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Abstract: We investigate the spatial discretization of a stochastic semilinear superdiffusion problem
driven by fractionally integrated multiplicative space–time white noise. The white noise is charac-
terized by its properties of being white in both space and time, and the time fractional derivative is
considered in the Caputo sense with an order α ∈ (1, 2). A spatial discretization scheme is introduced
by approximating the space–time white noise with the Euler method in the spatial direction and
approximating the second-order space derivative with the central difference scheme. By using the
Green functions, we obtain both exact and approximate solutions for the proposed problem. The
regularities of both the exact and approximate solutions are studied, and the optimal error estimates
that depend on the smoothness of the initial values are established.

Keywords: superdiffusion; integrated multiplicative noise; Caputo derivative; finite difference
method; optimal error estimates

1. Introduction

Consider the following stochastic semilinear superdiffusion equation driven by frac-
tionally integrated multiplicative space–time white noise, with 1 < α < 2, 0 ≤ γ ≤ 1,

C
0 Dα

t u(t, x)− ∂2u(t,x)
∂x2 = F(u(t, x)) + 0D−γ

t g(u(t, x)) ∂2W(t,x)
∂t∂x , 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,
u(0, x) = u0(x), 0 ≤ x ≤ 1,
∂u
∂t (0, x) = u1(x), 0 ≤ x ≤ 1,

(1)

where C
0 Dα

t denotes the Caputo fractional derivative with order 1 < α < 2, and 0D−γ
t

denotes the Riemann–Liouville fractional integral with order 0 ≤ γ ≤ 1. Here, u0(x) and
u1(x) are the given initial values. The nonlinear terms F and g satisfy the following global
Lipschitz conditions and linear growth condition.

Assumption 1. The nonlinear functions F and g satisfy [1,2]

|F(v)− F(w)|+ |g(v)− g(w)| ≤ C|v− w|, ∀ v, w ∈ R,

|F(v)|+ |g(v)| ≤ C(1 + |v|), ∀ v ∈ R.

Let (Ω,F ,Ft≥0,P) be a stochastic basis carrying on Ft-adapted Brownian sheet
W = {W(t, x) : t ≥ 0, x ∈ R+}, which is a zero mean Gaussian random field with
covariance [1,3],

EW(t, x)W(s, y) = (t ∧ s)(x ∧ y), (2)
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where E means the expectation, and a ∧ b = min(a, b), a, b ∈ R.
The deterministic Equation (1) (i.e., g = 0) offers a suitable representation for attenu-

ated wave propagation, which often exhibits a power law relationship between attenuation
and frequency. This type of behavior is commonly observed in various scenarios, such as
acoustic wave propagation in lossy media [4]. The exponent of the power law typically
falls within the range of 1 to 2, indicating anomalous attenuation [5]. In physical systems,
stochastic perturbations arise from diverse natural sources, and their influence cannot
be disregarded. Therefore, it is necessary to study the model (1) both theoretically and
numerically [6,7].

There are many theoretical and numerical studies for (1) when the noise ∂2W(t,x)
∂t∂x in (1)

is white in time but smooth in space, that is,

∂2W(t, x)
∂t∂x

=
∞

∑
k=1

σk(t)β̇k(t)ek(x), (3)

where σk(t) is continuous and rapidly decays as k increases to ensure the convergence of
the series, and β̇k(t) = dβk(t)

dt represents the white noise, which is the formal derivative
of the standard Brownian motion βk(t) for k = 1, 2, . . . The eigenfunctions ek(x), k =
1, 2, . . . , correspond to the Laplacian operator−∆ = − ∂

∂x2 subject to homogeneous Dirichlet
boundary conditions on the interval [0, 1]. Li et al. [6] employed the Galerkin finite element
method to study the linear problem (1) with f = 0 and g = 1, driven by the noise (3).
Recently, Li et al. [8] explored the existence and uniqueness of (1) driven by the noise (3)
using the Banach fixed-point theorem. Furthermore, Li et al. [7] investigated the Galerkin
finite element method for (1) driven by the noise (3) and derived the optimal error estimates.
Zou [9] considered the semidiscrete finite element method for approximating (1) driven by
the noise (3) with F = 0 and established the optimal error estimates. More recently, Egwu
and Yan [10] studied the existence and uniqueness of (1) driven by the noise (3), and they
also considered the finite element approximation for the regularized equation of (1).

Numerous theoretical results have been established for the stochastic subdiffusion
equation with a time fractional order α ∈ (0, 1). Anh et al. [11] investigated the existence
and uniqueness of the solution for the space–time fractional stochastic equation in the
multi-dimensional case. Anh et al. [12] introduced a variational constant formula for
the Caputo fractional stochastic differential equation. Chen [13] studied the moments,
Hölder regularity, and intermittency for the solution of a nonlinear stochastic subdiffusion
problem on R. Chen et al. [14] provided insights for the nonlinear stochastic subdiffusion
equation on Rd, where d = 1, 2, 3. Additionally, Chen et al. [15] addressed the existence,
uniqueness, and regularity of the solution of the stochastic subdiffusion problem on Rd

for d = 1, 2, 3. Various numerical approximations for the stochastic subdiffusion problem
with a time fractional order α ∈ (0, 1) have also been proposed. AL-Maskari and Karra [16]
explored strong convergence rates for approximating a stochastic time fractional Allen–
Cahn equation. Dai et al. [17] discussed the Mittag–Leffler Euler integrator for solving the
stochastic space–time fractional diffusion equation. Gunzburger et al. [18,19] investigated
the finite element method’s application for approximating the stochastic partial integral–
differential equation driven by white noise. Kang et al. [20] developed a Galerkin finite
element method to approximate a stochastic semilinear subdiffusion with fractionally
integrated additive noise. Additionally, Wu et al. [21] explored the L1 scheme for solving
the stochastic subdiffusion equation driven by integrated space–time white noise.

To the best of our knowledge, there is currently no existing numerical method for

approximating (1) when the noise ∂2W(t,x)
∂t∂x is given by (2), which corresponds to white noise

in both space and time. The objective of this paper is to bridge this gap by proposing
a finite difference scheme for (1). Our approach involves approximating the noise term
∂2W(t,x)

∂t∂x using the Euler method in the spatial direction and approximating the Laplacian
−∆ = − ∂

∂x2 , using the central difference scheme. By using Green’s functions, we obtain
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solutions for both (1) and its corresponding finite difference scheme. The regularity of the
approximated solution is investigated, and detailed error estimates in the maximum norm
are derived. We observe that the spatial convergence order decreases as α traverses the
range from 1 to 2 due to the white noise in the spatial direction. Throughout this paper, we
shall consider the time discretization, and we expect that as α traverses the range from 1 to 2,
the time convergence orders will increase as in the subdiffusion case with α ∈ (0, 1) [22].

The methodology employed in this paper shares similarities with the work of Gyöngy [1],
which considered the spatial discretization of (1) with α = 1, and the work of Wang et al. [22],
which examined the spatial discretization of (1) for the subdiffusion problem with α ∈ (0, 1).
However, the error estimates in our paper are more complicated than [1,22] due to the
presence of an additional initial value u′(0), which requires the studies of the estimates
related to the initial value u(0,x)

∂t = u1(x).
Let 0 = x0 < x1 < · · · < xM−1 < xM = 1 be a partition of space interval [0, 1], and

∆x = 1
M be the space step size. At the fixed point x = xk for k = 1, 2, . . . , M − 1, we

approximate the second-order space derivative ∂2u(t,x)
∂x2 by the central difference scheme

∂2u(t, x)
∂x2

∣∣∣∣
x=xk

≈ u(t, xk+1)− 2u(t, xk) + u(t, xk−1)

∆x2 ,

and approximate the space–time white noise ∂2W(t,x)
∂x∂t in the spatial direction with the

Euler method

∂2W(t, x)
∂t∂x

∣∣∣∣
x=xk

≈ d
dt

W(t, xk+1)−W(t, xk)

∆x
.

Let uM(t, xk) for k = 0, 1, 2, . . . , M be the approximate solution of u(t, x) at x = xk. De-
fine the following spatial semidiscrete scheme to approximate (1): with k = 1, 2, . . . , M− 1,

C
0 Dα

t uM(t, xk)−
uM(t, xk+1)− 2uM(t, xk) + uM(t, xk−1)

∆x2

= F
(
uM(t, xk

))
+ 0D−γ

t

[
g
(
uM(t, xk)

) d
dt

(
W(t, xk+1)−W(t, xk)

∆x

)]
, t > 0,

uM(t, 0) = uM(t, 1) = 0, t ≥ 0, (4)

uM(0, xk) = u0(xk), t ≥ 0,

duM(0, xk)

dt
= u1(xk), t ≥ 0.

This paper is primarily focused on establishing the convergence rates of
supx∈[0,1] E|uM(t, x)− u(t, x)|2 concerning the varying degrees of smoothness in the initial
data u0 and u1. The key findings are presented in Theorems 1 and 2 within Section 4.

