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Abstract: Modeling the vulnerabilities lifecycle and exploitation frequency are at the core of security
of networks evaluation. Pareto, Weibull, and log-normal models have been widely used to model the
exploit and patch availability dates, the time to compromise a system, the time between compromises,
and the exploitation volumes. Random samples (systematic and simple random sampling) of the
time from publication to update of cybervulnerabilities disclosed in 2021 and in 2022 are analyzed to
evaluate the goodness-of-fit of the traditional Pareto and log-normal laws. As censoring and thinning
almost surely occur, other heavy-tailed distributions in the domain of attraction of extreme value or
geo-extreme value laws are investigated as suitable alternatives. Goodness-of-fit tests, the Akaike
information criterion (AIC), and the Vuong test, support the statistical choice of log-logistic, a geo-
max stable law in the domain of attraction of the Fréchet model of maxima, with hyperexponential
and general extreme value fittings as runners-up. Evidence that the data come from a mixture of
differently stretched populations affects vulnerabilities scoring systems, specifically the common
vulnerabilities scoring system (CVSS).

Keywords: cybervulnerabilities; CVSS metrics; vulnerabilities lifecycle; heavy-tailed models;
extremes and thinned extremes; risk management

MSC: 68M25; 62G32

1. Introduction

A vulnerability is a weakness, for instance a design flaw or an implementation bug,
that can be exploited to threaten a computer system, resulting in the stealing of data, in-
stallation of malware, or the running of malicious code. Cybervulnerabilities are a major
economic concern. Their severity and the risk of consequent exploitation guide the prioriti-
zation of those needing urgent patching or remediation. From 2005 onwards, the common
vulnerabilities scoring system (CVSS) [1], using base, temporal, and environmental metrics,
has been a standard approach for assessing the severity of vulnerabilities, particularly
in the banking sector, although its usefulness is compromised, since the use of temporal
and environmental metrics is optional. Moreover, the fact that it is static is subject to
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harsh criticism, since it is clear that risk changes over time. Modeling the vulnerabilities
lifecycle and exploitation frequency are at the core of security of networks evaluation.
Pareto, Weibull, and log-normal models have been widely used to model exploit and
patch availability dates, the time to compromise a system, the time between compromises,
and the exploitation volumes. As malware rarely causes significant damage, propagates at
high speed, and is difficult to remove, the risk associated for most vulnerabilities is low,
while there can be many missing values in the records, compromising the validity of the
analysis of data.

As the existing data arguably result from drastic censoring and eventual thinning,
thus representing top- or bottom-order statistics, other heavy-tailed distributions in the
domain of attraction of extreme value or geo-extreme value laws are investigated as suitable
alternatives to the Pareto model, power law models, and log-normal models.

Section 2 sketches some of the main features of vulnerabilities threats, and of the
main scoring systems, including the CVSS and the exploit prediction scoring system
(EPSS), evaluating their severity and the consequent risk of exploitation. The sophisticated
machine learning algorithm, EPSS, for computing the probability of a vulnerability being
exploited in the wild, uses more than one thousand variables in its algorithm black box,
as well as the number of days since disclosure. The time variables in the lifecycle of
vulnerabilities are crucial to understand the exposure risk of a network, and a main feature
of this work is a critical appraisal of the goodness-of-fit of heavy-tailed distributions to the
time from publication to the update of vulnerabilities.

In Section 3, progress in the statistical analysis of heavy-tailed empirical data from
variables arising in the management of vulnerabilities and the associated risk and reme-
diation are analyzed. The detailed discussion provided by Frei et al. [2], Holm [3], and
Allodi [4] highlight the modeling of several time variables in the lifecycle of vulnerabilities,
while Ruohonen [5] and references therein, serve as a basis for understanding the evolution
of the state of the art in this matter.

In Section 4, several heavy-tailed laws for modeling the time variables in the lifecycle
of vulnerabilities are discussed. The main idea is that extreme value models may have
advantages over traditional power laws. On the other hand, as there exists strong evidence
that thinning in the reporting of data certainly does occur, instead of use of the traditional
general extreme value (GEV) model, or of the associated generalized Pareto model, use of
the geo-max laws introduced by Rachev and Resnick [6], namely the log-logistic heavy-
tailed law in the domain of attraction of the Fréchet law of long-tailed maxima, may
represent a valuable approach. As the data exhibit some features typical of mixture models,
and in light of the claims of Feldmann and Whitt [7] in favor of long-tail mixtures of
exponentials,hyperexponential models are also discussed.

In Section 5, information on the process of obtaining the samples of vulnerabilities
reported in [8] that are used in the analyzes is provided. Some issues concerning model
fitting and parameter estimation, and the criteria for model choice, namely the Akaike
information criterion (AIC) [9], the Schwarz–Bayesian information criterion (BIC) [10], and
Vuong’s test [11], are briefly sketched.

In Section 6, the goodness-of-fit of the models under evaluation is compared with regards
to the time from publication to the update of vulnerabilities sampled from 2021 and 2022.
The general result, both for the 2021 systematic sample and for the 2022 simple random
sample without replacement, is that power law fitting is inadequate, and that, as predicted
from considerations on extreme values and thinning, the log-logistic model provides the best
fit. On the other hand, a hyperexponential fit can be strongly recommended, since there is
evidence that the data come from at least two differently stretched distributions.

Section 7 draws the conclusions from the statistical analysis, with suggestions pro-
vided regarding overcoming the static status of the CVSS, and discusses the evolution of
metrology towards the consideration of virtual metrics.

In the Appendices, some further information on the CVSS metrics and evolution
towards version 4.0, to be released soon, and on the Pareto laws is provided.
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2. Vulnerabilities and Scoring Systems

Vulnerabilities are weaknesses that can be exploited by cybercriminals to access a com-
puter system, with the intention of running malicious code, stealing sensitive data, and/or
installing malware (Tunggal [12]), creating risks of possible intrusion and exploitation with
potentially serious economic losses (Eling et al. [13]).

The first two vulnerabilities were reported in 1988. Nowadays, the Vulnerability
Database [14] contains 236,311 vulnerabilities, with 25,227 vulnerabilities registered in
2022 in the National Vulnerability Database [15] from NIST, the National Institute of
Standards and Technology. Information held in the Exploit Database [16] shows that
until 7 August 2023, 5710 vulnerabilities exploitation codes had been detected, and that
33,750 had been verified. In Figure 1, a huge increase in the yearly disclosure of vulnerabil-
ities can be observed, mainly occurring since 2017.

Figure 1. Monthly registered vulnerabilities (source: https://first.org/epss/data_stats (accessed
on 7 August 2023). Copyright © 2023 Forum of Incident Response and Security Teams, Inc. All
Rights Reserved).

The probability of a vulnerability being maliciously exploited and the impact of
eventual exploits (meaning the likelihood of an intrusion occurring) are decisive in assessing
the risk it represents. It is assumed that on a monthly basis from 5 to 20% of known
vulnerabilities are corrected, while only 2 to 7% of vulnerabilities are actually exploited
(Usingdata from [8], the percentage of exploited vulnerabilities is only 1.87%, with very
high percentages observed between 2009 and 2012 (see Appendix C). However, apparently
these data refer to vulnerabilities following assignment of a common vulnerabilities and
exposures ID (CVE-ID), and the greatest risk occurs in the pre-disclosure period). Allodi [4]
indicates that between 2009 and 2012, approximately 95% of the 75.7 × 106 attacks on
374 vulnerabilities targeted only 5% of them, which led him to comment that panic reactions
are inappropriate, stating, “[. . . ] most vulnerabilities may carry negligible risk. This indicates that
the classical approach ’I have a vulnerability’ → ‘I must fix it’ may be a largely disproportionate
reaction to the real threat.”

The percentage of vulnerabilities subject to cyberattacks seems low, but as nowadays
more than 20,000 new vulnerabilities appear annually, it is anticipated that around 400 to
1700 of them may be subject to exploitation.

The eventual losses for companies, expenses associated with cybersecurity, and the
existence of a flourishing market for instruments facilitating the exploitation of vulnera-
bilities, has drawn attention to the economic importance of the issue, with the potential
for extreme negative outcomes (Eling et al. [13]). Therefore, it is essential to highlight the
vulnerabilities that may potentially represent greater risks in order to prioritize those re-
quiring urgent remediation or mitigation (which may not represent conclusive solutions),
or, ideally, patching.

CVSS and Other Tools for Assessing the Severity and Risk of Vulnerabilities
Vulnerabilities have a strong bearing on the security level of networks, and CVSS has

been widely used to assess the severity rating of security risks since version 1 appeared
in 2005.

https://first.org/epss/data_stats
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CVSS version 3.1 (released in June 2019) considers a base metric group (exploitability
metrics and impact metrics) of eight nominal variables, a temporal metric group of three
nominal variables, and an environmental metric group of 11 nominal variables, producing
string vectors (check the CVSS v3.1 calculator at [1]). Each metric category has a corre-
sponding numerical value, and a score is produced using the CVSS v3.1 equations (see
details in Appendix A). Although the number of possible string vectors, 191,102,976,000, is
very large, due to roundup procedures and limitation of the range to [0,10], only 101 scores
are theoretically possible, leading to a qualitative severity rating scale considering the level
of risk as follows: None ↔ 0, Low ↔ [0.1, 3.9], Medium ↔ [4.0, 6.9], High ↔ [7.0, 8.9],
and Critical ↔ [9.0, 10.0].

The ’High’ and ’Critical’ severity ratings indicate vulnerabilities that can have a
significant economic impact. Papers on the economic consequences of vulnerability exploits,
such as Anderson [17], Bollinger [18], Dubendorfer et al. [19], and Kannan and Telang [20],
had surely some bearing on moving from the 2005 Qualys [21] qualitative evaluation of
the laws of vulnerabilities towards the quantitative score assessment of CVSS. With regard
to the economic effect of vulnerabilities, the paper by Anderson and Mood [22] appeared
before the release of CVSS v2 in 2007, while Frei’s comprehensive doctoral dissertation [23]
had already been submitted in 2009.

Although CVSS scores are widely used to assess the severity of vulnerabilities, it must
be noted that the optional temporal and environmental metrics are seldom used. Moreover,
the temporal metrics do not reflect the fact that risk associated with vulnerabilities changes
over time. As the optional temporal metrics of CVSS v3.1 did not effectively impact the
CVSS score, v4.0 (to be released later in 2023) substitutes these with threat metrics. Ad-
ditional attributes for vulnerability response are also introduced in v4.0 (cf. Appendix B).
The effect of the temporal metrics equation in CVSS v3.1 is to produce a temporal score
TS = RUp(BS × ECM × RL × RC), with BS denoting the basic score, ECM, the exploit
code maturity, RL, the remediation level, RC, the report confidence, and RUp, the ceiling
decimal round up, which can reduce the base score by up to 79.5334% (cf. Appendix A).
As a consequence, other methodologies to evaluate the vulnerability severity and ensu-
ing exploitation risk have been devised. Mention should also be made of other tools
described below.

