified the top 25 highly expressed genes with their marker score
in PP−LSEC: Periportal Liver Sinusoid Endothelial Cells PC−LSEC: Pericentral Liver
Sinusoid Endothelial Cells and LSEC cells, illustrated in Figure 7. The combination of two
metrics represented in gene expression dot plots, i.e., gene expression and percentage of
expressing cells, enables us to assess the gene expression within a grid of genes by cell
types. The genes that are expressed in a small percentage of cells may be difficult to identify
in a dot plot visually. This is particularly important for specific marker genes that are
specifically but lowly expressed in their target cell types, for example, transcription factors
and cell-surface receptors.

A marker score is the 10th percentile of the effect sizes across all comparisons for each
gene. DGE analysis is performed using the cellxgene web tool, a well-curated, standardized,
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wide collection of interoperable single-cell transcriptomic data platforms available at https:
//cellxgene.cziscience.com [28]. The five most commonly expressed genes, DNASE1L3,
LIFR, STAB1, MRC1, and CRHBP, are detected using cellxgene analysis and confirmed in
other datasets [25]. Also, the top 20 expressed genes identified in each zone are summarized
in Table 3. The gene list is selected by the single-cell analysis algorithm based on the
markers detected through the “FindAllMarkers()” function in the Seurat single-cell analysis
R-package. This function identifies differentially expressed genes for each of the identity
classes (clusters) in the supplied dataset and builds a list of expressed genes in the given
dataset. From this list, 60 genes are picked (tabulated in Table 3), expressed in endothelial
cells (20 in each zone). Their zonation expression is further validated in the zonation
browser tool and plotted, shown in Supplementary Figure S2. Commonly expressed genes
in this group are MRC1, HAL, TIMP1 (zone 1), DNASE1L3, CRHBP, C9 (zone 2) SELE,
APOB, and GLUL (zone 3). Their zonation-specific expression is confirmed using the
human hepatocyte zonation browser tool, another open-source web platform publicly
available web tool [29], illustrated in Supplementary Figure S2.

Figure 7. Gene expression dot plots: grid of genes by cell types enabling one to access DGE profiles
and percentage of expressing cells in PP–LSEC: Periportal Liver Sinusoid Endothelial Cells, PC–LSEC:
Pericentral Liver Sinusoid Endothelial Cells and LSEC cells.

https://cellxgene.cziscience.com
https://cellxgene.cziscience.com
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Table 3. Top 20 detected zone-specific genes.

zone 1 zone 2 zone 3

MRC1 DNASE1L3 SELE
HAL CRHBP APOB

TIMP1 C9 GLUL
SERPINE1 CDH5 FGF2

SAA1 IGFBP7 PLG
ID1 APOF ITGA5

CLDN10 C8B ICOS
CRP LYVE1 PLPP3
SLPI NOSTRIN CTSS

CHI3L1 TTR FGF2
FST BTNL9 PLG
TIE1 ENG LGR5

LGALS3 LIFR NOTUM
TRAT1 FGG SLC13A3

SDS TEK OAT
PDPN KRT7 GPAM

ADAM23 CXCL6 SP5
FGFR2 LEPR CYP2E1

H2AFY2 EDN1 SLCO1B3
RPL3 CD34 MTMR11

4. Discussion

This study aims to enhance our understanding of the complex interplay of LSECs
in midlobular zone 2 and their role in initiating early fibrosis and regeneration. LSECs’
presence in zone 2 is influential and plays a critical role in determining whether injured
hepatocytes will regenerate or be susceptible to fibrosis. Their anti-fibrotic ability to support
regeneration is crucial for a successful liver repair process. LSECs secrete extracellular
matrix (ECM) components, like laminins, providing a supporting microenvironment for
regeneration and ensuring proper tissue restructuring [30].