This paper is organized as follows. Section 2 focuses on the continuous problem.
Section 3 considers the spatial discretization. Section 4 examines the error estimates in
the maximum norm in space. Lastly, in Appendix A, we present error estimates of the
Green functions.

Throughout this paper, we denote C as a generic constant that is independent of the
step size ∆x, which could be different at different occurrences. Additionally, we always
assume ε > 0 is a small positive constant.

2. Continuous Problem

In this section, our objective is to determine the expression for the solution u of
Equation (1) and study its spatial regularity.
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Let {λj, ej}, j = 1, 2, . . . , be the eigenvalues and eigenfunctions of the operator

A = − ∂2

∂x2 with D(A) = H1
0(0, 1) ∩ H2(0, 1), which implies that Aej = λjej for j = 1, 2, . . . .

Let Eα,β(z) be the two-parameter Mittag–Leffler function defined, with z ∈ C, by

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α ∈ (1, 2), β ∈ R. (5)

It is well known that the Mittag–Leffler function Eα,β(z) satisfies the following asymp-
totic estimates ([23], Theorem 1.6) and ([24], (1.8.28)), with α ∈ (1, 2), β ∈ R and πα

2 < µ <
min(π, απ), ∣∣Eα,β(z)

∣∣ ≤ C
1

1 + |z| , µ ≤ | arg(z)| ≤ π, (6)

|Eα,α(z)| ≤ C
1

(1 + |z|)2 , µ ≤ | arg(z)| ≤ π. (7)

The following differential formulae are used frequently in this paper.

Lemma 1 ([23], (1.83)). Let α ∈ (1, 2) and γ ∈ [0, 1]. There hold

d
dt

Eα,1(−tαλ) = −λtα−1Eα,α(−tαλ), λ > 0,

d
dt
[tEα,2(−tαλ)] = Eα,1(−tαλ), λ > 0,

d
dt

[
tα+γ−1Eα,α+γ(−tαλ)

]
= tα+γ−2Eα,α+γ−1(−tαλ), λ > 0.

Lemma 2. Assume that Assumption 1 holds true. Further assume that the initial conditions u0
and u1 ∈ C[0, 1]. Then, (1) has the following mild solution:

u(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy +

∫ 1

0
G2(t, x, y)u1(y)dy

+
∫ t

0

∫ 1

0
G3(t− s, x, y)F(u(s, y))dyds +

∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))dW(s, y), (8)

where

G1(t, x, y) :=
∞

∑
j=1

Eα,1
(
−tαλj

)
ej(x)ej(y), G2(t, x, y) :=

∞

∑
j=1

t · Eα,2
(
−tαλj

)
ej(x)ej(y), (9)

G3(t, x, y) :=
∞

∑
j=1

tα−1Eα,α
(
−tαλj

)
ej(x)ej(y), G4(t, x, y) :=

∞

∑
j=1

tα+γ−1Eα,α+γ

(
−tαλj

)
ej(x)ej(y),

respectively.

Proof. Assume that the solution of (1) satisfies u(t, x) = ∑∞
j=1 ej(x)αj(t) for some unknown

functions αj(t). Applying this expression to (1) yields

C
0 Dα

t

∞

∑
j=1

ej(x)αj(t) + A
∞

∑
j=1

ej(x)αj(t) =
∞

∑
j=1

(F(u(t)), ej)ej(x) + 0D−γ
t

∞

∑
j=1

(g(u(t)), ej)ej(x), (10)

which implies that, since Aej = λjej and {ej}∞
j=1 is an orthonormal basis in L2(0, 1),

C
0 Dα

t αj(t) + λjαj(t) = (F(u(t)), ej) + 0D−γ
t (g(u(t)), ej), (11)

αj(0) = (u0, ej), α′j(0) = (u1, ej),

where α′j(t) means the derivative of αj(t).
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Let Fj(t) = (F(u(t)), ej) and gj(t) = (g(u(t)), ej). Taking the Laplacian transform
on (11), we arrive at

zαα̂j(z)− zα−1αj(0)− zα−2α′j(0) + λjα̂j(z) = F̂j(z) + z−γ ĝj(z),

which implies that, by applying the inverse Laplace transform,

αj(t) = Eα,1(−tαλj)αj(0) + tEα,2(−tαλj)α
′
j(0) +

∫ t

0
(t− s)α−1Eα,α(−(t− s)αλj)(F(u(s)), ej)ds

+
∫ t

0
(t− s)α+γ−1Eα,α+γ(−(t− s)αλj)(g(u(s)), ej)ds.

Thus, we have

u(t, x) =
∞

∑
j=1

Eα,1(−tαλj)ej(x)αj(0) +
∞

∑
j=1

tEα,2(−tαλj)ej(x)α′j(0)

+
∞

∑
j=1

∫ t

0
(t− s)α−1Eα,α(−(t− s)α−1λj)(F(u(s)), ej)ej(x)ds (12)

+
∞

∑
j=1

∫ t

0
(t− s)α+γ−1Eα,α+γ(−(t− s)α−1λj)(g(u(s)), ej)ej(x)ds

=
∫ 1

0
G1(t, x, y)u0(y)dy +

∫ 1

0
G2(t, x, y)u1(y)dy

+
∫ t

0

∫ 1

0
G3(t− s, x, y)F(u(s, y))dyds +

∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))dW(s, y),

which completes the proof of Lemma 2.

2.1. The Spatial Regularity of the Solution u(t, x) Defined in (8)

In this subsection, we shall consider the spatial regularity of the solution u(t, x) defined
in (8). To do this, we write the solution into two parts u(t, x) = h(t, x) + n(t, x), where
h(t, x) is the solution of the homogeneous problem

C
0 Dα

t h(t, x)− ∂2h(t,x)
∂x2 = 0, 0 < x < 1, t > 0,

h(t, 0) = h(t, 1) = 0, t > 0,
h(0, x) = u0(x), 0 ≤ x ≤ 1,
∂h(0,x)

∂t = u1(x), 0 ≤ x ≤ 1,

(13)

and n(t, x) is the solution of the inhomogeneous problem
C
0 Dα

t n(t, x)− ∂2n(t,x)
∂x2 = F(u(t, x)) + 0D−γ

t g(u(t, x)) ∂2W(t,x)
∂t∂x , 0 < x < 1, t > 0,

n(t, 0) = n(t, 1) = 0, t > 0,
n(0, x) = 0, 0 ≤ x ≤ 1,
∂n(0,x)

∂t = 0, 0 ≤ x ≤ 1.

(14)

By Lemma 2, it follows that

h(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy +

∫ 1

0
G2(t, x, y)u1(y)dy,

and

n(t, x) =
∫ t

0

∫ 1

0
G3(t− s, x, y)F(u(s, y))dyds +

∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))dW(s, y).
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2.1.1. The Spatial Regularity of the Homogeneous Problem (13) When
u0, u1 ∈ C[0, 1], u0(0) = u0(1) = 0

Let 0 = y0 < y1 < . . . < yM−1 < yM = 1 be a partition of [0, 1] and ∆y = 1
M be the

step size. Denote by k̂M(y) the piecewise constant function

k̂M(y) =

{
yj, yj ≤ y < yj+1, j = 0, 1, . . . , M− 1,
yM, y = yM.

(15)

Lemma 3. Let h(t, x) be the solution of the homogeneous problem (13). Assume that u0, u1 ∈
C[0, 1], u0(0) = u0(1) = 0. Then, we have

E
∣∣∣h(t, y)− h

(
t, k̂M(y)

)∣∣∣2 ≤ Ct−1+ε(∆xr1 + ∆xr2),

where r1 and r2 are defined in (21).

Proof. Note that, by (13) and the Cauchy–Schwarz inequality,

|h(t, y)− h(t, k̂M(y))|2 =

∣∣∣∣∫ 1

0

[
G1(t, y, z)− G1(t, k̂M(y), z)

]
u0(z)dz

∣∣∣∣2
+

∣∣∣∣∫ 1

0

[
G2(t, y, z)− G2(t, k̂M(y), z)

]
u1(z)dz

∣∣∣∣2,

≤
[∫ 1

0

∣∣∣G1(t, y, z)− G1
(
t, k̂M(y), z

)∣∣∣2dz
][∫ 1

0
|u0(z)|2dz

]
+

[∫ 1

0

∣∣∣G2(t, y, z)− G2
(
t, k̂M(y), z

)∣∣∣2dz
][∫ 1

0
|u1(z)|2dz

]
.

By Lemmas A1 and A4, we arrive at

E
∣∣∣h(t, y)− h

(
t, k̂M(y)

)∣∣∣2 ≤ Ct−1+ε(∆xr1 + ∆xr2),

which completes the proof of Lemma 3.