EPSS: EPSS registers the probability that a vulnerability will be exploited, with an addi-
tional indication of the corresponding percentile. The calculation of these probabil-
ities is performed by an algorithm based on machine learning using 1164 variables
covering a wide spectrum of information, including the CVSS base score and the
number of days that have elapsed since disclosure (see detailed description in [24],
and in Jacobs et al. [25]). The training for version 2 used gradient boosting and
Poisson regression. Version 3 was released in March 2023.
The probability indicated by EPSS is a guide to identifying vulnerabilities that
should be prioritized in the remediation effort. Note that, since it is a probability,
false negatives and false positives must be taken into account.
The strengths of EPSS are its ability to calculate the probability of risk of a set
of vulnerabilities, and consequently the probability that a company is at risk of
exploitation when using software subject to a set of vulnerabilities. In addition, the
fact that the calculation is dynamic, which is a consequence of the algorithm being
automatically updated taking into account new information, represents a further
advantage. For example, vulnerability CVE-2021-44228 (CVSS score 10), published
on 10 December 2021, started with an exploit probability estimated by EPSS at
0.355 on 11 December. On 13 December, it became 0.384, on 14 December, 0.300,
on 15 December, it increased to 0.633, on 17 December to 0.944, on 18 December, it
dropped to 0.633, but on 12 January 2022, it increased again to 0.944.
However, the EPSS only exists for previously published vulnerabilities—there is
no calculator that can be used in the CVE-ID discovery/reservation phase as exists
for the CVSS.
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An efficiency comparison of CVSS v3.1, EPSS v1, and EPSS v2 considering the
November 2021 vulnerabilities showed, respectively, scores greater than 8.6, proba-
bilities greater than 0.066, and probabilities exceeding 0.149, in order to provide
coverage of around 50% in the three scenarios, as described in the documentation
on the EPSS model. These thresholds led to signaling for corrections of 25.3%, 9.3%,
and 4.7% of the vulnerabilities, respectively.
With regard to CVSS v3.1, there were attempts to exploit 5% of the vulnerabilities
identified, while with EPSS v1, the efficiency was 12.9%, and with EPSS v2, it was
42.5%, as shown in Figure 2.
It is, thus, observed that EPSS compares favorably with CVSS, and has also evolved
significantly from version 1 to the current version 3 (the team has ambitions to
provide quarterly updates of the algorithm).

CTI: Cyber threat intelligence [26], which is one of the indexes used in the excellent
database [14] for daily updating of risk, takes into account, on the one hand, alarms
and attacks, and, on the other hand, the existence of corrections, as well as the
economic impact.

CWSS: The common weakness scoring system [27], which has a well-documented method-
ology for classifying “weaknesses”, should be taken into account in any nor-
malization project assessment of the severities of vulnerabilities and the risks of
malicious exploitation.

SSVC: The stakeholder-specific vulnerability categorization system [28] offers the cyber
community a vulnerability analysis methodology that can account for a vulnera-
bility’s exploitation status, impacts on safety, and the prevalence of the affected
product in a singular system. In 2020, a customized SSVC decision tree to examine
relevant vulnerabilities was developed.

Figure 2. Efficiency of CVSS and EPSS (source: https://www.first.org/epss/model (accessed on
1 September 2023) Copyright© 2023 Forum of Incident Response and Security Teams, Inc. All
Rights Reserved).

3. Vulnerabilities Lifecycle Management and the Importance of Modeling
Inter-Occurrence Times

As the risk resulting from vulnerabilities changes over time, statistical modeling of
time variables is relevant. As mentioned above, the number of days elapsed since disclosure
of the vulnerability is one of the 1164 variables that the EPSS algorithm uses to compute the
probability of exploitation in 30 days. Three important steps highlighted by Frei at al. [2],
Holm [3], and Allodi [4] towards using appropriate model fitting to various time variables
in the lifecycle of vulnerabilities are described. The main purpose was to devise effective
algorithms to produce a dynamic CVSS score. Frühwirth and Männistö [29] proposed
interrogative rules to change the settings in the temporal metrics, using the Frei at al. [2],

https://www.first.org/epss/model
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Pareto, and Weibull fittings. The aim of this work was to model the time from publication
to update using samples from the 2021 and 2022 vulnerabilities, as published in [8].

3.1. Vulnerabilities Lifecycle: Can Pareto and Weibull Models Provide a Dynamic CVSS?

To understand the security risks inherent in the use and operation of today’s
large and complex information and communication systems, analysis of vulner-
abilities’ technical details alone is not sufficient. To assess the risk exposure of
a network, one has to know and understand the lifecycle of vulnerabilities and
their evolution.

Frei, May and Plattner [2]

The lifecycle of vulnerabilities, their discovery, disclosure, and patching, and of even-
tual exploits, has been thoroughly investigated by Frei et al. [2] (see also Frei [30] and
Shahzad et al. [31]). In Figure 3, the lifecycle of vulnerabilities considered in Frei et al. [2]
is shown.

Figure 3. Vulnerabilitieslifecycle (source: Frei et al. [2]).

The strict definition of the time variables adopted in Frei et al. [2] will be used here.
The time of disclosure is the first date a vulnerability description, including the risk rating
information, such as its CVSS score, is freely available to the public via an independent
trusted channel. The disclosure date of a vulnerability frequently occurs after the discovery
date, which often will never be known by the public. Only a closed group is aware
of the vulnerability from discovery to disclosure, and this is a period of major risk for
exploits—any hacker-tool or intrusion can take advantage of the vulnerability. Two other
important variables are the time of the exploit, the earliest date an exploit for a vulnerability
is detected, and the time of patch availability, the earliest date the vendor or the originator
of the software releases a fix, workaround, or a patch that provides protection against
the exploitation of the vulnerability. As the public becomes aware of the vulnerability
after disclosure, it is assumed that the risk of an exploit after disclosure is less than that
before disclosure.

Frei et al. [2] investigated the lifecycle of vulnerabilities in the period 1996–2006.
After systematically examining more than 80,000 advisories from publicly available sources,
they gathered 14,326 vulnerabilities with non-empty common vulnerabilities and exposures
(CVE) [32], entry and non-empty disclosure dates, 11,697 containing a discovery date,
3420 with an exploit date, and 1551 with a patch date, while 332 vulnerabilities had both an
exploit and a patch date.

This is a clear indication that the records fail to consistently register the variables
Frei et al. [2] suggest need modeling, since many vulnerabilities carry medium or low risk,
and the exploits did not exist or had no relevant consequences. Although medium- and
low-risk vulnerabilities are recorded, complete information on the discovery time, the
disclosure date, the patch time availability, the exploit time, and on the frequency at which
vulnerabilities are exploited, is often missing—as expected, detailed information exists
when the attack processes have far-reaching consequences. In fact, there exists a probability
π1 that a negligible vulnerability is never discovered, a probability π2 that a discovered
vulnerability is never disclosed, a probability π3 that it is never exploited, and so on, so
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that the data useful for analysis result from a drastic thinning process. It may, therefore,
be assumed that the data available for analysis are, to a certain extent, tied to extreme
consequences, and that it is reasonable to consider that heavy-tailed models are useful in
vulnerability risks management. On the other hand, as some vendors tend to postpone
disclosure until a patch for the vulnerability can soon be expected, the empirical data for
the time from disclosure to patch availability may eventually be reasonably modeled by an
extreme value distribution of minima, such as the Weibull.

After a thorough study of the discovery date vs. the disclosure date, of the exploit
availability date vs. the disclosure date (showing that the number of zero-day exploits is
increasing drastically, and that exploits may occur at any time, before or after disclosure), the
patch availability date vs. the disclosure date, and the gap between the exploit availability
and the patch availability, Frei et al. [2] split their data at the disclosure date, and limited
their model choice to fit the exploit availability and the patch availability in the years
2001–2005:

• Pareto (type I), in the domain of attraction of the Fréchet model for maxima;
• Weibull, with the parametrization used as the extreme values law for minima;
• Exponential, which is the Weibull(1, δ) of minima.

They concluded that Pareto I (with a shape parameter of less than 1; thus, with no
expectation, and indicating a very heavy tail) provided the best fit for exploit availability,
both before and after disclosure, and to patch availability before disclosure, while, after
disclosure, the best fit to patch availability was Weibull.

However, there is no apparent reason to limit model choice to these three models,
and the above comments on the availability of data shed some doubt on the adequacy of
the inference that Pareto and Weibull were the best fits. Namely, with regard to the Weibull
fitting to the patch availability after disclosure, the estimated shape parameter ranged
from 0.199 in 2001 to 14.04 in 2004; this is strong reason to consider that alternative models
should be investigated.

Frühwirth and Männistö [29] proposed a change in the selection of options in the
temporal metrics, the exploit code maturity, and the remediation level. It is curious that of
the three temporal metrics, changes were only proposed to the first two, since only 12 years
later Boechat et al. [33] raised the issue of the redundancy of the CVSS temporal metrics,
discussing how one can infer attribution of the report confidence from the exploit code
maturity and the remediation level.

With regard to the exploit code maturity metric, Frühwirth and Männistö [29] consider
that the probability of having malicious intrusion should be estimated by the overall Pareto

fit proposed by Frei et al. [2] FP(x) = 1 −
(

k
x

)α
, α = 0.26, k = 0.00161, where x is the

time elapsed after vulnerability discovery. This value is compared to a generated pseu-
dorandom uniform number rand. If rand ≤ FP(x), set the Exploit Code Maturity ↔ High,
if rand > FP(x), set the Exploit Code Maturity ↔ Unproven.

With respect to the remediation level metric, the patch availability is calculated by com-
paring a pseudorandom uniform number rand with the overall Weibull fit of Frei et al. [2],
FW(x) = 1 − exp

( x
λ

)k, λ = 0.209, k = 4.04. If rand ≤ FW(x), set Remediation Level ↔
Official Patch, if rand > FW(x), set Remediation Level ↔ Unavailable.

The amendments proposed by Frühwirth and Männistö [29] are controversial. The de-
cision rule of comparing the value of the distribution functions with a pseudorandom
uniform number does not seem rational. With the passage of time x, FP(x), (respec-
tively, FW(x)) will take values close to 1, and, therefore, with high probability, the value of
rand ≤ FP(x), (respectively, rand ≤ FW(x))) and the decision to change the classification
will be effective. However, even if a long time has passed, there is a probability 1 − F(x)
that no change occurs. Furthermore, it is not explained why the decision considers only
the extreme possibilities high/unproven (respectively, or unavailable/official fix), com-
pletely disregarding the intermediate options of functional/proof-of-concept (respectively,
or workaround/temporary fix).
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Moreover, if the objective is to have a dynamic CVSS, it would be necessary to compare
daily the above distribution functions with a rand generated that day, which could lead
to contradictory decisions over time, or, if one does not proceed in that way, avoiding
paradoxical situations, one would fall into an unalterable alternative, also static. It is one of
those situations in which chance does not seem like a reliable ally.

