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eMethods 

Functional Tests Comprising CFAB: See previous publications for further details.1-5   

A) Activity/Volitional Exercise Rate (voluntary wheel running): To track activity, the mice were 

singly housed with a running wheel (Columbus Instruments) for 1 week. The number of 

revolutions of the wheel over the week were converted to km/day and reported as such.  

B) Rotarod: To quantify overall neuromuscular function (endurance, power production, 

balance and coordination) we used a Panlab Rota-Rod. The procedure involved two training 

sessions, one per day (three trials per day, minimum of 15 minutes rest between trials), to 

acclimate the mice to the device, followed by a testing day in which three trials were performed, 

once again with minimum of 15-minute rest periods between trials. The maximum number  of 

seconds the mouse remained on the rotarod before falling was the outcome measure. 

C) Grip Test Meter: To directly measure grip strength of the mice, we used a Bioseb grip 

strength meter. Five trials for forelimb grip was performed in one session. For one trial, the mouse 

was removed from its cage, held by the tail and placed, gently, so that its paws can grab the 

bar/grid. Then the mouse was smoothly pulled backed until it releases the bar/grid. We report the 

highest of the five trials in Newtons as the outcome measure. 

D) Inverted Cling Grip Test: This test was used to quantify muscle strength and endurance. 

The mouse gripped a grid (a custom-built device was used) and was inverted. The outcome is 

latency until falling, in seconds, to the padded surface below, best out of two trials (7 minute 

ceiling). The mice were evaluated two times on one day with a minimum of 15 minutes between 

trials for a rest period. If a mouse held on for less than 10 seconds it was be immediately retested 

to determine if the fall was a slip. If a slip occurred, that trial did not count towards the two 

maximum trials. 

E) Treadmill: The mice were assessed for endurance, maximum running speed and aerobic 

capacity by running on a treadmill (Columbus Instruments 6 mouse treadmill). The outcome 

measurement is the length of time run in seconds. The mice were introduced to the device 

gradually with two acclimation trials over 2 days. Initially, in the first session the mice were 

introduced to the device and learned to walk (walking speed, 3 m/min, for two minutes maximum), 

then in the second session the first session was repeated, followed by a second session where 

the speed was accelerated as they learn to run (3 m/min, accelerated at 0.6 m/min/20sec; 2 
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minutes maximum)  During actual testing (day 3) the mouse started at 3 m/min and the treadmill 

is accelerated at 0.6m/min/20sec until the mice reached exhaustion/failure, with the outcome 

measure as the number of seconds before failure. Failure was inability to keep up with the 

treadmill resulting in accumulation of 3 shocks from the shock grid (set at 3 mA). 

Test 6m 24m 28m 
VWR -0.730 -0.911 -1.196a 
Grip Meter 0.039 -0.897a -1.494a,b 
Inverted Cling (log10) 0.491 -1.820a -2.459a    
Rotarod -0.633 -1.060 -1.706a,b 
Treadmill -0.583 -0.237 -0.597 

eTable S1 Standardized scores for CFAB Determinants. NOTE: This table has the data from 

the randomly selected subset of mice (total RNA isolated from the tibialis anterior muscle of each 

mouse for RNAseq) from the parent study1 and does not equate to the original dataset which had 

a much larger n per group. Key: values = means of the standardized values for the individual 

mice used in this study based upon the overall 6m mean and standard deviation (previously 

reported1). m = months of age, VWR = voluntary wheel running, CFAB = comprehensive 

functional assessment battery, different letters indicate statistical difference (p<0.05 from 1-way 

ANOVA, LSD posthoc test): a = significantly different from 6m, b = significantly different from 24m 
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Online Supplemental  Discussion 

Further Potential Mechanisms of Age-Related Neuromuscular Decline 

(NOTE: data from our current study presented in italics) 