2.1.2. The Spatial Regularity of the Homogeneous Problem (13) When
u0 ∈ C2[0, 1], u0(0) = u0(1) = 0, u1 ∈ C[0, 1]

Lemma 4. Let h(t, x) be the solution of the homogeneous problem (13). Assume that u0 ∈
C2[0, 1], u0(0) = u0(1) = 0, u1 ∈ C[0, 1]. Then, we have

E
∣∣∣h(t, y)− h

(
t, k̂M(y)

)∣∣∣2 ≤ C∆xr3 ||u0||C2[0,1] + Ct−1+ε∆xr2 ||u1||2C[0,1],

where r2, r3 are defined in (21).

Proof. The proof is similar to the proof of ([22], Lemma 4). We omit the proof here.

Remark 1. In Lemma 4, the error bounds pertaining to u0 undergo a transformation from ∆xr1 to
∆xr3 for the smooth initial data u0.

2.1.3. The Spatial Regularity of the Inhomogeneous Problem (14)

In this section, we shall consider the spatial regularity of the inhomogeneous problem (14).

Lemma 5. Assume that Assumption 1 holds. Let n(t, x) be the solution of (14). Then, we have

E|n(t, y)− n
(
t, k̂M(y)

)
|2 ≤ C(∆xr3 + ∆xr4),

where r3 and r4 are defined in (21).
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Proof. We only consider the estimate related to the nonlinear term F(u). The estimate
related to the multiplicative noise term g(u) can be obtained by using a similar method as
that in the proof of ([22], Lemma 5).

Let h1(s, z) := F(u(s, z)). It is easy to show that sups,z E|h1(s, z)|2 < ∞. Further, let

n1(t, x) :=
∫ t

0

∫ 1

0
G3(t− s, x, z)h1(s, z)dzds.

By Lemma A7, we arrive at

E|n1(t, y)− n1(t, k̂M(y))|2 = E
∣∣∣∣∫ t

0

∫ 1

0

[
G3(t− s, y, z)h1(s, z)− G3

(
t− s, k̂M(y), z

)]
h1(s, z)dzds

∣∣∣∣2,

≤ CE
∫ t

0

∫ 1

0

∣∣∣G3(t− s, y, z)− G3

(
t− s, k̂M(y), z

)∣∣∣2|h1(s, z)|2dzds,

≤ C
∫ t

0

∫ 1

0

∣∣∣G3(t− s, y, z)− G3

(
t− s, k̂M(y), z

)∣∣∣2dzds ≤ C∆xr3 ,

where r3 is defined in (21). The proof of Lemma 5 is complete.

3. Spatial Discretization

In this section, we shall consider the expression of the approximate solution in (4) and
study its regularity.

Lemma 6. Assume that Assumption 1 holds. Let uM(t, xk), k = 0, 1, 2, . . . , M be the approximate
solutions in (4). Assume that u0, u1 ∈ C[0, 1]. Let uM(t, x) be the piecewise linear continuous
function satisfying uM(t, x)|x=xk = uM(t, xk), k = 0, 1, 2, . . . , M. Then, we have

uM(t, x) =
∫ 1

0
GM

1 (t− s, x, y)u0(k̂M(y))dy +
∫ 1

0
GM

2 (t− s, x, y)u1(k̂M(y))dy

+
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)F(uM(s, k̂M(y)))dyds

+
∫ t

0

∫ 1

0
GM

4 (t− s, x, y)g(uM(s, k̂M(y)))
∂2WM(s, y)

∂s∂y
dyds, (16)

where, with kM(y), y ∈ [0, 1] defined by (15),

GM
1 (t, x, y) :=

M−1

∑
j=1

Eα,1
(
−tαλj

)
eM

j (x)ej(k̂M(y)), GM
2 (t, x, y) :=

M−1

∑
j=1

t · Eα,2
(
−tαλj

)
eM

j (x)ej(k̂M(y)),

GM
3 (t, x, y) :=

M−1

∑
j=1

tα−1Eα,α
(
−tαλj

)
eM

j (x)ej(k̂M(y)), GM
4 (t, x, y) :=

M−1

∑
j=1

tα+γ−1Eα,α+γ

(
−tαλj

)
eM

j (x)ej(k̂M(y)),

where eM
j (x) is the linear interpolation function of ej(x) defined on xm, m = 1, 2, . . . , M− 1, that

is, eM
j (x) = ej(xm) +

ej(xm+1)−ej(xm)
∆x (x− xm) for x ∈ [xm, xm+1].

Proof. The proof is similar to the proof of ([22], Lemma 6). We omit the proof here.

3.1. The Spatial Regularity of the Solution uM(t, x) Defined in (16)

In this subsection, we shall consider the spatial regularity of the solution uM(t, x)
defined in (16). To do this, we write the solution into two parts

uM(t, x) = hM(t, x) + nM(t, x).



Foundations 2023, 3 770

Here, hM(t, x) and nM(t, x) are the homogeneous and inhomogeneous parts of uM(t, x)
defined by 

C
0 Dα

t hM(t, x)− ∂2hM(t,x)
∂x2 = 0, 0 < x < 1, t > 0,

hM(t, 0) = hM(t, 1) = 0, t > 0,
hM(0, x) = uM

0 (x), 0 ≤ x ≤ 1,
∂hM(0,x)

∂t = uM
1 (x), 0 ≤ x ≤ 1,

(17)

and
C
0 Dα

t nM(t, x)− ∂2nM(t,x)
∂x2 = F(uM(t, x)) + 0D−γ

t g(uM(t, x)) ∂2W(t,x)
∂t∂x , 0 < x < 1, t > 0,

nM(t, 0) = nM(t, 1) = 0, t > 0,
nM(0, x) = 0, 0 ≤ x ≤ 1,
∂nM(0,x)

∂t = 0, 0 ≤ x ≤ 1,

(18)

respectively. Here, uM
0 (x) and uM

1 (x) are the linear interpolation functions of u0(x) and
u1(x) defined on the nodes 0 < x0 < x1 < · · · < xM = 1, respectively.

By Lemma 6, we have

hM(t, x) =
∫ 1

0
GM

1 (t, x, y)u0(k̂M(y))dy +
∫ 1

0
GM

2 (t, x, y)u1(k̂M(y))dy,

and

nM(t, x) =
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)F(uM(s, k̂M(y)))dyds +
∫ t

0

∫ 1

0
GM

4 (t− s, x, y)gM(u(s, k̂M(y)))
∂2WM(s, y)

∂s∂y
dyds.

3.1.1. The Spatial Regularity of the Homogeneous Problem (17) When
u0, u1 ∈ C[0, 1], u0(0) = u0(1) = 0

Lemma 7. Let hM(t, x) be the solution of the homogeneous problem (17). Assume that u0, u1 ∈
C[0, 1], u0(0) = u0(1) = 0. Then, we have

E
∣∣hM(t, y)− hM(t, k̂M(y)

)∣∣2 ≤ Ct−1+ε(∆xr1 + ∆xr2),

where r1 and r2 are defined by (21).

Proof. Note that∣∣hM(t, y)− hM(t, k̂M(y)
∣∣2 =

∣∣∣∣∫ 1

0

[
GM

1 (t, y, z)− GM
1

(
t, k̂M(y), z

)]
u0

(
k̂M(z)

)
dz
∣∣∣∣2

+

∣∣∣∣∫ 1

0

[
GM

2 (t, y, z)− GM
2

(
t, k̂M(y), z

)]
u1

(
k̂M(z)

)
dz
∣∣∣∣2.

Applying the Cauchy–Schwartz inequality, we have

∣∣hM(t, y)− hM(t, k̂M(y)
∣∣2 ≤ [∫ 1

0

∣∣∣GM
1 (t, y, z)− GM

1

(
t, k̂M(y), z

)∣∣∣2 dz
][∫ 1

0

∣∣∣u0

(
k̂M(z)

)∣∣∣2 dz
]

+

[∫ 1

0

∣∣∣GM
2 (t, y, z)− GM

2

(
t, k̂M(y), z

)∣∣∣2 dz
][∫ 1

0

∣∣∣u1

(
k̂M(z)

)∣∣∣2 dz
]

,

which implies that, by Lemmas A2 and A5,

E
∣∣hM(t, y)− hM(t, k̂M(y)

)∣∣2 ≤ Ct−1+ε(∆xr1 + ∆xr2),

where r1 and r2 are defined by (21). The proof of Lemma 7 is complete.
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3.1.2. The Spatial Regularity of the Homogeneous Problem (17) When
u0 ∈ C2[0, 1], u0(0) = u0(1) = 0, u1 ∈ C[0, 1]

Lemma 8. Let hM(t, x) be the solution of the homogeneous problem (17). Assume that u0 ∈
C2[0, 1], u0(0) = u0(1) = 0, u1 ∈ C[0, 1]. Then, we have

E
∣∣∣hM(t, y)− hM

(
t, k̂M(y)

)∣∣∣2 ≤ C∆xr3 + Ct−1+ε∆xr2 ,

where r2 and r3 are defined by (21).