Understanding the zonation of LSECs at the cellular and molecular levels is crucial,
as is quantifying these architectural changes spatially in both healthy and diseased liver
conditions. Scarring tissue in NASH and DILI disease models exhibits the common features
of liver fibrosis. In this study, OIT3 is computationally identified as a commonly expressed
marker gene in midlobular zone 2 by the LSEC cell population, both in the NASH and
DILI datasets. This is consistent with another study that reported OIT3 as a hallmark gene
expressed in ECs [31]. The second-most prominent gene identified is DNASE1L3. Other
zonation-specific marker genes identified in our study are MRC1, HAL (zone 1), CRHBP,
LYVE1 (zone 2), SELE, and GLUL (zone 3). Protein F8 secreted by LSECs [32] plays an
important role in blood clotting and is another marker gene detected in our experiment
on the GSE166178 dataset as a highly expressed zone 2 marker gene and confirmed by the
zonation browser tool. Also found in this series were STAB2, CLEC4G, and LYVE1 genes as
midlobular zone 2 markers and confirmed as an expressed healthy human liver [6,7]. STAB2
is primarily expressed in LSECs and is clinically relevant [33,34]. Gene AQP1 (Aquaporin-1)
promotes angiogenesis, fibrosis, and portal hypertension and is reported as overexpressed
in endothelial cells in advanced fibrotic stages such as cirrhosis [35], which exhibits simi-
lar trends of overexpression in our dataset, illustrated in Supplementary Figure S1. Also,
LYVE1 was found among the genes with increased expression, suggesting several possibil-
ities: (a) Lymphangiogenesis: this might promote the formation of new lymphatic vessels,
potentially contributing to inflammation and fibrosis progression. (b) Endothelial cell activa-
tion: LYVE1 upregulation could indicate a shift in the function of sinusoidal endothelial
cells towards a more pro-fibrotic phenotype. (c) Scar tissue remodeling: lymphatic vessels
may play a role in clearing collagen debris and remodeling scar tissue during the later
stages of fibrosis.
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The liver displays unique spatial heterogeneity and functioning of hepatocytes by
exhibiting distinct metabolic and functional profiles across different acinar zones (periportal,
perivenous, and intermediate). Specific enzymes, transporters, and other proteins act as
zonation markers, reflecting the specialized functions of each zone. 10x genomics Visium
platform and Nanostring’s CosMx technologies were used here to demonstrate these
changes at the molecular level and confirmed by the zonation browser tool as zonation-
specific, i.e., GLUL as zone 3, FGG as zone 2, and SAA1 as zone 1 expressed marker genes.

In Figure 3D, single-cell analysis exhibits a reduction in endothelial cell numbers,
which is mainly observed in NASH patients [12]. The potential mechanisms may explain
the observed reduction in endothelial cell numbers in the NASH liver: (1) Oxidative
stress: NASH is characterized by increased oxidative stress and endoplasmic reticulum
(ER) stress, which can trigger endothelial cell apoptosis and necrosis. (2) Inflammatory
response: chronic inflammation in the NASH liver can release pro-inflammatory cytokines
and chemokines, further promoting endothelial cell damage and apoptosis. Single-cell data
have revealed interactions between endothelial cells and macrophages in NASH, suggest-
ing that these interactions might contribute to endothelial cell loss in NASH. Furthermore,
macrophages in DILI are not a homogenous population. Depending on the microenviron-
ment and stimuli, they can adopt different phenotypes with distinct functions. DILI attracts
pro-inflammatory cells like macrophages, which can further damage endothelial cells and
impair their normal function. Single-cell analysis in DILI, illustrated in Figure 3B, shows a
growing trend of macrophages, which could be due to their activated role, often associated
as pro-inflammatory in the DILI disease model [36].

In NASH-related fibrosis, DGEs in zone 1 might be related to lipid metabolism and
oxidative stress, while zone 3 DGEs could be involved in inflammation and bile acid
signaling. Similarly, in a specific DILI drug, DGEs might be related to mitochondrial
dysfunction, immune response, or direct cell injury in specific zones. Fibrosis is caused by
long-term chronic liver injury and is considered a hallmark disease feature of both NASH
and DILI progression. This disrupts the liver architecture and function, leading to potential
organ failure. Different genes might be driving fibrosis in each zone, suggesting targeted
therapies for each zonated area.

DILI is a challenging disease to diagnose, a leading cause of acute liver failure, and
responsible for drug withdrawal from the market. Computational biomarkers could be
helpful as emerging new technologies in the diagnosis of DILI and NASH-related fibrotic
patterns [37]. DGEs could serve as early diagnostic or prognostic biomarkers for fibrosis
progression in NASH and DILI. DGE analysis in the NCBI GEO GSE126848 study identified
UQCRB as the most upregulated gene in NASH and confirmed as a zone 2 marker, which
is reported in a different study as a molecular prognostic biomarker in human colorectal
cancer [38]. DGE expression profiles identified five other commonly expressed genes,
such as DNASE1L3, LIFR, STAB1, MRC1, and CRHBP. Table 3 summarized the top 20
highly expressed genes in PP–LSEC and PC-LSEC, such as MRC1, HAL, TIMP1 (zone 1),
DNASE1L3, CRHBP, C9 (zone 2) SELE, APOB, and GLUL (zone 3).