3.2. Time Required to Compromise a Computer System: gamma, log-normal, Pareto, and
Weibull Models

Research on the topic of dependable computing is often based on assumptions
regarding properties of the failures in systems, and knowledge concerning how
system failures behave is, as such, critical. Choosing appropriate models for
describing the number of failures in a system, and the time between failures, is of
particular importance as employment of an inappropriate statistical model can
result in inappropriate research conclusions.

Holm [3]

Holm [3] analyzed “5,602,097 malware alarms corresponding to 203,025 intrusions that
have occurred across 261,757 computer systems of a large international enterprise between October
2009 and August 2012”.

At the time (access on 14 September 2012), the Symantec Online Encyclopedia reported
that 71.32% of malware incidents caused medium damage, 86.55% were easy to remove,
and 90.41% had a low propagation speed, while only 0.43% caused significant damage,
with 0.14% being difficult to remove, and 5.52% having a high propagation speed.

With respect to the number of intrusions of a computer system, Holm [3] tested
Poisson, normal, and log-normal models, concluding that the log-normal model provided
the best fit, without presenting a rationale for considering the two continuous alternatives,
instead of using other discrete models, such as a heavy-tailed Zipf or a Zipf–Mandelbrot
model, or an overdispersed negative binomial model (see Appendix D).

Further, Holm’s [3] goal was to model the time to first compromise (TTFC), the time
between compromises (TBC), and whether the TTFC was correlated (Spearman correlation)
to the number of intrusions of a computer system.

To investigate the two former questions, he tested the exponential, gamma, log-
normal, Pareto, and Weibull models, using the Kolmogorov–Smirnov, Cramér–von Mises,
Anderson–Darling, Shapiro–Wilks, and chi-square tests, as well as QQ–plots (Wilk and
Gnanadesikan [34]). Moreover, seeking not only goodness-of-fit but also simplicity, the AIC
has been used to select the best fit (Akaike [9]; Burnham and Anderson [35]). Holm’s
overall conclusion was that the Pareto distribution provided the best fit for the TTFC data,
and that the log-normal model provided the best fit for the TBC data.

Extreme value distributions and their domain of attraction are discussed in Section 4,
but a minor remark on the topic is necessary at this point: Although the log-normal
distribution is on the domain of attraction of the Gumbel distribution, it exhibits Fréchet
type pre-asymptotic behavior, and this is the reason why it appears frequently as a match
for the Pareto distribution in the context of heavy-tail modeling.

It is interesting to observe that although Holm [3] reports that Nurmi et al. [36]
studied the model fit for three datasets describing the time between failures, concluding
that the hyperexponential distribution provided better fit than the Weibull or the Pareto
distributions, he did not consider the hyperexponential model to be “more complex due to its
additional parameters”, that, therefore, would be penalized by the AIC. Note, however, that
the authoritative paper by Feldmann and Whitt [7] discusses in detail the hyperexponential
fit to long-tail distributions in network performance models.

3.3. Frequency of Vulnerabilities Exploitation: Power Laws and Paretian Heavy-Tailed Models

The commonly used, industry standard definitions of vulnerability risk based on
a single number (e.g., scores assigned by security-testing tools) may be incapable
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of describing the distribution of attacks; a point estimate (a score or an average) is
not sufficient to describe the phenomena and may lead to substantial overspend-
ing/misallocation of resources, as most events may be orders of magnitude away
from the point estimate.

Allodi [4]

Allodi [4] collected data from Symantec’s data sharing program, the Worldwide Intel-
ligence Network Environment [37], using Symantec’s security response, but his analysis
comprised only 374 vulnerabilities occurring in 2009–2012 related to Symantec’s consumer
security products, and, therefore, he recognized that he may have had a self-selection problem.

Allodi [4] used Lorentz curves (Aaberge [38]) to support his claim that “the distribution
of attacks follows a heavily tail distribution”.

The main objective of Allodi [4] was to substantiate that vulnerabilities exploitation
follows a power law, in the loose sense that it has a linear signature to the right of an
estimated δ̃ = xmin. He closely followed the methodology proposed in Clauset et al. [39],
whereby the estimate of xmin is obtained “by selecting the cutoff that minimizes the distance
between the fitted Power Law distribution and the distribution of the data [. . . ] calculated as the
Kolmogorov–Smirnov (KS) statistic.” note, however, that estimating the parameters alters the
critical values of the KS statistic. To estimate the scaling parameter, the maximum likelihood
estimator α̂ was used. Using Vuong’s test, described in Section 5, Allodi’s conclusion was
that the choice of fitting a power law vs. log-normal “is only inconclusively supported by
our evidence”.

Although the methodology described in Allodi [4] regarding parameter estimation,
hypothesis testing, and comparison with other models, in particular log-normal, is sound,
there are important limitations, which arise from the data gathering process. In fact, using
limited empirical data to choose a power law fit may cause overfitting (Clauset et al. [39]).

Further analysis of the issues relating to time variables in the lifecycle of vulnerabilities
is provided in Ruohonen [5] and the references therein.

4. Methodological Issues: The Temptation of Power Laws and Other
Heavy-Tailed Models

I can resist anything except temptation

Oscar Wilde, Lady Windermere’s Fan

The fascinating books by Schroeder [40] and Sornette [41], and papers such as those
by Newman [42], have contributed to popularizing power laws, functional relationships
of the type f (x) =

( x
δ

)−α that seem to govern many natural phenomena and man-made
activities. Since f (cx) = c−α f (x), all power laws with the same scaling exponent α are
equivalent up to a constant factor.

As ln( f (x)) = −α ln x + α ln δ, the straight line in a log-log plot is called the "signature"
of the power law. Note, however, that straightness of the log-log plot is not a sufficient
condition for fitting a power law to empirical data, since, for instance, the log-normal law
can generate finite amounts of data displaying the signature behavior (cf. Belevitch [43],
Mitzenmacher [44], and Bee [45]).

In Statistics, the Pareto probability density function (PDF), or Pareto type I, with the
shape parameter α − 1 is

f (x) =
α − 1

δ

(
x
δ

)−α

I[δ,∞)(x), α > 1, δ > 0 ,

and the Zipf probability mass function,

pk =
k−α

HN,α
, k ∈ {1, 2, . . . , N}, α > 1,
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where HN,α = ∑N
j=1 j−α is the Nth generalized harmonic number, are widely used strict

power laws, with their popularity being possibly due to both their straight signature and
the very uneven equilibrium they model, which is radically different from uniformity.Note
that the Pareto I law was introduced to model the distribution of wealth, reflecting the
idea that a small percentage of owners possess a large percentage of wealth. The Zipf
law models the frequency vs. the rank of words, on the assumption that the effort to
communicate generates an uneven equilibrium of social vs. personal vocabularies, so that
the frequency of word use declines steadily. With respect to the lifecycle of vulnerabilities,
the evolution of hackers’ abilities and the progress of counteracting measures has generated
a dynamic equilibrium that justifies the traditional choice of modeling with power laws,
which is radically different from uniformity. With respect to vulnerabilities and the risk
they represent, this power law equilibrium arguably results from the progress of developers
in avoiding design and implementation weaknesses being counterbalanced by the ability
of hackers to attack or misuse operating systems.

In a broader sense, and in Statistics generally, a power law (or more precisely, a distri-
bution with a Paretian upper tail) is a distribution whose upper tail 1 − F(x) = x−αL(x),
with L a slowly varying function, i.e., lim

x→∞
L(tx)
L(x) = 1, for all t > 0, forcing asymptotic scale

invariance, whose form controls the shape and finite extent of the lower tail. Note that F
is used here to generally denote the cumulative distribution function (CDF) of a random
variable. Note also that if the function L is constant, assuming a lower bound δ for the
support, the Pareto I strict power law is obtained.

In other words, the upper tail of the distribution is a regularly varying function in the
sense of Karamata [46]. (See Feller [47], chapters 8 and 9, pp. 275–284, for the basics of
regular variation and its use for the characterization of the domain of attraction in extreme
value theory, and Kevei [48]). Detailed information is provided in Bingham et al. [49], and,
with respect to the estimation of the exponent of regular variation, see Hall [50], Davis and
Resnick [51], or Fedotenkov [52].

The apparent simplicity of power laws has resulted in their widespread use in a huge
variety of fields, often assuming a shape parameter α < 3, implying heavy tails.

But this widespread use of Paretian tail models can be abused, reflected in criticism by
Stumpf and Porter [53] who stated, “A striking feature that has attracted considerable attention
is the apparent ubiquity of power-law relationships in empirical data. However [. . . ] the data are
typically insufficient and the mechanistic insights are almost always too limited for the identification
of power-law behavior to be scientifically useful”. In the same line of criticism, see also The
Econophysics Blog [54] and Shalizi [55].

In Section 3, to summarize the state of the art in modeling several time variables in
the lifecycle of vulnerabilities, as highlighted by Frei et al. [2], Holm [3], and Allodi [4], the
statistical analysis of heavy-tailed empirical data from variables arising in the management
of vulnerabilities and the associated risk and remediation will be thoroughly discussed.
Overall, the Pareto I model

X ⌢ Pareto I(α, δ), α, δ > 0 ⇔ F(x) =

{
0 , x < δ

1 −
( x

δ

)−α , x ≥ δ
, (1)

was considered the best fit, with some support for the log-normal

X ⌢ log-normal(µ, σ), µ ∈ R, σ > 0 ⇔ F(x) =

{
0 , x < 0
1
2

[
1 + erf

(
ln x−µ√

2 σ

)]
, x ≥ 0

,

where erf(z) =
∫ z

0 e−t2
dt is the error function.

However, these authors recognized problems in the data they used, such as censoring,
the self-selection of data, and possible overfitting. On the other hand, the class of alternative
models they considered was very restrictive.
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Holm [3] introduced many improvements, namely, consideration of a wider set of
candidates for model fitting, and the use of AIC and QQ plots. But it is questionable
whether his choice of best fits—Pareto or log-normal—was restricted to a section of the
range of observations where he could find a straight signature.

Allodi [4] considered a much wider class of model candidates—power laws, in a
broader sense, that he expressed as “p(x) ≈ x−α, where x is the measured quantity and α is a
scaling factor of the distribution”— hence, a regularly varying Paretian tail

X ⌢ Power Law(α) ⇔ 1 − F(x) = x−αL(x) ,

where L is a slowly varying function. This is a broad class of heavy-tailed models. In fact,
for each α > 0, this is what characterizes the domain of attraction of a Fréchet-α distribution,
as observed below.