Proof. The proof is similar to the proof of ([22], Lemma 8). We omit the proof here.

3.1.3. The Spatial Regularity of the Inhomogeneous Problem (16)

In this subsection, we shall consider the spatial regularity of the inhomogeneous
problem (18).

Lemma 9. Assume that Assumption 1 holds. Let nM(t, x) be the solution of (18). Then, we have

E
∣∣∣nM(t, y)− nM

(
t, k̂M(y)

)∣∣∣2 ≤ C(∆xr3 + ∆xr4),

where r3 and r4 are defined in (21).

Proof. The proof is similar to the proof of Lemma 5 above. We omit the proof here.

4. Error Estimates

In this section, we shall prove the following two theorems which provide the error
estimates of the proposed numerical methods for the different smoothness of the initial
value u0.

Theorem 1. Let α ∈ (1, 2) and γ ∈ [0, 1]. Assume that Assumption 1 holds. Let u(t, x) and
uM(t, xk), k = 0, 1, 2, . . . , M be the solutions of (1) and (4), respectively. Further assume that
u0, u1 ∈ C1[0, 1], u0(0) = u0(1) = 0. Let ε > 0 be any small number.

1. If F = 0, then we have

sup
x∈[0,1]

E|uM(t, x)− u(t, x)|2 ≤ Ct−1+ε(∆xr1 + ∆xr2) + C(∆xr1 + ∆xr2 + ∆xr4). (19)

2. If F 6= 0, then we have

sup
x∈[0,1]

E|uM(t, x)− u(t, x)|2 ≤ Ct−1+ε(∆xr1 + ∆xr2) + C(∆xr1 + ∆xr2 + ∆xr3 + ∆xr4). (20)

Here, 
r1 = 4

(
1−ε
2α

)
− 1,

r2 = 2,
r3 = 3− 2

α ,

r4 = 3− 2(1−2γ)
α .

(21)

Remark 2. The distinction between the error estimates for F = 0 and F 6= 0 in Theorem 1 lies in
the presence of ∆xr3 , originating from the estimate for the term F.

Remark 3. When the initial value u0 ∈ C1[0, 1] with boundary conditions u0(0) = u0(1) = 0,
the error is bounded by ∆xr1 , where r1 = 4( 1−ε

2α )− 1, α ∈ (1, 2). This error bound exhibits a
reduction as α transitions from 1 to 2. Regarding the time discretization, it is worth noting that the



Foundations 2023, 3 772

convergence order in time will exhibit an increase as the order α transitions from 1 to 2, which we
will report in our next paper.

If the initial value u0 is smooth enough such that u0 ∈ C3[0, 1], u0(0) = u0(1) = 0,
then we have the following result.

Theorem 2. Let α ∈ (1, 2) and γ ∈ [0, 1]. Assume that Assumption 1 holds. Let u(t, x) and
uM(t, xk), k = 0, 1, 2, . . . , M be the solutions of (1) and (4), respectively. Further assume that
u0 ∈ C3[0, 1], u1 ∈ C1[0, 1], u0(0) = u0(1) = 0. Let ε > 0 be any small number. Then, we have

sup
k∈[0,1]

E|uM(t, xk)− u(t, xk)|2 ≤ C(∆xr2 + ∆xr3 + ∆xr4 , (22)

where r2, r3 and r4 are defined in (21).

Remark 4. In this theorem, the error bounds remain identical for both cases, whether F = 0 or
F 6= 0. This uniformity arises from the transformation of the error bounds associated with the initial
value u0, transitioning from ∆xr1 to ∆xr3 .

To prove Theorems 1 and 2, we need the following Grönwall lemma.

Lemma 10 ([1], Lemma 3.4). Let z : [0, T]→ R+ be a function satisfying

0 ≤ z(t) ≤ a + K
∫ t

0
(t− s)σz(s)ds,

with constants a ≥ 0, K > 0 and σ > −1. Then there exists a constant C = C(σ, K, T) such that

z(t) ≤ Ca.

4.1. Proof of Theorem 2

In this subsection, we will give the proof of Theorem 2.

Proof of Theorem 2. We shall consider three cases.
Case 1. F = 0, g = 0. In this case, the solution h(t, x) and the approximate solution

hM(t, x) take the forms

h(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy +

∫ 1

0
G2(t, x, y)u1(y)dy = h1(t, x) + h2(t, x),

hM(t, x) =
∫ 1

0
GM

1 (t, x, y)u0(y)dy +
∫ 1

0
GM

2 (t, x, y)u1(y)dy = hM
1 (t, x) + hM

2 (t, x),

where the Green functions Gj, j = 1, 2 and GM
j , j = 1, 2 are defined by Lemmas 2 and 6,

respectively.
Note that

h1(t, x) = u0(x) +
∫ t

0

∫ 1

0
G3(t, x, y)u′′0 (y)dyds,

hM
1 (t, x) = uM

0 (x) +
∫ t

0

∫ 1

0
GM

3 (t, x, y)
u0(k̂M(y) + 1

M )− 2u0(k̂M(y)) + u0(k̂M(y)− 1
M )

∆x2 dyds,

where uM
0 (x) is the piecewise linear interpolation function of u0(x) on xk, k = 0, 1, 2, . . . , M.

Following the proof of ([22], (41)), we may show, noting that u0 ∈ C3[0, 1],

E|h1(t, x)− hM
1 (t, x)|2 ≤ C(∆x2 + ∆xr3),

where r3 is defined in (21). Further, by Lemma A6, we have
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E|h2(t, x)− hM
2 (t, x)|2 ≤

∫ 1

0
|G2(t, x, y)− GM

2 (t, x, y)|2 dy||u1||2C[0,1]

≤ Ct−1+ε∆xr2 ||u1||2C[0,1] ≤ Ct−1+ε∆xr2 ,

where r2 is defined in (21).
Hence, we obtain the following error estimates when F = 0, g = 0,

E|h(t, x)− hM(t, x)|2 ≤ C(∆x2 + ∆xr3) + Ct−1+ε∆xr2 . (23)

Case 2. F = 0, g 6= 0 and u0(x) = u1(x) = 0. In this case, the solution n(t, x) and the
approximate solution nM(t, x) take the forms, by Lemmas 2 and 6,

n(t, x) =
∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))

∂2W(s, y)
∂s∂y

dyds,

nM(t, x) =
∫ t

0

∫ 1

0
GM

4 (t− s, x, y)g
(

uM
(

s, k̂M(y)
))∂2WM(s, y)

∂s∂y
dyds,

which implies that

E|nM(t, x)− n(t, x)|2

= E
∣∣∣∣ ∫ t

0

∫ 1

0
GM

4 (t− s, x, y)g(uM(s, k̂M(y)))
∂2WM(s, y)

∂s∂y
dyds−

∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))

∂2W(s, y)
∂s∂y

dyds
∣∣∣∣2,

≤ CE
∣∣∣∣ ∫ t

0

∫ 1

0

[
GM

4 (t− s, x, y)g(uM(s, k̂M(y)))− G4(t− s, x, y)g(u(s, y))
]

∂2W(s, y)
∂s∂y

dyds
∣∣∣∣2

+ CE
∣∣∣∣ ∫ t

0

∫ 1

0

[
GM

4 (t− s, x, y)g(uM(s, k̂M(y)))
][

∂2W(s, y)
∂s∂y

− ∂2WM(s, y)
∂s∂y

]
dyds

∣∣∣∣2,

= I1 + I2.

Following the estimate of ([22], (50)), we may show

I1 ≤ C∆xr4 +
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|uM(s, k̂M(y))− u(s, y)|2ds,

and

I2 = E
∣∣∣∣ M−1

∑
k=0

∫ t

0

∫ yk+1

yk

0dW(s, y)
∣∣∣∣2 = 0,

where r4 is defined in (21). Hence, we obtain

E|nM(t, x)− n(t, x)|2 ≤ C∆xr4 +
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|uM(s, k̂M(y))− u(s, y)|2 ds. (24)

Note that

E|uM(s, k̂M(y))− u(s, y)|2 ≤ CE|nM(s, k̂M(y))− nM(s, y)|2 + CE|nM(s, k̂M(y))− n(s, y)|2

+ CE|hM(s, k̂M(y))− hM(s, y)|2 + CE|hM(s, y)− h(s, y)|2,

= I1 + I2 + I3 + I4.