Calcium Handling Dysregulation (Implications and Effects): Increased sarcoplasmic calcium 
levels may alter numerous signaling pathways relying upon a Ca+2 second messenger. In skeletal 
muscle the binding of Ca+2 to troponinC, causes a conformation shift of the troponin complex 
moving  tropomyosin to expose the myosin binding site on actin, allowing for cross-bridge cycling. 
Normally this process is induced by a calcium influx from the sarcoplasmic reticulum when the 
ryanodyne (RYR) receptor is prompted to open by the voltage-gated dihydropyridine receptor 
responding to a propagating action potential. Relaxation is induced when Ca+2 disassociates from 
troponinC as the sarcoplasmic endoplasmic reticulum ATPase (SERCA) pumps Ca+2 against the 
concentration gradient from the sarcoplasm back into the sarcoplasmic reticulum using ATP.  
 
Sarcolipin (Sln, increased log2fc 4.33, adj. p=1.1x10-6), phospholamban (Pln, increased log2fc 
0.663, adj. p=0.0003) and myoregulin (Mrn, aka 2310015B20Rik, did not significantly alter—
though the gene is not yet fully annotated) are regulatory elements of SERCA that block SERCA 
pumping activity while allowing ATPase activity to consume energy and generate heat.6 Notably, 
Lin and colleagues (with RNAseq) also found that in 3-month versus 24-month old mouse rectus 
femoris SLN was significantly upregulated.7 
 
SLN and PLN are additive in effect and can cause super-inhibition of SERCA pumping activity 
when co-expressed. There are other newly identified micropeptides involved SERCA regulation, 
including DWORF (increasing SERCA pumping) and the negative regulators endoregulin and 
another-regulin.8 Increased expression of these regulatory genes may be adaptive strategies for 
increasing non-shivering thermogenesis to ward off body temperature dysregulation in older 
mammals and/or to improve energy balance in more sedentary individuals; but may have adverse 
consequences concerning muscle and physical function.9-10 However, this current study 
demonstrated that SLN expression is not only greatly over-expressed in 28m mice (>12-fold) but 
is negatively correlated (R=-0.55) with CFAB functional scores. One mechanism by which this 
could occur is by increasing the time needed to relax muscle fibers between contractions, by 
delaying disassociation of Ca+2 from troponin due to an increased sarcoplasmic calcium 
concentration, potentially leading to decreased power production, albeit with a potential for 
improved fatigue resistance. Sarcolipin is overexpressed in Duchenne muscular dystrophy (DMD) 
patients and DMD transgenic mouse models, and the knockdown of SLN restores muscle and 
physical function.11 However, knock-out of SLN prevents normal hypertrophic and fiber-type shift 
response to overloading, and increases ½relaxation rate compared to wild type.12-13 Transgenic 
mice over-expressing SLN have been shown to have an increased metabolic rate, and ½ 
relaxation time, while increasing SLN in rat muscle has been shown to decrease both maximal 
isometric force and ½ relaxation time.14-15 Thus the jury is still out on what effect SLN upregulation 
might have in older muscle. 
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In addition to dysregulating cross-bridge cycling and force generation, overexpression of SLN and 
PLN leading to increased prevalence of cytosolic Ca+2 abundance may stimulate numerous 
calcium-dependent signaling pathways. For example, increased levels of sarcoplasmic calcium 
can decrease promoter activity for CGRP (calcitonin gene-related peptide), which is alternatively 
spliced from the calcitonin gene. CGRP binds to the calcitonin receptor like receptor (CKACRL) 
which consists of three different subunits: the receptor component protein (Rcp), the calcitonin 
like receptor (Calcl, log2fc-0.34, adj. p=0.006), and the receptor activity-modifying protein 1 
(Ramp1). Ramp1 (log2fc 0.53, adj. p=0.01) is involved in angiogenesis and wound healing. Thus, 
our data suggests potential downstream adverse effects related to alterations in Ca+2 signaling. 
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