Alongside this broadening of scope in model building, Allodi [4] brought in many
methodological improvements, such as the use of Lorentz curves and of Vuong’s test
for selecting the best among alternative fits. Allodi’s statistical analysis closely follows
the Clauset et al. [39] methodology for modeling empirical data using power laws. It is
interesting to observe, however, that Allodi recognized that there is inconclusive evidence
that a Paretian model is the most adequate, possibly because the sample size (n = 374)
he used falls in the category described by Stumpf and Porter [53] as “data are typically
insufficient [. . . ] for the identification of power-law behavior to be scientifically useful”.

As always, Box’s [56] wise warning “All models are wrong but some are useful” must
be kept in mind, so the next step is to have some rationale basis for the choice of useful
models, namely, a rationale for using extreme value models, or at least laws in their domains
of attraction.

4.1. More on Power Laws, Regular Variation, and Extreme Value Models of Maxima

There are several generalizations of the Pareto I distribution (cf. Appendix D and
Arnold [57]). Considering the relationship between regular variation and extreme value
theory, which has increasing importance in finance (see Embrechts et al. [58], and Andriani
and McKelvey [59]), the generalized Pareto distribution should be considered as well.

The CDF of a generalized Pareto random variable, Xξ,λ,δ ⌢ GPareto(ξ, λ, δ), with shape
parameter ξ ∈ R, location parameter λ ∈ R, and scale parameter δ > 0, has the form

GPξ,λ,δ(x) =


1 − exp

(
− x−λ

δ

)
, ξ = 0

1 −
(

1 + ξ x−λ
δ

)− 1
ξ , ξ ̸= 0

, ξ, λ ∈ R, δ > 0 ,

whose support has a left-endpoint λ if ξ > 0, and is
[
λ, λ − δ

ξ

]
if ξ < 0. For detailed

information, consult the thorough monograph of Arnold [57] or Johnson et al. [60].
The relationship between the generalized Pareto and GEV laws, in the strict sense

of laws of maxima of independent and identically distributed (IID) random variables, is
simple: GEVξ,λ,δ(y) = exp

(
GPξ,λ,δ(y)− 1

)
, with parameters ξ, λ ∈ R, δ > 0. Therefore,

GEVξ,λ,δ(y) =


exp

(
− exp

(
− y−λ

δ

))
, ξ = 0

exp
(
−
(

1 + ξ
y−λ

δ

)− 1
ξ

)
, ξ ̸= 0, ξ

y−λ
δ > −1

,

with a left-endpoint λ − δ
ξ if ξ > 0 or a right endpoint λ − δ

ξ if ξ < 0, is the CDF of GEV
random variables of maxima, Yξ,λ,δ ⌢ GEV(ξ, λ, δ), i.e., stable for maxima. For general
information, consult Johnson et al. [60], Beirlant et al. [61], or see the overview in Gomes
and Guillou [62].
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The aim here is to fit a heavy-tail law to empirical data, concentrating on the case
ξ > 0, and without loss of generality, dealing with the standardized form λ = 0 and δ = 1.
Rewriting ξ = α−1 and 1 + ξy = z, the standard CDF expression Φα,

Φα(z) =

{
0 , z < 0
e−z−α

, z ≥ 0
,

of the Fréchet extremal stable law, sometimes called a type II value distribution, is obtained.
But this is an inadequate terminology in the context of the convergence of classes in the
asymptotic theory of extremes that uses the concept of Khinchine’s types (see [47], p. 137),
i.e., location-scale families F(λ + δx), λ ∈ R, δ > 0. Therefore, for each α > 0, a different
Fréchet type is obtained.

Observe also that the Pareto-α distribution results from truncation of the series expan-
sion of the Fréchet-α distribution:

e−z−α
=

∞

∑
k=0

(−z−α)
k

k!
= 1 − z−α︸ ︷︷ ︸

Pareto-α

+
z−2α

2
− . . .

A random variable X with CDF FX is said to be in the domain of attraction of a
Fréchet-α Yα random variable if, for all n ∈ N, there exist attraction coefficients An > 0 and
Bn ∈ R such that, denoting by Xn:n = max(X1, . . . , Xn) of n independent copies of X,

FXn:n−Bn
An

(x) = Fn
X(An x + Bn) −→

n→∞
Φα(x).

In other words, the CDF FX is in the domain of attraction of a Fréchet-α distribution,
which can be denoted as X ∈ D(Yα) or FX ∈ D(Φα).

Recall that FX ∈ D(Φα) if, and only if, F(x) = 1 − F(x) = x−α L(x), with L(.) a slowly
varying function. Thus, random variables X ∈ D(Yα) are those with an α-regularly varying
upper tail, i.e., an upper tail with α-paretian behavior.

Therefore, most of Allodi’s [4] results on goodness-of-fit are valid for distributions in
the domain of attraction of some Fréchet-α, or power laws in a broader sense, where the
upper values have a linear signature but that are not necessarily a Pareto power law in the
strict sense.

On the other hand, only a few vulnerabilities have complete records on their lifecycle
and ensuing malware. Therefore, it is reasonable to assume that those remaining are the
result of a harsh geometric thinning process.

If XN:N is the maximum of a geometric-p random number N of independent copies of
X, its CDF is

FXN:N (x) = P[XN:N ≤ x] =
∞

∑
k=0

p(1 − p)k−1Fk
X(x) =

p Fx(x)
1 − (1 − p) FX(x)

.

Rachev and Resnick [6] investigated the stable limits of geometric thinned sequences
of IID random variables, concluding that they were of the form geo-GEV(x) = 1

1−ln(GEV(x)) .
So, the standard geo-stable models for geometric thinned maxima are the logistic, associated
with the Gumbel model, the log-logistic-α, associated with the Fréchet-α,

Log − logistic(α), α > 0 ⇔ gΦα(x) =
1

1 − ln Φα(x)
=

{
0 , x < 0

1
1+x−α , x ≥ 0

, (2)

and the symmetrized log-logistic-α, associated with the Weibull-α model for maxima.
The characterization of their domains of attraction coincides with the characterization

of the domains of attraction of the classical stable laws of maxima (Rachev and Resnick [6],
cf. also Cline [63]).
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As the interest is in heavy-tailed models, the primarily focus will be on assessing
the goodness-of-fit of the heavy-tailed models already mentioned. Aside from these, the
goodness-of-fit for the Cauchy model with location λ and scale δ > 0,

X ⌢ Cauchy(λ, δ) ⇔ F(x) =
1
2
+

1
π

arctan
(

x − λ

δ

)
,

and for hyperexponential models with CDF

F(x) =

{
0 , x ≤ 0

∑m
k=1 πk(1 − e−θkx) , x > 0

,

will also be investigated. The heavy-tailed Cauchy distribution is the additive symmetric
stable law with shape parameter α = 1 (note that the Cauchy model with λ = 0 and δ = 1
is the t-Student model with one degree of freedom), and the hyperexponential models are
convex mixtures of exponential distributions with mixing proportions π1, . . . , πm (πk > 0
and ∑m

k=1 πk = 1) and rate parameters θ1, . . . , θm (θk > 0), i.e., scale parameters δk = 1
θk

.
Feldmann and Whitt [7] showed that the hyperexponential model can be an alternative fit
when the right-tail provides an abundance of values that are far from the mode, median,
and mean.

4.2. Some Trivia on Parameter Estimation and Model Selection

In what concerns the Pareto I model (1) (henceforth, simply referred to as the Pareto
model), the maximum likelihood (m.l.) estimates of δ and α are δ̂ = x1:n and
α̂ = n

∑n
k=1 ln xk−n ln δ̂

(as usual, xk:n denotes the kth ascending order statistic of a sample), with

the corresponding m.l. estimators being independent random variables δ̂ ⌢ Pareto(δ, nα)
and α̂ ⌢ InverseGamma(n− 1, nα) (Malik [64]). Observe that the expectation αδ

α−1 exists for

α > 1, and the variance αδ2

(α−1)2(α−2) exists for α > 2, and, therefore, the Pareto distribution
has a very heavy tail when α ∈ (0, 3) (especially so if α ∈ (0, 2)).

There is some evidence that many phenomena exhibit this type of equilibrium, and in
many cases, there are arguments in favor of fitting a power law with shape in [2, 3), thus
implying that the expectation does exist but with no finite variance (Clauset et al. [39]).

More generally, with respect to power laws, Bauke [65] addressed m.l. estimation in
general. Fedotenkov [52] provided an updated overview of the estimation of tail weights,
giving code for implementation of the estimators he investigated. Diaz [66] and Arnold
and Brockett [67] provided alternative concepts and frameworks dealing with quantiles.

5. Materials and Methods

The samples used in the analyzes below were selected from the vulnerabilities regis-
tered in [8], using the options Vulnerability by Date and CVE Number Ascending, for the
years 2021 and 2022.

In the exploratory data phase, a systematic sample of 2% of the N = 20,171 vulnerabil-
ities registered in 2021 (sample size n = 405) was used. A preliminary analysis of the 2021
sample revealed a marked asymmetry, a large number of outliers, and a linear signature
when 0 < ln x < 5, that is, when 1 < x < 148.4. This led to consideration of a subsample
of n = 301 values smaller than or equal to 148, with standard deviation s = 23.41, to fit a
power law.

Using the estimated standard deviation of the 2021 sample after cleaning, the sample
size n needed to estimate the mean of the time from publication to update in 2022 (popula-
tion size N = 25, 082), with an error bound B = 1 and confidence level 1 − α = 0.95, must

satisfy n ≥ N
(

1 + (N−1) B2

z2
1−α/2 s2

)−1
= 1942.35, where z1−α/2 denotes the (1 − α/2)th quantile

for the standard normal distribution. Therefore, a simple random sample without replace-
ment of size n = 1943 was selected from the vulnerabilities registered in 2022.
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The goodness-of-fit tests used were the Kolmogorov–Smirnov (KS), the Anderson–
Darling (AD), and the Cramér–von Mises (CvM) tests. The AD and CvM tests are refine-
ments of the KS test and are generally considered more powerful than the KS test. The
results for the three tests are shown since each has unique features that may complement
the others. For example, the AD test places more weight on the observations of the tail of
the distribution, while the CvM test focuses on the central observations of the distribution,
similar to the KS test.

Since the parameters of the models under evaluation are unknown, these are estimated
using the maximum likelihood estimation method, with the expectation maximization
(EM) method used for the hyperexponential case. In the other exceptional cases, the rec-
ommendations in Clauset et al., [39] or in Fedotenkov [52], Hall [50], and Davis and
Resnick, [51] were applied.