From Lemmas 9 and 8 and (23), it follows, noting that r2 = 2 by (21),



Foundations 2023, 3 774

I1 + I3 + I4 ≤ C
[(

∆xr3 + ∆xr4
)
+
(
∆xr3 + t−1+ε∆xr2

)
+
(
∆x2 + ∆xr3 + t−1+ε∆xr2

)]
≤ C

(
∆xr2 + ∆xr3 + ∆xr4 + t−1+ε∆xr2

)
,

where r2, r3 and r4 are defined by (21). Thus, we have, noting 2(α + γ− 1)− α
2 > −1 for

α ∈ (1, 2),

E|nM(t, x)− n(t, x)|2

≤ C∆xr4 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
(∆xr2 + s−1+ε∆xr2 + ∆xr3 + ∆xr4) + sup

y∈[0,1]
E|nM(s, y)− n(s, y)|2

]
ds,

≤ C(∆xr2 + ∆xr3 + ∆xr4) + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y∈[0,1]
E|nM(s, y)− n(s, y)|2

]
ds,

which implies that

sup
x∈[0,1]

E|nM(t, x)− n(t, x)|2 ≤C
(
∆xr2 + ∆xr3 + ∆xr4

)
+ C

∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y∈[0,1]
E|nM(s, y)− n(s, y)|2

]
ds.

Applying the Grönwall Lemma 10, we arrive at, for F = 0,

sup
x∈[0,1]

E|nM(t, x)− n(t, x)|2 ≤ C
(
∆xr2 + ∆xr3 + ∆xr4

)
. (25)

Case 3. F 6= 0, g = 0 and u0(x) = u1(x) = 0. In this case, the solution n(t, x) and the
approximate solution nM(t, x) take the forms, by Lemmas 2 and 6,

n(t, x) =
∫ t

0

∫ 1

0
G3(t− s, x, y)F(u(s, y)) dyds,

and

nM(t, x) =
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)F(uM(s, k̂M(y))) dyds.

Following the same argument as in ([22], p. 19), we arrive at

sup
x∈[0,1]

E|nM(t, x)− n(t, x)|2 ≤ C
(
∆xr2 + ∆xr3 + ∆xr4

)
, (26)

where r2, r3 and r4 are defined by (21). Together, these estimates complete the proof of
Theorem.

4.2. Proof of Theorem 1

In this subsection, we will give the proof of Theorem 1.

Proof of Theorem 1. Similar as in the proof of Theorem 2, we consider three cases.
Case 1. F = 0, g = 0. In this case, the solution h(t, x) and the approximate solution

hM(t, x) take the forms

h(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy +

∫ 1

0
G2(t, x, y)u1(y)dy,

hM(t, x) =
∫ 1

0
GM

1 (t, x, y)u0(y)dy +
∫ 1

0
GM

2 (t, x, y)u1(y)dy.



Foundations 2023, 3 775

By applying the Cauchy–Schwarz inequality, we arrive at

|h(t, x)− hM(t, x)|2

≤ C
∣∣∣∣ ∫ 1

0
[GM

1 (t, x, y)− G1(t, x, y)]u0(k̂M(y))dy
∣∣∣∣2 + C

∣∣∣∣ ∫ 1

0
G1(t, x, y)[u0(k̂M(y))− u0(y)]dy

∣∣∣∣2
+ C

∣∣∣∣ ∫ 1

0
[GM

2 (t, x, y)− G2(t, x, y)]u1(k̂M(y))dy
∣∣∣∣2 + C

∣∣∣∣ ∫ 1

0
G2(t, x, y)[u1(k̂M(y))− u1(y)]dy

∣∣∣∣2,

≤ C
[ ∫ 1

0
|GM

1 (t, x, y)− G1(t, x, y)|2dy
][ ∫ 1

0
|u0(k̂M(y))|2dy

]
+ C

[
|G1(t, x, y)|2dy

][ ∫ 1

0
|u0(k̂M(y))− u0(y)|2dy

]
+ C

[ ∫ 1

0
|GM

2 (t, x, y)− G2(t, x, y)|2dy
][ ∫ 1

0
|u1(k̂M(y))|2dy

]
+ C

[
|G2(t, x, y)|2dy

][ ∫ 1

0
|u1(k̂M(y))− u1(y)|2dy

]
.

An application of the mean-value theorem yields

|h(t, x)− hM(t, x)|2

≤ C
[ ∫ 1

0
|GM

1 (t, x, y)− G1(t, x, y)|2dy
]
||u0||2C[0,1] + C

[ ∫ 1

0
|G1(t, x, y)|2dy

]
∆x2||u0||2C1[0,1]

+ C
[ ∫ 1

0
|GM

2 (t, x, y)− G2(t, x, y)|2dy
]
||u1||2C[0,1] + C

[ ∫ 1

0
|G2(t, x, y)|2dy

]
∆x2||u1||2C1[0,1].

It follows that, by Lemmas A1, A3, A4, and A6,

|h(t, x)− hM(t, x)|2 ≤Ct−1+ε∆xr1 ||u0||2C[0,1] + Ct
−α
2 ∆x2||u0||2C1[0,1]

+ Ct−1+ε∆xr2 ||u1||2C[0,1] + Ct2− α
2 ∆x2||u1||2C1[0,1], (27)

where r1 and r2 are defined in (21).
Case 2. F = 0, g 6= 0 and u0(x) = u1(x) = 0. In this case, the solution n(t, x) and the

approximate solution nM(t, x) take the forms

n(t, x) =
∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))

∂2W(s, y)
∂s∂y

dyds,

nM(t, x) =
∫ t

0

∫ 1

0
GM

4 (t− s, x, y)g
(

uM
(

s, k̂M(y)
))∂2WM(s, y)

∂s∂y
dyds.

Following the same argument as in Case 2 in the proof of Theorem 2, we obtain

|nM(t, x)− n(t, x)|2 ≤ C∆xr4 + C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|uM(s, k̂M(y))− u(s, y)|2 ds,

where r4 is defined in (21). Note that

E|uM(s, k̂M(y))− u(s, y)|2 ≤E|nM(s, k̂M(y))− nM(s, y)|2 +E|nM(s, y)− n(s, y)|2

+E|hM(s, k̂M(y))− hM(s, y)|2 +E|hM(s, y)− h(s, y)|2,

which implies that
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E|n(t, x)− nM(t, x)|2 ≤C∆xr4 + C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|nM(s, k̂M(y))− nM(s, y)|2ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|nM(s, k̂M(y))− n(s, y)|2ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|hM(s, k̂M(y))− hM(s, y)|2ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|hM(s, k̂M(y))− h(s, y)|2ds,

≤C∆xr4 + I1(t) + I2(t) + I3(t) + I4(t).

By Lemmas 9 and 7 and (27), we have

I1(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 ∆xr4 ds ≤ C∆xr4 ,

I3(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 (∆xr1 + ∆xr2)s−1+ε ds ≤ C(∆xr1 + ∆xr2),

I4(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 (∆xr1 + ∆xr2)s−1+ε ds ≤ C(∆xr1 + ∆xr2),

where r1, r2 and r4 are defined in (21). Thus, we arrive at

E|nM(t, x)− n(t, x)|2 ≤ C∆xr4 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y∈[0,1]
E|nM(s, y)− n(s, y)|2ds

]
+ C∆xr1 + C∆xr2 .

An application of the Grönwall Lemma 10 yields

E|nM(t, x)− n(t, x)|2 ≤ C(∆xr1 + ∆xr2 + ∆xr4),

where r1, r2 and r4 are defined in (21).
Case 3. F 6= 0, g = 0 and u0(x) = u1(x) = 0. In this case, the solution n(t, x) and the

approximate solution nM(t, x) take the forms, by Lemmas 2 and 6,

n(t, x) =
∫ t

0

∫ 1

0
G3(t− s, x, y)F(u(s, y)) dyds +

∫ t

0

∫ 1

0
G4(t− s, x, y)g(u(s, y))

∂2W(s, y)
∂s∂y

dyds,

nM(t, x) =
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)F(uM(s, k̂M(y))) dyds +
∫ t

0

∫ 1

0
GM

4 (t− s, x, y)g(u(s, k̂M(y)))
∂2WM(s, y)

∂s∂y
dyds.

Following the same argument as in Case 2 in the proof of Theorem 2, we arrive at

E|nM(t, x)− n(t, x, y)|2 ≤ C∆xr4 + C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|nM(s, k̂M(y))− nM(s, y)|2ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|nM(s, k̂M(y))− n(s, y)|2ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|hM(s, k̂M(y))− hM(s, y)|2ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y∈[0,1]

E|hM(s, y)− h(s, y)|2ds,

≤ C∆xr4 + I′1(t) + I′2(t) + I′3(t) + I′4(t).

By Lemmas 9 and 7 and (27), we have
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I′1(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 (∆xr3 + ∆xr4) ds ≤ C(∆xr3 + ∆xr4),

I′3(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 (∆xr1 + ∆xr2)s−1+ε ds ≤ C(∆xr1 + ∆xr2),

I′4(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 (∆xr1 + ∆xr2)s−1+ε ds ≤ C(∆xr1 + ∆xr2),

where r1, r2, r3 and r4 are defined in (21). Hence, we arrive at

E|nM(t, x)− n(t, x)|2 ≤ C(∆xr3 + ∆xr4)

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y∈[0,1]
E|nM(s, y)− n(s, y)|2ds

]
+ C∆xr1 + C∆xr2 .