Spatial omics is a powerful technique that allows researchers to analyze the gene
expression at a microscopic level within tissues. These high-resolution data can provide
insights into the complex cellular organization of the liver and how it changes in different
liver diseases. Informatic analysis of spatial omics data can help to identify patterns of
gene expression and protein localization that are associated with specific liver diseases.
These patterns can then be used to develop predictive tests for diagnosing or staging liver
diseases: (1) NASH is a more severe form of liver disease. Spatial omics analysis could
be used to identify patterns of gene expression that differentiate between MASLD and
NASH. These patterns could then be used to develop a test to predict which patients with
MASLD or other related liver diseases are more likely to progress to NASH. (2) DILI is a
liver injury caused by medications. Spatial omics analysis could be used to identify the
specific cell types in the liver that are most susceptible to damage from different drugs.
This information could then be used to develop new drugs that are less likely to cause DILI.
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Further analysis of these patterns could be used to investigate other interesting aspects,
such as the role of the gut microbiome in liver disease. Spatial omics analysis could be used
to investigate how the gut microbiome interacts with the liver at a cellular level. There is
growing evidence that the gut microbiome plays a role in liver disease. An imbalance in
the gut microbiome can contribute to various liver diseases [39,40]. This might impact the
liver by increasing intestinal permeability and chronic inflammation. An unhealthy gut
microbiome can lead to a leaky gut, where the intestinal barrier weakens, allowing harmful
bacteria and their products to enter the bloodstream and potentially reach the liver.

H&E histopathology images are still considered as the gold standard in pathology [41]
for the analysis and detection of early fibrotic lesions. Also, the 10x genomics Visium
platform uses tissues for extracting transcriptome and histopathology H&E-stained images
to align Visium spots (extracted transcriptome locations) for studying cellular heterogeneity
and spatial analysis [42]. Fibrosis is the formation of scar tissue in response to liver injury or
disease. A machine learning-based histopathology image classification model is designed
here to understand these fibrosis development stages on H&E-stained images, i.e., starting
from normal lobular liver architecture and then how the zonal pattern of fibrosis (collagen
fibers) develops in early fibrosis, bridging fibrosis, and cirrhosis. This approach can be
used further for the prediction of fibrosis in other datasets used in this study. DGE analysis
of liver zonation can provide valuable insights into the mechanisms and identification of
potential therapeutic targets for fibrosis in NASH and DILI.

The limitation of this study is that DGE analysis alone is not sufficient to fully elu-
cidate the early stages of fibrosis in complex diseases like NASH and DILI. Integrating
these analyses with other datasets, such as protein expression and metabolic profiling,
is required for analysis in normal and diseased conditions. More research is needed to
validate DGEs as reliable zonation markers and translate them into effective diagnostic and
prognostic biomarkers. Investigating LSECs in the context of both zonation and fibrosis
holds significant promise for developing novel therapeutic strategies against liver diseases.
This may help to protect zonation patterns, prevent fibrosis development, and ultimately
improve liver health.

5. Conclusions

The healthy mammalian liver lobule is spatially well zonated and recognized by
known markers based on the distribution of metabolic functions, which are disrupted in
pathological conditions and liver injury. However, due to hepatocyte heterogeneity, these
zonation markers, such as enzymes, metabolites, and gene expression patterns, vary in
their expression and activity, even within the same lobule. These molecular markers are not
(1) zonation-specific or (2) disease-specific; for example, the expression and distribution of
specific molecules within the liver change during fibrogenesis in NASH and DILI. LSECs
play an essential and intricate role in the early stages of liver fibrosis and regeneration
during mid-lobular zonation restructuring. Their strategic position allows them to act as
critical conductors in influencing the delicate balance between tissue repair and scarring.
Emerging trends in new technologies, such as scRNA-seq, spatial transcriptomics, and
multiomics, can be helpful in determining the role of LSECs in identifying the zonation
marker DGEs at the cellular and molecular levels. LSECs can provide valuable insights into
how zonation marker variations and fibrosis are interconnected. The goal of this study is
primarily to establish a baseline to understand which normal liver zones might experience
changes, specifically midlobular zone 2 during early fibrosis, liver injury conditions, or in
the stages of advanced fibrosis.