However, a well-known shortcoming of each goodness-of-fit test considered is that they
should not be used in their original form when the theoretical null distribution is not fully
specified (which is the case here). Nevertheless, adaptations for the AD and CvM tests do
exist when the parameters are estimated, which allows their use in these situations. The same,
however, cannot be said of the KS test, unless modifications of the type for the Lilliefors test
for normality exist, which do exist but which are very few in number. To get around this
obstacle, Monte Carlo simulated p-values for the KS test for each model fit, based on R = 999
replicas, and following the guidelines in Davison and Hinkley [68], were obtained.

The goodness-of-fit criterion for model selection is the AIC, with lower values indi-
cating better fits. An alternative goodness-of-fit criterion to the AIC, also quite often used
in model selection, is the BIC. It suffices to consider the AIC because the BIC is always
greater than the AIC; however, since some researchers prefer to use the BIC instead, both
are indicated. Observe, however, that direct comparisons between the power law fit and
other fits using the AIC should not be performed, because the power law fit is based on
censored data, not on all the data.

It is also worth noting that, with respect to the log-logistic model, the usual estimation
algorithms assume a zero location. The standard procedure of subtracting the minimum
value of the sample x1:n, the m.l. estimator of the location parameter λ to the original data
may cause the maximum likelihood estimation method to fail to estimate the shape and
scale parameters (using the R functions fitdist of library fitdistrplus or mle2 of library bbmle).
Therefore, a workaround was needed to deal with this issue, as explained below.

The CDF of a standard log-logistic random variable Z with shape parameter α > 0 is
given by (2); hence, its PDF is fZ(x) = αx−α−1

(1+x−α)2 I[0,∞)(x). Therefore, the PDF of the minimum

Z1:n of n independent standard log-logistic random variables is fZ1:n(x) =
αnx−αn−1

(1+x−α)n+1 I[0,∞)(x),

and E[Z1:n] =
Γ( 1

α ) Γ(n− 1
α )

α Γ(n) , where Γ(ν) =
∫ ∞

0 xν−1e−xdx, ν > 0 is the gamma function.
Consequently, with respect to the log-logistic with shape parameter α > 0, the location

parameter λ ∈ R and the scale parameter δ > 0, the estimator X1:n = δZ1:n + λ of λ over-

estimates the location since E[X1:n] = λ + δ
α

Γ( 1
α ) Γ(n− 1

α )
Γ(n) . Thus, an unbiased estimator for λ

is the moment estimator λ̃ = X1:n − Bias(α, δ, n), with Bias(α, δ, n) = δ
α

Γ( 1
α ) Γ(n− 1

α )
Γ(n) . Observe,

however, that X1:n is asymptoticly unbiased because lim
n→∞

Γ(n− 1
α )

Γ(n) = 0, and, therefore, for large

samples, E[X1:n] ≈ λ. Based on these results, the following algorithm was designed and
implemented to estimate the parameters of the log-logistic model(α, λ, δ):

1. Start with an initial estimate for the bias value, e.g., bias0 = 0.0001, and consider as
an initial estimate of λ, λ̃0 = x1:n − bias0.

2. Use the “almost zero-located” sample yk = xk − λ̃0, k = 1, . . . , n, to obtain the m.l.
estimates α̂1 and δ̂1 for a log-logistic with zero location.

3. Use values α̂1 and δ̂1 to obtain a new bias estimate bias1 = Bias(α̂1, δ̂1, n), and update
the location estimate to λ̃1 = x1:n − bias1.
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4. Repeat steps 2 and 3 using the sample yk = xk − λ̃i−1, k = 1, . . . , n, to obtain new
estimates α̂i, δ̂i and λ̃i, i = 2, 3, . . . .

5. Stop when max
{
|α̂i − α̂i−1|, |δ̂i − δ̂i−1|, |λ̃i − λ̃i−1|

}
< 0.00001 or i = 250.

On the other hand, the Vuong test for strictly non-nested model selection is also used
to supplement arguments in favor of model choice, since the non-parametric tests used do
not conclusively support the use of any of the considered models. A brief description of
Vuong’s test adapted to this context follows:

Let Fθ = { f (.; θ) : θ ∈ Θ} and Gγ = {g(.; γ) : γ ∈ Γ} be two competing non-nested
models, that is, Fθ ∩ Gγ = ∅. For an observed sample (x1, . . . , xn) of a random sample
(X1, . . . , Xn), the Vuong test statistic LRn, based on the likelihood ratio, is defined as

LRn = LRn(θ̂, γ̂) = L f
n(θ̂)− Lg

n(γ̂) =
n

∑
i=1

ln
f (xi; θ̂)

g(xi; γ̂)
. (3)

Under the null hypothesis of the two models Fθ e Gγ being equivalent,

n−1/2LRn(θ̂, γ̂)/ω̂n
d−−−→

n→∞
N(0, 1) ,

with

ω̂n =
1
n

n

∑
i=1

[
ln

f (xi; θ̂)

g(xi; γ̂)

]2

−
[

1
n

n

∑
i=1

ln
f (xi; θ̂)

g(xi; γ̂)

]2

.

Therefore, large positive values of the statistic LRn provide evidence in favor of Fθ,
while large negative values are in favor of Gγ.

The software used to perform the statistical analysis is R, a language and environment
for statistical computing (R Core Team, 2022).

Some specific R libraries were used in the analysis: fitdistrplus for general fitting of
models, bbmle for maximum likelihood estimation, goftest for goodness-of-fit tests and
criteria, evd for extreme value models fitting, sads for the Pareto fitting, flexsurv for the
log-logistic fitting, evmix for the generalized Pareto fitting, and mixtools for the hyperexpo-
nential fitting.

6. Results and Discussion

As discussed in Section 3, the evolution of vulnerabilities is relevant for assessing their
severity and the risk exposure of the network. Therefore, for each sample of vulnerabilities,
the goodness-of-fit of the models discussed in Section 4 to fit the number of days from
publication to update of the vulnerabilities was investigated.

6.1. Vulnerabilities Published in 2021, Systematic Sampling

In the exploratory data analysis phase, a sample of 405 vulnerabilities was collected.
Two extreme outliers that could bias the statistical analysis ended up being removed from
the sample.

In Table 1 some relevant statistics for the 2021 sample (n = 403) are indicated (Q1, Q2,
Q3, and SD denote the 1st quartile, median (2nd quartile), 3rd quartile, and the standard
deviation, respectively). Figure 4 displays the data, selecting h = 7 for the bin width of the
frequency histogram from periodicity considerations.
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(a) (b) (c)

Figure 4. Representations of the 2021 sample: (a) Frequency histogram. (b) Boxplot. (c) Empirical
distribution function.

Table 1. Summary statistics for the 2021 sample.

Min Q1 Q2 Mean Q3 Max SD Mode Skewness Kurtosis

1 4 8 94.67 150.5 575 153.92 6 1.55 0.99

6.1.1. Fitting with Log-Normal and Models with Paretian Right-Tail

Following the observations made in Section 4, the fit with the Pareto, log-normal,
log-logistic, GEV, generalized Pareto, Cauchy, power law, and hyperexponential distri-
butions was analyzed. With regard to the power law fit, some changes were needed to
perform the data analysis, and which justify the censoring of the sample to the right of 148.
The procedure is explained below.

The existence of some intervals with null frequency in the histogram of Figure 4a
required consideration of intervals with h = 14, thus reducing the number of intervals
with null frequency to just two, which were later merged with an adjacent interval. In
Figure 5, ln( f (x)) is plotted against ln x, with x being the midpoint of an interval and
f (x) the ratio between the relative frequency of the x’s interval and the intervals’ width,
therefore, obtaining a relative frequency histogram with area 1, that is, a density histogram.

Figure 5. Power law linear signature in a log-log plot (2021 sample).

Observe in Figure 5 that a “linear signature” is noticeable when 0 < ln x < 5, that is,
when 1 < x < 148.4, with some points being randomly scattered to the right of ln 5. Hence,
a subsample of n = 301 values smaller than or equal to 148 was used in the analysis. Table 2
records the recalculated statistics for the censored sample and the observed changes are
displayed in Figure 6.

Table 2. Summary statistics for the 2021 censored data.

Min Q1 Q2 = Mode Mean Q3 Max SD Skewness Kurtosis

1 3 6 12.79 8 139 23.41 3.66 13.68
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(a) (b) (c)
Figure 6. Representations of the 2021 censored sample: (a) Frequency histogram (h = 7). (b) Boxplot.
(c) Empirical distribution function.

Table 3 exhibits the estimated parameters for each model fit, with standard errors
inside parentheses, the p-value for each test, with the test statistic value being indicated
underneath the p-value, and the AIC and BIC values.

Table 3. Parameters and goodness-of-fit results for some heavy-tailed models.

KS AD CvM AIC BIC

Pareto

α̂ = 0.353 (0.018) 0.001 0.001 0.108 3926.3 3930.3
δ̂ = 1 (Dn = 0.193) (A2

n = ∞) (ω2
n = 0.826)

Log-normal

λ̂ = 2.829 (0.096) 1 0.001 0.310 0.024 3958.9 3966.9
δ̂ = 1.933 (0.068) 1 (Dn = 0.212) (A2

n = 3.360) (ω2
n = 1.092)

Log-logistic

α̂ = 0.702 (0.029) 0.001 0.277 0.686 3849.9 3857.9
λ̂ = 1 (Dn = 0.147) (A2

n = 3.480) (ω2
n = 0.439)

δ̂ = 11.532 (1.416)

General Extreme Value

ξ̂ = 1.700 (0.089) 0.001 0.155 0.300 3878.9 3890.9
λ̂ = 6.198 (0.526) (Dn = 0.133∗) (A2

n = 4.057) (ω2
n = 0.632)

δ̂ = 9.540 (1.037)

Generalized Pareto

ξ̂ = 1.756 (0.132) 0.001 0.001 0.152 3798.0 3810.0
λ̂ = 1 (Dn = 0.165) (A2

n = ∞) (ω2
n = 0.764)

δ̂ = 8.636 (0.951)

Cauchy

λ̂ = 5.493 (0.288) 0.001 0.001 0.002 4390.2 4398.2
δ̂ = 4.575 (0.381) (Dn = 0.271) (A2

n = 16.652) (ω2
n = 1.549)

Power Law

α̂ = 1.544 (0.031) 0.001 0.001 0.034 2077.5 2081.2
xmin = 1 (Dn = 0.277) (A2

n = ∞) (ω2
n = 0.999)

1 Estimates for the parameters of the logarithm of the random variable.

Observe that, with the exception of the Cauchy model (and the power law, but this
case will be considered separately), all models are supported by at least one goodness-of-fit
test. The model with the lowest AIC (and BIC) is the generalized Pareto, but it is only
supported by the CvM test. The log-logistic and GEV are the models that are supported by
both the AD and CvM tests. In fact, the log-logistic has the second lowest AIC, followed by
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GEV. Although the KS test does not support any model, it is curious to see that the GEV fit
has the smallest value of the test statistic, which measures the maximum distance between
the empirical and theoretical distribution functions. It should also be noted that the power
law fit, strictly following the procedures recommended by Clauset et al. [39] and Holm [3]
for this purpose, is totally inadequate.