An application of the Grönwall Lemma 10 yields

E|nM(t, x)− n(t, x)|2 ≤ C(∆xr1 + ∆xr2 + ∆xr3 + ∆xr4),

where r1, r2, r3 and r4 are defined in (21). The proof of Theorem 1 is complete.

5. Conclusions

This paper presents a spatial discretization scheme for approximating the stochastic
semilinear superdiffusion equation, wherein the noise exhibits white properties in both
time and space domains. We employ the Euler method to approximate the noise in the
spatial direction and utilize the central difference method to approximate the second-
order space derivative. By employing the Green functions, we provide both exact and
approximate solutions. Moreover, we examine the spatial regularities of these solutions for
the proposed problem. Additionally, a comprehensive discussion of error estimates in the
maximum norm in space is included. In our forthcoming research, we will explore the time
discretization of the stochastic nonlinear superdiffusion equation driven by fractionally
integrated multiplicative space–time white noise.
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Appendix A

Appendix A.1

In this Appendix, we shall give some estimates of the Green functions Gi(t, x, y),
i = 1, 2, 3, 4 and their discretized analogues GM

i (t, x, y), i = 1, 2, 3, 4,
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G1(t, x, y) =
∞

∑
j=1

Eα,1
(
−tαλj

)
ej(x)ej(y), G2(t, x, y) =

∞

∑
j=1

tEα,2
(
−tαλj

)
ej(x)ej(y),

G3(t, x, y) =
∞

∑
j=1

tα−1Eα,α
(
−tαλj

)
ej(x)ej(y), G4(t, x, y) =

∞

∑
j=1

tα+γ−1Eα,α+γ

(
−tαλj

)
ej(x)ej(y),

GM
1 (t, x, y) =

M−1

∑
j=1

Eα,1

(
−tαλM

j

)
eM

j (x)eM
j (k̂M(y)), GM

2 (t, x, y) =
M−1

∑
j=1

tEα,2

(
−tαλM

j

)
eM

j (x)eM
j (k̂M(y)),

GM
3 (t, x, y) =

M−1

∑
j=1

tα−1Eα,α

(
−tαλM

j

)
eM

j (x)eM
j (k̂M(y)),

GM
4 (t, x, y) =

M−1

∑
j=1

tα+γ−1Eα,α+γ

(
−tαλM

j

)
eM

j (x)eM
j (k̂M(y)).

Appendix A.2. Green Function G1(t, x, y) and Its Discretized Analogue GM
1 (t, x, y)

In this subsection, we shall give the estimates of the Green function G1(t, x, y) and its
discretized analogue GM

1 (t, x, y), defined in Lemmas 4 and 6, respectively. The proofs are
similar to the proofs of ([22], Lemmas A1–A3). We omit the proofs here.

Lemma A1. Let α ∈ (1, 2). Then we have, for any small ε > 0,

∫ 1

0
|G1(t, x, y)|2 dy ≤ Ct−

α
2 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0
|G1(s, x, y)|2 dyds ≤ Ctε, 0 ≤ x ≤ 1,∫ 1

0

∣∣∣G1(t, y, z)− G1

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr1 , 0 ≤ y ≤ 1,∫ t

0

∫ 1

0

∣∣∣G1(s, y, z)− G1

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr1 , 0 ≤ y ≤ 1,

where r1 is defined in Theorem 21.

Lemma A2. Let α ∈ (1, 2). Then we have, for any small ε > 0,

∫ 1

0

∣∣∣GM
1 (t, x, y)

∣∣∣2 dy ≤ Ct−
α
2 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0

∣∣∣GM
1 (s, x, y)

∣∣∣2 dyds ≤ Ctε, 0 ≤ x ≤ 1,∫ 1

0

∣∣∣GM
1 (t, y, z)− GM

1

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr1 , 0 ≤ y ≤ 1,∫ t

0

∫ 1

0

∣∣∣GM
1 (s, y, z)− GM

1

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr1 , 0 ≤ y ≤ 1,

where r1 is defined in (21).

Lemma A3. Let α ∈ (1, 2). Then we have, for any small ε > 0,

∫ 1

0

∣∣∣G1(t, x, y)− GM
1 (t, x, y)

∣∣∣2 dy ≤ Ct−1+ε∆xr1 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0

∣∣∣G1(s, x, y)− GM
1 (s, x, y)

∣∣∣2 dyds ≤ Ctε∆xr1 , 0 ≤ x ≤ 1,

where r1 is defined in (21).
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Appendix A.3. Green Function G2(t, x, y) and Its Discretized Analogue GM
2 (t, x, y)

In this subsection, we shall give the estimates of the Green function G2(t, x, y) and its
discretized analogue GM

2 (t, x, y) defined in Lemmas 4 and 6, respectively.

Lemma A4. Let α ∈ (1, 2). Then we have, for any small ε > 0,

∫ 1

0
|G2(t, x, y)|2 dy ≤ Ct2− α

2 , 0 ≤ x ≤ 1, (A1)∫ t

0

∫ 1

0
|G2(s, x, y)|2 dyds ≤ Ct3− α

2 , 0 ≤ x ≤ 1, (A2)∫ 1

0

∣∣∣G2(t, y, z)− G2

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr2 , 0 ≤ y ≤ 1, (A3)∫ t

0

∫ 1

0

∣∣∣G2(s, y, z)− G2

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr2 , 0 ≤ y ≤ 1, (A4)

where r2 is defined in (21).

Proof. We first prove (A1). Note that

∫ 1

0
|G2(t, x, y)|2 dy =

∫ 1

0

[ ∞

∑
j=1

tEα,2(−tαλj)ej(x)ej(y)
]2

dy,

we have, since {ej(y)}∞
j=1 is an orthonormal basis in H = L2(0, 1),

∫ 1

0
|G2(t, x, y)|2 dy ≤ C

∞

∑
j=1

t2
(

1
1 + tαλj

)2

≤ Ct2
∞

∑
j=1

(
1

1 + tα j2

)2

,

≤ Ct2
∫ ∞

0

(
1

1 + tαx2

)2

dx ≤ Ct2t−
α
2

∫ ∞

0

(
1

1 + y2

)2

dy ≤ Ct2− α
2 ,

which shows (A1).
For (A2), we have∫ t

0

∫ 1

0
|G2(t, x, y)|2 dyds ≤ C

∫ t

0
s2− α

2 ds ≤ Ct3− α
2 .

For (A3), we need to split the summation into two parts:

∫ 1

0

∣∣∣G2(t, y, z)− G2

(
t, k̂M(y), z

)∣∣∣2 dz

=
∞

∑
j=M

t2E2
α,2
[
ej(y)− ej(k̂M(y))

]2
+

M−1

∑
j=1

t2E2
α,2
[
ej(y)− ej(k̂M(y))

]2
= I1 + I2.

For I1, we have, noting that |ej(y)| ≤ C, |ej(k̂M(y))| ≤ C,

I1 =
∞

∑
j=M

t2E2
α,2
[
ej(y)− ej(k̂M(y))

]2 ≤ C
∞

∑
j=M

t2E2
α,2(−tαλj).

Applying (6), we arrive at, with 0 < γ1 ≤ 1,

I1 ≤ C
∞

∑
j=M

t2
(

1
1 + tαλj

)2(γ1+1−γ1)

≤ C
∞

∑
j=M

t2
(

1
1 + tαλj

)2γ1

≤ C
∞

∑
j=M

t2 1

t2γ1αλ
2γ1
j

≤ C
∞

∑
j=M

t2 1
t2γ1α j4γ1

≤ C
∞

∑
j=M

t2−2γ1α 1
j4γ1

.
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Case 1. Choose γ1 = 1. We obtain that if 2α ≤ 3− ε, then

I1 ≤ C
∞

∑
j=M

t2−2α 1
j4

= C
∞

∑
j=M

t−1+εt3−2α−ε 1
j4
≤ Ct−1+ε

∞

∑
j=M

1
j4
≤ Ct−1+ε∆x3.

Case 2. If 2α > 3 − ε, then we may choose 2 − 2γ1α = −1 + ε, that is,
γ1 = 3−ε

2α < 1, and obtain

I1 ≤ Ct−1+ε
∞

∑
j=M

1

j4
(

3−ε
2α

) ≤ Ct−1+ε
∫ ∞

M
x−4
(

3−ε
2α

)
dx ≤ Ct−1+ε M−4

(
3−ε
2α

)
+1 = Ct−1+ε∆x4

(
3−ε
2α

)
−1.