This study identified the zonation-specific midlobular markers of LSECs. STAB2 family
genes are the most highly expressed genes in liver LSECs related to fibrosis detected by this
study, illustrated in Supplementary Figure S1. The STAB2 expression profiles in LSECs are
clinically relevant for liver health, fibrosis, and disease susceptibility. The dysregulation of
STAB2 expression in LSECs may impact hyaluronan (HA) clearance, contributing to liver
fibrosis. In liver disease, altered STAB2 expression could affect the scavenging function
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of LSECs, influencing disease progression. Gene profiles in the midlobular zone hold
significant clinical relevance towards developing new therapeutic strategies. LSEC-specific
gene profiles can guide the development of targeted therapies for fibrosis. By identifying
genes involved in fibrosis progression within LSECs, researchers can develop drugs or
other interventions that specifically target these pathways. Liver fibrosis in its early stages
can be reversible if detected in zonation at the molecular level before moving to advanced
stages like bridging fibrosis. Current diagnostic methods often lack accuracy in the early
stages of liver fibrosis. Diagnosis of DILI in its early stages is an important but complex
and challenging task. Accurate evaluation and causality assessment are the critical aspects
of early detection. This is where computational biomarkers derived from integrated
multi-omics, cellular, and molecular data hold immense promise for providing a deeper
understanding and improved diagnosis of NASH and DILI-related liver fibrosis.

NASH and DILI are complex diseases, and unraveling their secrets requires a powerful
orchestra of technologies. Efforts are made here to leverage the latest advancements in
single-cell analysis, histopathology, spatial transcriptomics, and multi-omics, playing their
part in deciphering cellular diversity and unveiling the cell state transitions involved in
fibrosis developments. The integration of other technologies with histopathology serves as
a valuable platform for spatially correlating single-cell data with tissue morphology. This
allows researchers to link gene expression patterns to specific cell locations and structures
within the liver, adding a crucial spatial dimension to develop their understanding of fibro-
sis developmental stages. By combining these powerful tools, researchers can create a rich,
multidimensional picture of liver fibrosis in NASH and DILI. This holistic understanding
can lead to the identification of novel therapeutic targets, improved diagnosis, prognosis,
and the development of personalized medicine by understanding the unique molecular
signatures of individual patients.

Studying liver zonation fibrosis in NASH and DILI using new technologies offers
significant novelty and holds great promise for advancing our understanding of these
complex diseases. These new technologies offer a revolutionary approach to studying liver
zonation fibrosis in NASH and DILI. Their ability to reveal previously hidden cellular and
spatial heterogeneity, pinpoint molecular drivers, and elucidate disease mechanisms will
significantly improve our understanding of fibrosis progression and ultimately lead to the
development of more effective and personalized therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijtm4020012/s1. Figure S1. Expression profiles of eight commonly
expressed genes STAB2, OIT3, F8, AQP1, TEK, TIMP3, TIE1, CTSL in DILI and NASH ECs populations
(A–B) for control vs DILI; (C–D) for control vs NASH. Figure S2. Zonation browser window:
Illustrating normalized expression profiles of zone 1, zone 2 & zone 3 genes detected as LSECs and
fibrosis-related markers. Figure S3. Expression profile LSECs markers; (A) OIT3 and CLEC4G are
reported as hallmark genes expressed in LSECs and involved in fibrosis, illustrating and confirmed
here as strongly expressed (validated in HuBMAP Azimuth liver reference cell dataset (left) and
shown in zonation browser window (right), (B) expression for same two genes are validated at
http://liveratlas-vilarinholab.med.yale.edu/, accessed on 20 December 2023; (C) zone 2 expression
tested for other detected genes here (shown in zonation browser window) with mild-to-medium
expression in LSECs.
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Democratized Image Analytics by Visual Programming through Integration of Deep Models and Small-Scale Machine Learning.
Nat. Commun. 2019, 10, 4551. [CrossRef]