To strengthen the arguments in favor of selecting the log-logistic model against the
GEV model, since both models are supported by the AD and CvM tests, the Vuong test (3)
is used, as described in Section 5 for the selection of strictly “non-nested” models.

Comparing the fitted log-logistic (Fθ) and GEV (Gγ) models with Vuong’s test,
LRn = 19.091 (ω̂n = 0.375), with p-value = 0.006. Therefore, there is some evidence
in favor of the log-logistic having a better fit than GEV.

On the other hand, the fact that the extreme index ξ of the fitted GEV is a positive
estimate (ξ̂ = 1.700), and consequently a Fréchet with α = 1/ξ (α̂ = 0.588), means that a
very heavy-tailed law is at play here. Moreover, the log-logistic which best fits the data,
with a shape parameter estimate α̂ = 0.702, is in the domain of attraction of a GEV with
ξ̂ = 1/α̂ = 1.425.

6.1.2. Fitting a Hyperexponential Model

The considerable amount of outliers in the sample may indicate that there is a majority
group of vulnerabilities in which the period between disclosure and update is short, in
general, less than 30 days. Observe that the censored sample, which is very asymmetrical
(skewness = 3.66), used to estimate a power law fit, has median = mode = 6, half the value
of the mean (12.79), which, in turn, is half the value of the standard deviation (23.41)),
and a less expressive set of vulnerabilities in which the referred period is long. This is
clearly visible in the empirical distribution function (see Figure 4c), which indicates that
there is indeed a mixture of distributions, and is certainly the fundamental reason why the
traditional models used above are inadequate.

The results for the hyperexponential fit for m = 2, 3 are shown in Table 4.

Table 4. Parameters and goodness-of-fit results for the hyperexponential model.

KS AD CvM AIC BIC

m = 2

π̂1 = 0.649; θ̂1 = 0.163 0.001 0.772 0.197 3759.6 3771.6
π̂2 = 0.351; θ̂2 = 0.004 (Dn = 0.141) (A2

n = 2.209) (ω2
n = 0.715)

m = 3

π̂1 = 0.649; θ̂1 = 0.163 0.001 0.569 0.121 3763.6 3783.6
π̂2 = 0.017; θ̂2 = 0.004 (Dn = 0.141) (A2

n = 2.665) (ω2
n = 0.806)

π̂3 = 0.334; θ̂3 = 0.004

Observe that both the hyperexponential fits are supported by the AD and CvM tests,
and for the case m = 3, the approximations to three decimal places of the estimates θ̂2 and θ̂3
are indistinguishable. Moreover, the AIC is greater than the corresponding value for m = 2,
which is to be expected since more parameters are estimated for m = 3. Observe also that
when comparing the hyperexponential and the log-logistic AIC values, the smallest value
is seen with the former. Therefore, the hyperexponential model should be tested against
the log-logistic with Vuong’s test to strengthen the rationale behind the choice.

The comparison between the hyperexponential (m = 2) and the log-logistic fits for the
Vuong’s test statistic yields LRn = 40.553 (ω̂n = 0.453), with p-value = 4.1 × 10−6. Hence,
there is strong evidence in favor of the hyperexponential model having a better fit.

Figure 7 displays the empirical distribution function (EDF), comparing it with the
investigated fits that are supported by at least one goodness-of-fit test. Although the power
law is not supported by any test, its fit is compared with the EDF of the censored data
(separately) to highlight the lack of fit.
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(a) (b)
Figure 7. Empirical distribution function (black line) and fitted models: (a) Pareto (Par), log-normal (LN),
log-logistic (LLog), general extreme value (GEV), generalized Pareto (GP), and hyperexponential m = 2
(HExp). (b) Power law (PL).

6.2. Vulnerabilities Published in 2022, Simple Random Sampling

For each of the 1943 vulnerabilities sampled, the corresponding CVSS base score was also
recorded in order to assess the severity of the vulnerabilities registered in 2022. Table 5 gives some
statistics for the CVSS base score, with a representation of the data being shown in Figure 8.

Table 5. Some statistics for the CVSS base score.

Min Q1 Q2 Mean Q3 Max SD

2.3 6.1 7.5 7.3 8.8 10 1.7

Figure 8. Representation of the CVSS base score sample.

With respect to the distribution of the CVSS base score according to severity risk,
observe that 1.2% ([0%,3.6%]) are classified as being low risk, 39.4% ([37.0%,41.9%]) as
medium risk, 38.1% ([35.7%,40.5%]) as high risk, and 21.3% ([18.9%,23.8%]) are consid-
ered critical (the intervals indicated are the simultaneous 95% confidence intervals for
multinomial proportions, cf. Glaz and Sison [69]).

However, the main interest lies in modeling the number of days between publication
and update of vulnerabilities. Since 26 vulnerabilities sampled from 2022 have coinciding
publication and update dates, these were removed from the sample.

Two modeling approaches seemed worthwhile to explore. One consisted of using all
data for the fitting, and the other, using the subsample without the extreme outliers (364 in
total), with the aim of making the statistical analysis more robust. The results obtained with
each approach will be compared later on with each other, and also with the findings for the
2021 sample, to establish which modeling strategy is the most adequate in this framework.
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6.2.1. Modeling the Data

Statistics for the sample (sample size n = 1917) are given in Table 6, with some repre-
sentations of the data being displayed in Figure 9. Note that the bin width of the histogram
in Figure 9a is h = 14 days (this ensures that all intervals have non-null frequencies). It is
also worth mentioning that 72.6% of the vulnerabilities sampled were updated within the
first two weeks after publication (50.5% within the first week and 11.6% in exactly 7 days).

(a) (b) (c)
Figure 9. Representations of the 2022 sample: (a) Frequency histogram. (b) Boxplot. (c) Empirical
distribution function.

Table 6. Statistics for the 2022 sample.

Min Q1 Q2 = Mode Mean Q3 Max SD Skewness Kurtosis

1 4 7 61.12 31 556 116.88 2.29 4.44

In order to establish the power law signature, the procedure used for the 2021 sample
was applied here. In this case, x is the midpoint of an interval of width h = 14, and f (x)
is the ratio between the relative frequency of the x’s interval and 14. By plotting ln( f (x))
against ln x (see Figure 10), a linear signature is observed when 0 < ln x < 4; that is,
if 1 < x < 54.6. Therefore, to fit a power law model to the data, a subsample of n = 1465
values that are smaller than or equal to 54 should be considered.

Figure 10. Power law linear signature in a log-log plot (2022 sample).

The recalculated statistics for the censored data are shown in Table 7, and Figure 11
exhibits a plot of the data.

Table 8 shows the results obtained for the heavy-tailed model fits and Table 9 for the
hyperexponential fit for m = 2, 3.

Table 7. Statistics for the 2022 censored sample.

Min Q1 Q2 Mean Q3 Max SD Mode Skewness Kurtosis

1 3 6 7.03 8 54 6.4 7 3.58 17.50
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(a) (b) (c)

Figure 11. Representations of the 2022 censored sample: (a) Frequency histogram (h = 7). (b) Boxplot.
(c) Empirical distribution function.

Table 8 shows that the GEV fit is supported by both the AD and CvM tests, and the
log-logistic fit just by the CvM test. None of the other model fits are supported by any
goodness-of-fit test. For all fits that pass at least one test (GEV and log-logistic), the lowest
AIC is obtained with the log-logistic. Although the generalized Pareto has the smallest AIC
(note that the power law fit is not under consideration), it should not be considered because
it is not supported by any test. Moreover, when comparing the values of the KS test statistic,
it is interesting to see again that the smallest value is achieved with GEV, despite the fact
that the KS test does not support this model or any other for that matter. As for the power
law itself, the results clearly show an inadequate fit.

On the other hand, the results for the hyperexponential model (see Table 9) reveal
that there is some evidence in favor of it being a good fit for both m = 2 and m = 3 (only
with the CvM test). There is not much gain when considering the case m = 3, because its
last two exponential components have rates that are indistinguishable to three decimal
places. Additionally, when comparing the AIC for the hyperexponential for m = 2 with
the AIC of GEV and of the log-logistic, a better fit is achieved with the log-logistic. Note,
however, that for all models considered, the hyperexponential is the model that requires
more parameters to be estimated, three for m = 2 and five for m = 3, which may explain,
to a certain extent, the bigger AIC value compared with the log-logistic one. It is a well-
known fact that the AIC (and the BIC) penalize models with more parameters. Nonetheless,
the hyperexponential fit with m = 2 has a smaller AIC than the GEV fit.

Figure 12 shows the EDF, comparing it with the investigated fits that are supported by
at least one goodness-of-fit test. The power law case is shown again separately, with the
lack of fit to the censored data being quite striking.

(a) (b)
Figure 12. Empirical distribution function (black line) and fitted models: (a) log-logistic (LLog),
general extreme value (GEV), and hyperexponential m = 2 (HExp). (b) Power law (PL).
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Table 8. Parameters and goodness-of-fit results for some heavy-tailed models.

KS AD CvM AIC BIC

Pareto

α̂ = 0.398 (0.009) 0.001 0.001 0.002 17,009.8 17,015.4
δ̂ = 1 (Dn = 0.231) (A2

n = ∞) (ω2
n = 1.686)

Log-normal

λ̂ = 2.514 (0.039) 1 0.001 0.026 0.006 17,157.7 17,168.8
δ̂ = 1.718 (0.028) 1 (Dn = 0.217) (A2

n = 6.466) (ω2
n = 1.498)

Log-logistic

α̂ = 0.639 (0.013) 0.001 0.001 0.103 16,182.3 16,193.4
λ̂ = 1 (Dn = 0.164) (A2

n = 14.216) (ω2
n = 0.986)

δ̂ = 8.296 (0.487)

General Extreme Value

ξ̂ = 1.433 (0.039) 0.001 0.156 0.193 16,792.9 16,809.6
λ̂ = 5.348 (0.187) (Dn = 0.137∗) (A2

n = 4.746) (ω2
n = 0.865)

δ̂ = 7.207 (0.317)

Generalized Pareto

ξ̂ = 1.358 (0.051) 0.001 0.001 0.018 16,114.2 16,130.9
λ̂ = 1 (Dn = 0.192) (A2

n = ∞) (ω2
n = 1.311)

δ̂ = 8.686 (0.399)

Cauchy

λ̂ = 6.048 (0.116) 0.001 0.001 0.000 18,311.4 18,322.5
δ̂ = 3.692 (0.123) (Dn = 0.212) (A2

n = 27.436) (ω2
n = 2.553)

Power Law

α̂ = 1.604 (0.016) 0.001 0.001 0.000 9262.6 9267.9
xmin = 1 (Dn = 0.315) (A2

n = ∞) (ω2
n = 1.936)

1 Estimates for the parameters of the logarithm of the random variable.

Table 9. Parameters and goodness-of-fit results for the hyperexponential model.