Note that 4
( 3−ε

2α

)
− 1 > 2 for all α ∈ (1, 2), which implies that

I1 ≤ Ct−1+ε∆xr2 ,

where r2 is defined in (21).
For I2, we have, using the mean-value theory, with 0 < γ1 ≤ 1,

I2 =
M−1

∑
j=1

t2E2
α,2
[
ej(y)− ej(k̂M(y))

]2 ≤ M−1

∑
j=1

t2E2
α,2
∣∣e′j(ξ)(y− k̂M(y))

∣∣2,

≤ C
M−1

∑
j=1

t2E2
α,2

(
j

M

)2

≤ C
M−1

∑
j=1

t2
(

1
1 + tαλj

)2γ1( j2

M2

)
,

≤ C
M−1

∑
j=1

t2
(

1
tαλj

)2γ1( j2

M2

)
≤ C

M−1

∑
j=1

t2
(

1
tα j2

)2γ1( j2

M2

)
,

≤ C
M2

M−1

∑
j=1

t2
(

1
t2αγ1 j4γ1

)
j2 ≤ C

M2

M−1

∑
j=1

t2−2αγ1

(
1

j4γ1−2

)
.

Case 1. Choose γ1 = 1. We obtain that if 2α ≤ 3− ε, then

I2 ≤ Ct−1+ε
M−1

∑
j=1

j−2

M2 < Ct−1+ε∆x2.

Case 2. If 2α > 3− ε, then we may choose 2− 2γ1α = −1 + ε, that is, γ1 = 3−ε
2α < 1

and obtain

I2 ≤ Ct−1+ε
M−1

∑
j=1

j2−4γ1

M2 ≤ Ct−1+ε
[ ∫ M

1
x2−4γ1 dx

] 1
M2 = Ct−1+ε

[ ∫ M

1
x2−4

(
3−ε
2α

)
dx
] 1

M2 .

Note that 3− 4
( 3−ε

2α

)
< 0 for all α ∈ (1, 2) since ε > 0 is an arbitrarily small number,

which implies that

I2 ≤ Ct−1+ε∆x2 = Ct−1+ε∆xr2 ,

where r2 is defined in (21). Combining I1 and I2, we obtain (A3).
Finally, (A4) follows from

∫ t

0

∫ 1

0

∣∣∣G2(s, y, z)− G2

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ C
∫ t

0
s−1+ε∆xr2 ds ≤ Ctε∆xr2 ,

which completes the proof of Lemma A4.

Lemma A5. Let α ∈ (1, 2). Then, we have, for any small ε > 0
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∫ 1

0

∣∣∣GM
2 (t, x, y)

∣∣∣2 dy ≤ Ct2− α
2 , 0 ≤ x ≤ 1, (A5)∫ t

0

∫ 1

0

∣∣∣GM
2 (s, x, y)

∣∣∣2 dyds ≤ Ct3− α
2 , 0 ≤ x ≤ 1, (A6)∫ 1

0

∣∣∣GM
2 (t, y, z)− GM

2

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr2 , 0 ≤ y ≤ 1, (A7)∫ t

0

∫ 1

0

∣∣∣GM
2 (s, y, z)− GM

2

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr2 , 0 ≤ y ≤ 1, (A8)

where r2 is defined in (21).

Proof. We first prove (A5). Note that

∫ 1

0

∣∣∣GM
2 (t, x, y)

∣∣∣2 dy ≤
∫ 1

0

[ M−1

∑
j=1

tEα,2(−tαλM
j )eM

j (x)ej(k̂M(y))
]2

dy.

Since ej(x), j = 1, 2, . . . are bounded and

∫ 1

0
ej(k̂M(y))el(k̂M(y))dy = ∆x

M−1

∑
j=1

ej(yk)el(yk) =

{
1, j = l
0, j 6= l

,

we have, noting that λM
j ≈ λj, j = 1, 2, . . . , M− 1,

∫ 1

0

∣∣∣GM
2 (t, x, y)

∣∣∣2 dy ≤ Ct2
M−1

∑
j=1

Eα,2(−tαλj) ≤ Ct2
∞

∑
j=1

Eα,2(−tαλj) ≤ Ct2− α
2 ,

which shows (A5).
For (A6), we have

∫ t

0

∫ 1

0

∣∣∣GM
2 (s, x, y)

∣∣∣2 dyds ≤ C
∫ t

0
s2− α

2 ds ≤ C
[

1
3− α

2
s3− α

2

]t

0
≤ Ct3− α

2 .

For (A7), we have

∫ 1

0

∣∣∣GM
2 (t, y, z)− GM

2

(
t, k̂M(y), z

)∣∣∣2 dz

=
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

tEα,2(−tαλM
j )

[
eM

j (y)− eM
j (k̂M(y))

]
ej(k̂M(z))

∣∣∣∣∣
2

dz,

≤
M−1

∑
j=1

t2E2
α,2(−tαλM

j )

[
eM

j (y)− eM
j (k̂M(y))

]2

.

Applying the mean value theory, we obtain

∫ 1

0

∣∣∣GM
2 (t, y, z)− GM

2

(
t, k̂M(y), z

)∣∣∣2 dz ≤
M−1

∑
j=1

t2E2
α,2(−tαλM

j )
∣∣∣e′j(ξ)(y− k̂M(y))

∣∣∣2,

≤ C
M−1

∑
j=1

t2E2
α,2(−tαλM

j )

(
j

M

)2

.

Following the same argument as in the proof of (A3), we arrive at
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∫ 1

0

∣∣∣GM
2 (t, y, z)− GM

2

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr2 ,

which shows (A6).
Finally, (A8) follows from

∫ t

0

∫ 1

0

∣∣∣GM
2 (s, y, z)− GM

2

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ C
∫ t

0
s−1+ε∆xr2 ds ≤ Ctε∆xr2 .

The proof of lemma A5 is complete.

Lemma A6. Let α ∈ (1, 2). Then we have, for any small ε > 0,

∫ 1

0

∣∣∣G2(t, x, y)− GM
2 (t, x, y)

∣∣∣2 dy ≤ Ct−1+ε∆xr2 , 0 ≤ x ≤ 1, (A9)∫ t

0

∫ 1

0

∣∣∣G2(s, x, y)− GM
2 (s, x, y)

∣∣∣2 dyds ≤ Ctε∆xr2 , 0 ≤ x ≤ 1, (A10)

where r2 is defined in (21).

Proof. We first show (A9). Note that

∫ 1

0

∣∣∣G2(t, x, y)− GM
2 (t, x, y)

∣∣∣2 dy

≤
∫ 1

0

∣∣∣∣∣ ∞

∑
j=1

tEα,2(−λjtα)ej(x)ej(y)−
M−1

∑
j=1

tEα,2(−λM
j tα)eM

j (x)eM
j (k̂M(y))

∣∣∣∣∣
2

dy

≤ C
∫ 1

0

∣∣∣∣∣ ∞

∑
j=M

tEα,2(−λjtα)ej(x)ej(y)

∣∣∣∣∣
2

dy + C
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)ej(x)
[

ej(y)− ej(k̂M(y))
]∣∣∣∣∣

2

dy

+ C
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)

[
ej(x)− eM

j (x)
]

eM
j (k̂M(y))

∣∣∣∣∣
2

dy

+ C
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

[
tEα,2(−λjtα)− tEα,2(−λM

j tα)

]
eM

j (x)eM
j (k̂M(y))

∣∣∣∣∣
2

dy

= I1(t) + I2(t) + I3(t) + I4(t).

For I1(t), we have

I1(t) = C
∫ 1

0

∣∣∣∣∣ ∞

∑
j=M

tEα,2(−λjtα)ej(x)ej(y)

∣∣∣∣∣
2

dy ≤ C
∞

∑
j=M

t2E2
α,2(−λjtα) ≤ Ct−1+ε∆xr2 .

For I2(t), we have
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I2(t) = C
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)ej(x)
[

ej(y)− ej(k̂M(y))
]∣∣∣∣∣

2

dy,

= C
M−1

∑
k=0

∫ yk+1

yk

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)ej(x)
∫ y

yk

e′j(ξ)dξ

∣∣∣∣∣
2

dy,

= C
M−1

∑
k=0

∫ yk+1

yk

∣∣∣∣∣
∫ y

yk

M−1

∑
j=1

tEα,2(−λjtα)ej(x)e′j(ξ)dξ

∣∣∣∣∣
2

dy,

≤ C
M−1

∑
k=0

∫ yk+1

yk

1
M

∫ yk+1

yk

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)ej(x)e′j(ξ)

∣∣∣∣∣
2

dξdy,

=
C

M2

∫ 1

0

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)ej(x)e′j(ξ)

∣∣∣∣∣
2

dξ.

Note that

∫ 1

0
e′j(ξ)e

′
l(ξ)dξ =

{
j2π2, j = 1,
0, j 6= l,

and that ej(x), j = 1, 2, . . . are bounded, so we arrive at

I2(t) ≤ C
(

1
M

)2 M−1

∑
j=1

t2E2
α,2(−λjtα)j2 ≤ C

M−1

∑
j=1

(
j

M

)2

t2E2
α,2(−λjtα) ≤ Ct−1+ε∆xr2 .