18. Wang, Z.; Qian, J.; Lu, X.; Zhang, P.; Guo, R.; Lou, H.; Zhang, S.; Yang, J.; Fan, X. A Single-Cell Transcriptomic Atlas Characterizes
Liver Non-Parenchymal Cells in Healthy and Diseased Mice. bioRxiv 2021. [CrossRef]

19. MacParland, S.A.; Liu, J.C.; Ma, X.-Z.; Innes, B.T.; Bartczak, A.M.; Gage, B.K.; Manuel, J.; Khuu, N.; Echeverri, J.; Linares, I.; et al.
Single Cell RNA Sequencing of Human Liver Reveals Distinct Intrahepatic Macrophage Populations. Nat. Commun. 2018, 9, 4383.
[CrossRef]

20. Ramachandran, P.; Dobie, R.; Wilson-Kanamori, J.R.; Dora, E.F.; Henderson, B.E.P.; Luu, N.T.; Portman, J.R.; Matchett, K.P.; Brice,
M.; Marwick, J.A.; et al. Resolving the Fibrotic Niche of Human Liver Cirrhosis at Single-Cell Level. Nature 2019, 575, 512–518.
[CrossRef]

21. Aizarani, N.; Saviano, A.; Sagar, N.; Mailly, L.; Durand, S.; Herman, J.S.; Pessaux, P.; Baumert, T.F.; Grün, D. A Human Liver Cell
Atlas Reveals Heterogeneity and Epithelial Progenitors. Nature 2019, 572, 199–204. [CrossRef] [PubMed]

22. Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al.
Integrated Analysis of Multimodal Single-Cell Data. Cell 2021, 184, 3573–3587.e29. [CrossRef] [PubMed]

23. Zhang, M.; Yang, H.; Wan, L.; Wang, Z.; Wang, H.; Ge, C.; Liu, Y.; Hao, Y.; Zhang, D.; Shi, G.; et al. Single-Cell Transcriptomic
Architecture and Intercellular Crosstalk of Human Intrahepatic Cholangiocarcinoma. J. Hepatol. 2020, 73, 1118–1130. [CrossRef]
[PubMed]

24. Brancale, J.; Vilarinho, S. A Single Cell Gene Expression Atlas of 28 Human Livers. J. Hepatol. 2021, 75, 219–220. [CrossRef]
[PubMed]

25. Halpern, K.B.; Shenhav, R.; Matcovitch-Natan, O.; Tóth, B.; Lemze, D.; Golan, M.; Massasa, E.E.; Baydatch, S.; Landen, S.; Moor,
A.E.; et al. Single-Cell Spatial Reconstruction Reveals Global Division of Labour in the Mammalian Liver. Nature 2017, 542,
352–356. [CrossRef]

https://doi.org/10.1016/j.jhep.2023.03.017
https://doi.org/10.1038/s41575-019-0134-x
https://www.ncbi.nlm.nih.gov/pubmed/30936469
https://doi.org/10.1186/s13619-021-00090-8
https://doi.org/10.1126/science.abb1625
https://www.ncbi.nlm.nih.gov/pubmed/33632817
https://doi.org/10.1055/s-0041-1742279
https://www.ncbi.nlm.nih.gov/pubmed/35120381
https://doi.org/10.3389/fmed.2021.750044
https://doi.org/10.1016/j.jcmgh.2020.12.007
https://doi.org/10.1002/hep.27376
https://doi.org/10.3390/cells9040929
https://doi.org/10.3892/mmr.2024.13164
https://doi.org/10.1007/s00018-023-04966-7
https://doi.org/10.3390/cells11162511
https://doi.org/10.3390/cells8121556
https://doi.org/10.1530/JME-23-0026
https://doi.org/10.1016/j.stem.2022.04.008
https://doi.org/10.1038/s41467-019-12397-x
https://doi.org/10.1101/2021.07.06.451396
https://doi.org/10.1038/s41467-018-06318-7
https://doi.org/10.1038/s41586-019-1631-3
https://doi.org/10.1038/s41586-019-1373-2
https://www.ncbi.nlm.nih.gov/pubmed/31292543
https://doi.org/10.1016/j.cell.2021.04.048
https://www.ncbi.nlm.nih.gov/pubmed/34062119
https://doi.org/10.1016/j.jhep.2020.05.039
https://www.ncbi.nlm.nih.gov/pubmed/32505533
https://doi.org/10.1016/j.jhep.2021.03.005
https://www.ncbi.nlm.nih.gov/pubmed/34016468
https://doi.org/10.1038/nature21065