KS AD CvM AIC BIC

m = 2

π̃1 = 0.723; θ̃1 = 0.159 0.001 0.046 0.290 16,397.5 16,414.2
π̃2 = 0.277; θ̃2 = 0.005 (Dn = 0.153) (A2

n = 5.921) (ω2
n = 0.782)

m = 3

π̃1 = 0.723; θ̃1 = 0.159 0.001 0.046 0.290 16,401.5 16,429.3
π̃2 = 0.046; θ̃2 = 0.005 (Dn = 0.153) (A2

n = 5.927) (ω2
n = 0.782)

π̃3 = 0.231; θ̃3 = 0.005

From the above results, the log-logistic and hyperexponential (m = 2) are the two
strongest candidates to model the data. If the choice were to be made solely based on
AIC, the log-logistic would be selected. However, Figure 12a seems to reveal that the
hyperexponential provides a more adequate fit, since it more closely follows the EDF
towards the center to the right of the empirical data distribution. To better justify the choice
between these two models, once again, the Vuong test can be helpful.

Comparing the log-logistic and hyperexponential (m = 2) models, LRn = 98.776
(ω̂n = 1.134) and p-value = 0.023, and, therefore, there is some evidence in favor of the
log-logistic having a better fit. Note, however, that if the decision is to be made using a
significance level of 1%, the conclusion would be that there is some evidence (although
weak) in favor of both models being equivalent.
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6.2.2. Modeling the Data Without Extreme Outliers

As mentioned earlier, the second modeling approach consists of considering a subsample
of the 2022 sample without the extreme outliers (sample size n = 1553). Statistics for this
subsample are given in Table 10, with some representations of the data being shown in
Figure 13 (the bin width of the histogram is h = 7 since all intervals have non-null frequencies).

(a) (b) (c)
Figure 13. Representations of the 2022 subsample: (a) Frequency histogram. (b) Boxplot. (c) Empirical
distribution function.

Table 10. Statistics for the 2022 subsample.

Min Q1 Q2 = Mode Mean Q3 Max SD Skewness Kurtosis

1 4 7 11.3 9 111 18.89 3.53 12.04

The procedure described before to establish the power law signature was applied
again to this subsample (see Figure 14). In this case, a linear signature is observed when
0 < ln x < 4, or if 1 < x < 54.6, with exactly the same condition obtained when working
with the whole 2022 sample. Therefore, the results for the power law fit are identical in this
context to those shown in Table 8, and for this reason will not be replicated here. The results
for the other model fits are given in Tables 11 and 12.

Figure 14. Powerlaw linear signature for the 2022 subsample in a log-log plot.

This modeling approach leads to some different conclusions from those when model-
ing with all the data. The log-normal, GEV, and Cauchy are potential model candidates, all
being supported by both the AD and CvM tests. The hyperexponential is also a potential
model candidate, but is only supported by the CvM test. Again there is no gain in using
the hyperexponential m = 3 model compared with the m = 2 model. Curiously, the evi-
dence in favor of the log-logistic model is no longer supported by any goodness-of-fit test,
although the p-value of the CvM test is close to the significance level of 5%.
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Table 11. Parameters and goodness-of-fit results for some heavy-tailed models.

KS AD CvM AIC BIC

Pareto

α̂ = 0.552 (0.014) 0.001 0.001 0.001 10,578.7 10,584.0
δ̂ = 1 (Dn = 0.297) (A2

n = ∞) (ω2
n = 1.811)

Log-normal

λ̂ = 1.811 (0.025) 1 0.001 0.469 0.117 10,026.4 10,037.1
δ̂ = 0.997 (0.018) 1 (Dn = 0.141) (A2

n = 3.468) (ω2
n = 0.939)

Log-logistic

α̂ = 0.982 (0.023) 0.001 0.001 0.045 10,016.8 10,027.5
λ̂ = 1 (Dn = 0.170) (A2

n = 9.905) (ω2
n = 1.116)

δ̂ = 4.510 (0.188)

General Extreme Value

ξ̂ = 0.568 (0.027) 0.001 0.377 0.426 9946.2 9962.2
λ̂ = 4.337 (0.107) (Dn = 0.121∗) (A2

n = 3.721) (ω2
n = 0.676)

δ̂ = 3.639 (0.106)

Generalized Pareto

ξ̂ = 0.368 (0.029) 0.001 0.001 0.029 9353.5 9369.6
λ̂ = 1 (Dn = 0.171) (A2

n = ∞) (ω2
n = 1.200)

δ̂ = 6.856 (0.258)

Cauchy

λ̂ = 6.102 (0.100) 0.001 0.091 0.509 10,297.1 10,307.8
δ̂ = 2.484 (0.082) (Dn = 0.130) (A2

n = 5.159) (ω2
n = 0.633)

1 Estimates for the parameters of the logarithm of the random variable.

Table 12. Parameters and goodness-of-fit results for the hyperexponential model.

KS AD CvM AIC BIC

m = 2

π̃1 = 0.890; θ̃1 = 0.158 0.001 0.030 0.107 10,141.9 10,158.0
π̃2 = 0.110; θ̃2 = 0.020 (Dn = 0.187) (A2

n = 6.243) (ω2
n = 0.956)

m = 3

π̃1 = 0.760; θ̃1 = 0.158 0.001 0.030 0.107 10,145.9 10,172.7
π̃2 = 0.130; θ̃2 = 0.158 (Dn = 0.187) (A2

n = 6.243) (ω2
n = 0.956)

π̃3 = 0.110; θ̃3 = 0.020

On the other hand, the GEV fit is the one that has the smallest AIC of all the fits,
as well as the lowest value for the KS test statistic. Therefore, if the choice of a model is
to be made solely on the AIC, the GEV model is clearly the winner, and the log-normal
the runner up (it has the second smallest AIC). The different conclusions from the ones
obtained before might be somewhat explained by the fact that the subsample used has a
skewness of 3.53, as opposed to 2.29 for the whole sample, which introduces some changes
in the characteristics of the data and, therefore, of the underlying data distribution.

Figure 15 displays the EDF, comparing it with the log-normal, GEV, Cauchy, and
hyperexponential (m = 2) fits. Observe that, despite the fact that the hyperexponential has
the third lowest AIC of the four models, its fit again follows quite closely the EDF towards
the center to the right of the empirical data distribution.

With the GEV and the log-normal models being the two strongest model candidates,
it is advisable once again to use the Vuong test to support a choice. Comparing these
two models, LRn = 41.084 (ω̂n = 0.025) and p-value = 0; hence, there is strong evidence
in favor of GEV having a better fit here.

On the other hand, and out of curiosity, when comparing the GEV and hyperexpo-
nential (m = 2) fits with the Vuong test, as LRn = 97.879 (ω̂n = 0.120), and the p-value ≈ 0,
when the choice is between GEV and the hyperexponential, the test’s results clearly suggest
the first model. However, one must remember that the AIC (and the BIC) is an overall
measure of goodness-of-fit, which may explain why a better fit is achieved with GEV.
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Figure 15. Empirical distribution function (black line) and fitted models: log-normal (LN), general
extreme value (GEV), Cauchy (Cau), and hyperexponential m = 2 (HExp).

The analysis of the number of days from publication to update of vulnerabilities using a
systematic sample (n = 403) from 2021 and a simple random sample (n = 1943) from 2022 led
to consistent results, both with respect to the basic sample statistics (Tables 1, 2, 6, 7, and 10) and
with respect to the choice of statistical models, with a clear indication that an extreme value
(either GEV, in the classical setting of the maxima of IID random variables, or log-logistic in
the context of geometrically thinned sequences of IID random variables, or a hyperexponential
mixture of two exponential variables) provided the best fit.

Observe that to be on the safe side, the analysis was performed for the sets of all data
and for the censored sets cleaned of extreme outliers, as indicated in the boxplot diagrams.
But the adequacy of the hyperexponential fit seems to indicate that the data considered as
outliers in the exploratory data analysis phase are data coming from the second component
of the hyperexponential population.

There is some evidence, in view of the hyperexponential fit and of the sample statistics
seen in Tables 1, 2, 6, 7, and 10, that it is reasonable to split the data into two subsets at the
three weeks threshold. This provides a naive indication of the weights of the first and
second components of the hyperexponential fit, as shown in Table 13.

Table 13. Weights for the hyperexponential fit (based on the 2022 sample).

Risk Level Update-Publication ≤ 21 Update-Publication > 21

Low 20 (86.96% ) 3 (13.04%) ≈ 1
8

Medium 594 (77.55%) 172 (22.45%) ≈ 1
5

High 499 ( 67.43%) 241 (32.57%) ≈ 1
3

Critical 330 (79.71% ) 84 (20.29%) ≈ 1
5

All 1443 (74.27%) 500 (25.73%) ≈ 1
4

A sensible conjecture is that hackers maintain interest in one-third of high-risk vul-
nerabilities during a longer period, while for medium-risk and critical-risk vulnerabilities
(in this last case possibly because vendors prioritize patching investment and discourage
hackers) only one-fifth have a long update period. With respect to low-risk vulnerabilities,
the one-eighth of those taking a long update period is even smaller. Observe that there was
a subsample of only 23 low-risk vulnerabilities, which seems negligible in a sample of size
n = 1943 (1.18%). The split sample statistics are indicated in Table 14.
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Table 14. Split sample statistics.

Min Q1 Q2 Q3 Max Mean SD

Medium Risk

Update-Publication ≤ 21 0 3 6 8 21 5.80 3.58
Update-Publication > 21 26 98.5 188 309 554 220.4 143.08

High Risk

Update-Publication ≤ 21 0 3 6 8 21 5.96 3.60
Update-Publication > 21 22 108 190 303 556 214.50 134.83

Critical

Update-Publication ≤ 21 0 4 6 8 19 6.27 3.39
Update-Publication > 21 27 92 180.5 331 505 217.3 144.19

All

Update-Publication ≤ 21 0 3 6 8 21 5.97 3.55
Update-Publication > 21 22 103.8 186 309 556 217.1 139.41

The close coincidence of values is striking. Concerning the quick update component,
the median time is about one week, for the 3rd quartile, 8 days, and (although artificial)
this slowly increases to the maximum time to update of 3 weeks.