For I3(t), we have

I3(t) = C
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

tEα,2(−λjtα)

[
ej(x)− eM

j (x)
]

eM
j (k̂M(y))

∣∣∣∣∣
2

dy

= C
M−1

∑
j=1

t2E2
α,2(−λjtα)

[
ej(x)− eM

j (x)
]2

.

By the linear interpolation theorem, it follows that

I3(t) ≤ C
M−1

∑
j=1

t2E2
α,2(−λjtα)

[
e′′j (ξ)(y− yk)(y− yk+1)

]2

≤ C
M−1

∑
j=1

t2E2
α,2(−λjtα)

[
C(j2π2)

1
M2

]2

≤ C
M−1

∑
j=1

t2E2
α,2(−λjtα)

(
j

M

)4

≤ C
M−1

∑
j=1

t2E2
α,2(−λjtα)

(
j

M

)2

≤ Ct−1+ε∆xr2 .

For I4(t), we have

I4(t) ≤ C
∫ 1

0

∣∣∣∣∣M−1

∑
j=1

[
tEα,2(−λjtα)− tEα,2(−λM

j tα)

]
eM

j (x)eM
j (k̂M(y))

∣∣∣∣∣
2

dy

≤ C
M−1

∑
j=1

∣∣∣tEα,2(−λjtα)− tEα,2(−λM
j tα)

∣∣∣2.

Note that, from Lemma 1,

d
dt

[
tEα,2(−tαλ)

]
= Eα,1(−tαλ),
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which implies that

tE′α,2(−tαλ) = t1−αλ−1
[

Eα,1(−tαλ)− Eα,2(−tαλ)

]
, (A11)

where E′α,2(x) is the derivative of Eα,2(x) with respect to x.
By using the mean value theorem and (A11), we arrive at, with 0 < γ1 ≤ 1,

I4(t) ≤ C
M−1

∑
j=1

∣∣∣tEα,2(−λjtα)− tEα,2(−λM
j tα)

∣∣∣2 = C
M−1

∑
j=1

∣∣∣tE′α,2(ξ)(t
α(λj − λM

j ))
∣∣∣2

≤ C
M−1

∑
j=1

∣∣∣tE′α,2(−tαλj)(tα(λj − λM
j ))

∣∣∣2
= C

M−1

∑
j=1

∣∣t1−αλ−1
j
[
Eα,1(−tαλj)− Eα,2(−tαλj)

]
(tα(λj − λM

j )
∣∣2

≤ C
M−1

∑
j=1

∣∣∣tλ−1
j

( 1
1 + tαλj

)γ1
(λj − λM

j )
∣∣∣2,

which implies that, using |λj − λM
j | ≤ C j4

M2 , ([22], (A18)),

I4(t) ≤ C
M−1

∑
j=1

∣∣∣tλ−1
j (tαλj)

−γ1
j4

M2

∣∣∣2 ≤ C
M−1

∑
j=1

∣∣∣t1−αγ1 j−2−2γ1
j4

M2

∣∣∣2
≤ Ct2−2αγ1

M−1

∑
j=1

j4−4γ1

M4 = Ct2−2αγ1
1

M4γ1−1 .

Case 1. If 2α ≤ 3− ε, then we may choose γ1 = 1 and obtain

I4(t) ≤ Ct2−2α 1
M3 ≤ Ct−1+ε∆x3 ≤ Ct−1+ε∆xr2 .

Case 2. If 2α > 3− ε, then we may choose 2− 2αγ1 = −1+ ε, that is γ1 = 3−ε
2α < 1 and

obtain, noting that 4 3−ε
2α − 1 > 2 for any α ∈ (1, 2) since ε > 0 is an arbitrarily small number,

I4(t) ≤ Ct−1+ε∆x4 3−ε
2α −1 ≤ Ct−1+ε∆x2 = Ct−1+ε∆xr2 .

Thus, we have
I4(t) ≤ Ct−1+ε∆xr2 ,

where r2 is defined in (21). Combining I1(t), I2(t), I3(t) and I4(t), we show (A9).
Finally, (A9) follows from

∫ t

0

∫ 1

0

∣∣∣G2(s, x, y)− GM
2 (s, x, y)

∣∣∣2 dyds ≤ C∆xr2

∫ t

0
s−1+εds ≤ Ct−ε∆xr2 .

The proof of Lemma A6 is concluded.

Appendix A.4. Green Function G3(t, x, y) and Its Discretized Analogue GM
3 (t, x, y)

In this subsection, we shall give the estimates of the Green function G3(t, x, y) and its
discretized analogue GM

3 (t, x, y) defined in Lemmas 4 and 6, respectively. The proofs are
similar to the proofs of ([22], Lemmas A4–A6). We omit the proofs here.

Lemma A7. Let α ∈ (1, 2). Assume that Assumption 1 holds. Then we have, with any ε > 0,
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∫ 1

0
|G3(t, x, y)|2 dy ≤ Ct−

α
2 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0
|G3(s, x, y)|2 dyds ≤ Ctε, 0 ≤ x ≤ 1,∫ 1

0

∣∣∣G3(t, y, z)− G3

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr3 , 0 ≤ y ≤ 1,∫ t

0

∫ 1

0

∣∣∣G3(s, y, z)− G3

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr3 , 0 ≤ y ≤ 1,

where r3 is defined in (21).

Lemma A8. Let α ∈ (1, 2). Assume that Assumption 1 holds. Then we have, with any ε > 0,∫ 1

0

∣∣∣GM
3 (t, x, y)

∣∣∣2 dy ≤ Ct−
α
2 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0

∣∣∣GM
3 (s, x, y)

∣∣∣2 dyds ≤ Ctε, 0 ≤ x ≤ 1,∫ 1

0

∣∣∣GM
3 (t, y, z)− GM

3

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr3 , 0 ≤ y ≤ 1,∫ t

0

∫ 1

0

∣∣∣GM
3 (s, y, z)− GM

3

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr3,, 0 ≤ y ≤ 1,

where r3 is defined in (21).

Lemma A9. Let α ∈ (1, 2). Assume that Assumption 1 holds. Then we have, with any ε > 0,∫ 1

0

∣∣∣G3(t, x, y)− GM
3 (t, x, y)

∣∣∣2 dy ≤ Ct−1+ε∆xr3 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0

∣∣∣G3(s, x, y)− GM
3 (s, x, y)

∣∣∣2 dyds ≤ Ctε∆xr3 , 0 ≤ x ≤ 1,

where r3 is defined in (21).

Appendix A.5. Green Function G4(t, x, y) and Its Discretized Analogue GM
4 (t, x, y)

In this subsection, we shall give the estimates of the Green function G4(t, x, y) and its
discretized analogue GM

4 (t, x, y) defined in Lemmas 4 and 6, respectively. The proofs are
similar to the proofs of ([22], Lemmas A7–A9). We omit the proofs here.

Lemma A10. Let α ∈ (1, 2). Assume that Assumption 1 holds. Then we have, with any ε > 0,∫ 1

0
|G4(t, x, y)|2 dy ≤ Ct−

α
2 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0
|G4(s, x, y)|2 dyds ≤ Ctε, 0 ≤ x ≤ 1,∫ 1

0

∣∣∣G4(t, y, z)− G4

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr4 , 0 ≤ y ≤ 1,∫ t

0

∫ 1

0

∣∣∣G4(s, y, z)− G4

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr4 , 0 ≤ y ≤ 1,

where r4 is defined in (21).
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Lemma A11. Let α ∈ (1, 2). Assume that Assumption 1 holds. Then we have, with any ε > 0,∫ 1

0

∣∣∣GM
4 (t, x, y)

∣∣∣2 dy ≤ Ct−
α
2 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0

∣∣∣GM
4 (s, x, y)

∣∣∣2 dyds ≤ Ctε, 0 ≤ x ≤ 1,∫ 1

0

∣∣∣GM
4 (t, y, z)− GM

4

(
t, k̂M(y), z

)∣∣∣2 dz ≤ Ct−1+ε∆xr4 , 0 ≤ y ≤ 1,∫ t

0

∫ 1

0

∣∣∣GM
4 (s, y, z)− GM

4

(
s, k̂M(y), z

)∣∣∣2 dzds ≤ Ctε∆xr4,, 0 ≤ y ≤ 1,

where r4 is defined in (21).

Lemma A12. Let α ∈ (1, 2). Assume that Assumption 1 holds. Then we have, with any ε > 0,∫ 1

0

∣∣∣G4(t, x, y)− GM
4 (t, x, y)

∣∣∣2 dy ≤ Ct−1+ε∆xr4 , 0 ≤ x ≤ 1,∫ t

0

∫ 1

0

∣∣∣G4(s, x, y)− GM
4 (s, x, y)

∣∣∣2 dyds ≤ Ctε∆xr4 , 0 ≤ x ≤ 1,

where r4 is defined in (21).
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