Int. J. Transl. Med. 2024, 4 223

26. Hildebrandt, F.; Andersson, A.; Saarenpää, S.; Larsson, L.; Van Hul, N.; Kanatani, S.; Masek, J.; Ellis, E.; Barragan, A.; Mollbrink,
A.; et al. Spatial Transcriptomics to Define Transcriptional Patterns of Zonation and Structural Components in the Mouse Liver.
Nat. Commun. 2021, 12, 7046. [CrossRef] [PubMed]

27. Segal, J.M.; Kent, D.; Wesche, D.J.; Ng, S.S.; Serra, M.; Oulès, B.; Kar, G.; Emerton, G.; Blackford, S.J.I.; Darmanis, S.; et al. Single
Cell Analysis of Human Foetal Liver Captures the Transcriptional Profile of Hepatobiliary Hybrid Progenitors. Nat. Commun.
2019, 10, 3350. [CrossRef] [PubMed]

28. Program, C.S.-C.B.; Abdulla, S.; Aevermann, B.; Assis, P.; Badajoz, S.; Bell, S.M.; Bezzi, E.; Cakir, B.; Chaffer, J.; Chambers, S.; et al.
CZ CELL×GENE Discover: A Single-Cell Data Platform for Scalable Exploration, Analysis and Modeling of Aggregated Data.
bioRxiv 2023. [CrossRef]

29. Massalha, H.; Bahar Halpern, K.; Abu-Gazala, S.; Jana, T.; Massasa, E.E.; Moor, A.E.; Buchauer, L.; Rozenberg, M.; Pikarsky, E.;
Amit, I.; et al. A Single Cell Atlas of the Human Liver Tumor Microenvironment. Mol. Syst. Biol. 2020, 16, e9682. [CrossRef]
[PubMed]

30. Natarajan, V.; Harris, E.N.; Kidambi, S. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis. BioMed Res.
Int. 2017, 2017, 4097205. [CrossRef] [PubMed]

31. Li, Z.-W.; Ruan, B.; Yang, P.-J.; Liu, J.-J.; Song, P.; Duan, J.-L.; Wang, L. Oit3, a Promising Hallmark Gene for Targeting Liver
Sinusoidal Endothelial Cells. Signal Transduct. Target. Ther. 2023, 8, 344. [CrossRef] [PubMed]

32. Jamil, M.A.; Singer, H.; Al-Rifai, R.; Nüsgen, N.; Rath, M.; Strauss, S.; Andreou, I.; Oldenburg, J.; El-Maarri, O. Molecular Analysis
of Fetal and Adult Primary Human Liver Sinusoidal Endothelial Cells: A Comparison to Other Endothelial Cells. Int. J. Mol. Sci.
2020, 21, 7776. [CrossRef]

33. Olsavszky, V.; Sticht, C.; Schmid, C.D.; Winkler, M.; Wohlfeil, S.A.; Olsavszky, A.; Schledzewski, K.; Géraud, C.; Goerdt, S.;
Leibing, T.; et al. Exploring the Transcriptomic Network of Multi-Ligand Scavenger Receptor Stabilin-1- and Stabilin-2-Deficient
Liver Sinusoidal Endothelial Cells. Gene 2021, 768, 145284. [CrossRef]

34. Maeda-Smithies, N.; Hiller, S.; Dong, S.; Kim, H.-S.; Bennett, B.J.; Kayashima, Y. Ectopic Expression of the Stabilin2 Gene Triggered
by an Intracisternal A Particle (IAP) Element in DBA/2J Strain of Mice. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2020,
31, 2–16. [CrossRef]

35. Huebert, R.C.; Jagavelu, K.; Hendrickson, H.I.; Vasdev, M.M.; Arab, J.P.; Splinter, P.L.; Trussoni, C.E.; LaRusso, N.F.; Shah,
V.H. Aquaporin-1 Promotes Angiogenesis, Fibrosis, and Portal Hypertension Through Mechanisms Dependent on Osmotically
Sensitive MicroRNAs. Am. J. Pathol. 2011, 179, 1851–1860. [CrossRef]

36. Gerussi, A.; Natalini, A.; Antonangeli, F.; Mancuso, C.; Agostinetto, E.; Barisani, D.; Di Rosa, F.; Andrade, R.; Invernizzi, P.
Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int. J. Mol. Sci. 2021, 22, 4557.
[CrossRef] [PubMed]

37. Puri, M. Automated Machine Learning Diagnostic Support System as a Computational Biomarker for Detecting Drug-Induced
Liver Injury Patterns in Whole Slide Liver Pathology Images. Assay Drug Dev. Technol. 2020, 18, 1–10. [CrossRef] [PubMed]

38. Kim, H.-C.; Chang, J.; Lee, H.S.; Kwon, H.J. Mitochondrial UQCRB as a New Molecular Prognostic Biomarker of Human
Colorectal Cancer. Exp. Mol. Med. 2017, 49, e391. [CrossRef] [PubMed]

39. Schwenger, K.J.; Clermont-Dejean, N.; Allard, J.P. The Role of the Gut Microbiome in Chronic Liver Disease: The Clinical Evidence
Revised. JHEP Rep. 2019, 1, 214–226. [CrossRef]

40. Tilg, H.; Cani, P.D.; Mayer, E.A. Gut Microbiome and Liver Diseases. Gut 2016, 65, 2035–2044. [CrossRef]
41. Gurcan, M.N.; Boucheron, L.; Can, A.; Madabhushi, A.; Rajpoot, N.; Yener, B. Histopathological Image Analysis: A Review. IEEE

Rev. Biomed. Eng. 2009, 2, 147. [CrossRef]
42. Clifton, K.; Anant, M.; Aihara, G.; Atta, L.; Aimiuwu, O.K.; Kebschull, J.M.; Miller, M.I.; Tward, D.; Fan, J. STalign: Alignment of

Spatial Transcriptomics Data Using Diffeomorphic Metric Mapping. Nat. Commun. 2023, 14, 8123. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41467-021-27354-w
https://www.ncbi.nlm.nih.gov/pubmed/34857782
https://doi.org/10.1038/s41467-019-11266-x
https://www.ncbi.nlm.nih.gov/pubmed/31350390
https://doi.org/10.1101/2023.10.30.563174
https://doi.org/10.15252/msb.20209682
https://www.ncbi.nlm.nih.gov/pubmed/33332768
https://doi.org/10.1155/2017/4097205
https://www.ncbi.nlm.nih.gov/pubmed/28293634
https://doi.org/10.1038/s41392-023-01621-2
https://www.ncbi.nlm.nih.gov/pubmed/37696816
https://doi.org/10.3390/ijms21207776
https://doi.org/10.1016/j.gene.2020.145284
https://doi.org/10.1007/s00335-019-09824-1
https://doi.org/10.1016/j.ajpath.2011.06.045
https://doi.org/10.3390/ijms22094557
https://www.ncbi.nlm.nih.gov/pubmed/33925355
https://doi.org/10.1089/adt.2019.919
https://www.ncbi.nlm.nih.gov/pubmed/31149832
https://doi.org/10.1038/emm.2017.152
https://www.ncbi.nlm.nih.gov/pubmed/29147009
https://doi.org/10.1016/j.jhepr.2019.04.004
https://doi.org/10.1136/gutjnl-2016-312729
https://doi.org/10.1109/RBME.2009.2034865
https://doi.org/10.1038/s41467-023-43915-7

	Introduction 
	Methods and Materials 
	H&E Histopathology Image Classifications 
	Spatial Transcriptomics Data Analysis 
	DGE Analysis for NASH and Zonation 
	Single-Cell Clustering for NASH and DILI 
	Visium Data Analysis and Visualization 
	Spatial Molecular Imaging 

	Liver Cell Clustering and Analysis Tool 
	LSEC Markers 

	Results 
	Histopathology H&E Image Classification Experimental Workflow for Early and Bridging Fibrosis 
	DGE Analysis for NASH and Zonation Expression 
	Single-Cell Clustering and DGE Expression Profiles in DILI and NASH ECs 
	Spatial Transcriptomics Data Analysis for Zonation Marker Genes 
	10x Genomics Visium Image Analysis for Spatial Distribution of Zonation Expression Markers 
	Spatial Molecular Imaging to Demonstrate Liver Zonation Architecture 

	Liver Cell Clustering and LSEC Markers 
	DGE Profiles in Zonated LSECs 

	Discussion 
	Conclusions 
	References