With regard to the long updating vulnerabilities, around 25% of the vulnerabilities are
updated up to 3 months, the median time to update is approximately 6 months, and the
3rd quartile is approximately 10 months.

This may inspire some ways of forecasting a dynamic CVSS score. Instead of the tem-
poral metrics equation TS = RUp(BS× ECM×RL×RC) (see Appendix A and Section 2), a
multiplier R(t) can be used to obtain a time-dependent dynamic base score as

BS(t) = RUp(BS × R(t)),

where R(t) is computed twice: for the fast updating component and for the slow updating
component of the hyperexponential fit. This will necessarily produce two lines showing
the probable evolution of the severity score of the vulnerability, assuming that the multiplier
R(t) appropriately reflects the behavior of hackers and vendors.

Adequate choices of the multiplier R(t) depend on a fuller understanding of hackers’
behavior, and empirical evaluation must take into account its effect on the number of
changes over time from medium to high, from high to critical, and vice versa, and, con-
comitantly, the time intervals in which these changes occur. These are informal indicators
of the effectiveness of the R multipliers in boosting the CVSS.

An example, assuming that the interest of hackers in the vulnerability increases steadily
until the 1st quartile and also between the 1st quartile and the median (Q2), and that, in
most cases, they will loose interest in the vulnerability (eventually, since the vendors invest
in patching), is

R(t) =



0, t < 0
1 + F2(t), 0 ≤ t < Q1

1 + 0.252 +
√
[F(t)− 0.25]F(t), Q1 ≤ t < Q2

1 + 0.252 +
√

0.25 × 0.5 + [F(t)− 0.5][F(t)− 0.75], Q2 ≤ t < Q3

1 + 0.252 +
√

0.25 × 0.5 − (1 +
√

3) [F(t)− 0.75], Q3 ≤ t

.

Figure 16 exhibits the above multiplier function, as well as the evolution of a vulnera-
bility with score 7.4 over time.

Although the initial aim of this research was to change the static status of the CVSS,
the development of the work led to some reflections on the past and expected evolution of
the measurement concept.
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(a) (b)
Figure 16. (a) MultiplierR(t). (b) Evolution of score 7.4 over time assuming the multiplier R(t).

Just as the law of large numbers and the central limit theorem became non-physical
measurement aids, and regression made it possible to measure one variable to evaluate
another (for instance, an instrument to measure the glucose level on a daily basis explains
in the technical description of the device that it effectively measures the angle of refraction
of light in the blood deposited on the strip, and transforms this measurement into the
“measurement” of glucose), the digital transition will eventually lead metrology to evolve
towards encompassing other non-physical auxiliary means of measurement, such as metrics
and CVSS indices and machine learning algorithms, such as those that evaluate EPSS (the
theme of the 2022 World Metrology Day was ’Metrology in the Digital Era’).

In the case of assessing the severity of vulnerabilities or the likelihood of risk of ex-
ploitation, it will imply hard work in the harmonization process and eventually a desirable
evolution towards standardization. However, the situation is far from satisfactory. For
example, with a file containing the vulnerabilities that in April 2021 to March 2022 were
rated ’Functional’ or ’High’ with respect to the metric exploit code maturity (which is
a collection of data, not a random sample), searching the CVE-ID in other databases to
obtain CTI and EPSS, the unpleasant surprise was to find that the empirical correlations
were corr(CVSS, CTI) = −0.12, corr(CTI, EPSS) = −0.01 and corr(CVSS, EPSS) = 0.14, in-
dicating that they are uncorrelated scores. Thus, as prioritization guides in the urgency of
patching vulnerabilities, while they are often concordant, they do not offer the comfortable
sense of security to which such an economically sensitive area aspires.

7. Conclusions

Since the pathbreaking paper of Frei et al. [2], it has been common knowledge that
accurate modeling inter-event times in the lifecycle of vulnerabilities is essential to assess
the risk of exposure of a network. As Stumpf and Porter [53] highlighted, often the data
available do not support the biased option of modeling using power laws. However, on
the other hand, there exists sound evidence that heavy-tailed models should be used.

Therefore, the goodness-of-fit of competitive models, including Pareto, log-normal,
log-logistic, general extreme value, generalized Pareto, and Cauchy, were investigated
using the usual goodness-of-fit Kolmogorov–Smirnov, Anderson–Darling, and Cramér–von
Mises tests, and the AIC and BIC. A refinement of statistical choice was obtained using
Vuong’s test [11], with the overall conclusion that the GEV and log-logistic models provided
the best adjustments. This is not surprising since the log-logistic is also an extreme value
law in the context of geometrical thinning.

On the other hand, following the claim of Feldmann and Whitt [7] and Nurmi et al.
[36] that hyperexponential models provide a good fit to long-tailed data, this was also
investigated. The goodness-of-fit was striking, reflecting the fact that there is good reason
to believe that attackers lose interest in most of the vulnerabilities quite soon, but some
hackers maintain interest in some vulnerabilities for a long period. Thus the number of
outliers in the samples of time from publication to the update of vulnerabilities indicates
that very likely a mixture of at least two populations is present.
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The number of yearly reported vulnerabilities has sharply increased since 2017,
and this is the source of unavoidable limitations due to sampling. Another limitation
comes from hackers’ diverse preferences for medium-, high-, and critical-risk vulnerabili-
ties. However, the close coincidence of the sample statistics in Table 14 indicates some sort
of stability.

As the thinned extreme value log-logistic law and the hyperexponential model provide
such good fits to the data, the logical next step is to define a hyperlog-logistic model, com-
bining the features of the two, and to implement the EM algorithm to compare the results.
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Appendix A. CVSS v3.1 Metrics

Base metrics

Base values:



AV—Attack Vector =


Network 0.85
Adjacent 0.62
Local 0.55
Physical 0.2

AC—Attack Complexity =

{
Low 0.77
High 0.44

PR—Privileges Required =


None 0.85
Low 0.62 (0.68)
High 0.27 (0.5)

UI—User Interaction =

{
None 0.85
Required 0.62

S—Scope =

{
Unchanged
Changed

C—Confidentiality =


None 0
Low 0.22
High 0.56

I—Integrity =


None 0
Low 0.22
High 0.56

A—Availability =


None 0
Low 0.22
High 0.56

Base metrics equations

ISS—Impact Sub-Score; Imp—Impact; Expl—Exploitability; BS—BaseScore
ISS = 1 − [(1 − C)× (1 − I)× (1 − A)]

Imp =

{
6.42 × ISS if S = Unchanged
7.52 × (ISS − 0.029)− 3.25(ISS − 0.02)15 if S = Changed

Expl = 8.22 × AV × AC × PR × UI

ScoreBase, BS (RUp meaning RoundUp):

BS =


0 if Imp = 0
RUp(min(Imp + Exp, 10)) if S = Unchanged
RUp(min(1.08 × (Imp + Exp), 10)) if S = Changed

Temporal metrics

Temporal values:



ECM—Exploit Code Maturity =


Not Defined 1
Unproven 0.91
Proof-of-Concept 0.94
Functional 0.97
High 1

RL—Remediation Level =


Not Defined 1
Official Fix 0.95
Temporary Fix 0.96
Workaround 0.97
Unavailable 1

RC—Report Confidence =


Not Defined 1
Unknown 0.92
Reasonable 0.96
Confirmed 1
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Temporal metrics equations—Temporal Score—TS:

TS = RUp(BS × ECM × RL × RC)

Environmental metrics

Environmental values:



CR - Confidentiality Report =


Not Defined 1
Low 0.5
Medium 1
High 1.5

R—Integrity Requirement =


Not Defined 1
Low 0.5
Medium 1
High 1.5

AR—Availability Requirement =


Not Defined 1
Low 0.5
Medium 1
High 1.5

Modified base metrics: MAV—Modified Attack Vector; MAC—Modified Attack Complexity;
MPR—Modified Privileges Required; MUI—Modified User Interaction; MS—Modified
Scope;
MC—Modified Confidentiality; MI—Modified Integrity; MA—Modified Availability.
MISS—Modified Impact Sub-Score; MI—Modified Impact; ME—Modified Exploitability
MISS = min(1 − [(1 − CR × MC)× (1 − IR × MI)× (1 − AR × MA)], 0.915)

MI =
{

6.42 × MISS if MS = Unchanged
7.52 × (MISS − 0.029)− 3.25(MISS × 0.9731 − 0.02)13 if MS = Changed

ME = 8.22 × MAV × MAC × MPR × MUI

Environmental metrics equations — Environmental Score—ES:

ES =


0 MI = 0
RUp{RUp[min(MI + ME, 10)]× ECM × RL × RC} MS = Unchanged
RUp{RUp[min(1.08 × (MI + ME), 10)]× ECM × RL × RC} MS = Changed

Appendix B. CVSS Version 4.0 Calculator

Source: https://www.first.org/cvss/v4.0/specification-document (accessed on 1 Septem-
ber 2023).

CVSS v4.0, to be released soon, contains many new features, and will have finer
granularity (271 possible scores, instead of the actual 101).

For the base metrics, a new base metric, attack requirements (AT) has been added,
and the user interaction (UI) has new metric values, active and passive. Scope has been
retired from the impact metrics, and there is explicit assessment of impact to vulnerable
systems (VC, VI, VA) and subsequent systems (SC, SI, SA).

The temporal metric group has been renamed the threat metric group, with the
remediation level (RL) and report confidence (RC) retired and the exploit code maturity
renamed exploit maturity (E)

Safety metric values have been added to the environmental metrics. The application
of the environmental and threat metrics is the responsibility of the CVSS consumer.

To stress that CVSS is not just a base score, new nomenclature was adopted:

• CVSS-B: CVSS Base Score
• CVSS-BT: CVSS Base + Threat Score
• CVSS-BE: CVSS Base + Environmental Score
• CVSS-BTE: CVSS Base + Threat + Environmental Score

https://www.first.org/cvss/v4.0/specification-document
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Details in https://www.first.org/cvss/v4-0/ (accessed on 1 September 2023) and
Dugal and Rich [70]. Further information at https://github.com/FIRSTdotorg/cvss-v4
-calculator/blob/main/cvss_lookup.js (accessed on 1 September 2023).

Figure A1. CVSS v4.0 Base and supplemental metrics (source: Dugal and Rich [70]). (Calculator
v4.0 full description at https://redhatproductsecurity.github.io/cvss-v4-calculator/ (accessed on
1 September 2023)).

Figure A2. CVSS v4.0 base and threat metrics (source: https://www.first.org/cvss/v4-0/ (accessed
on 1 September 2023). Copyright © 2023 Forum of Incident Response and Security Teams, Inc. All
Rights Reserved).

https://www.first.org/cvss/v4-0/
https://github.com/FIRSTdotorg/cvss-v4-calculator/blob/main/cvss_lookup.js
https://github.com/FIRSTdotorg/cvss-v4-calculator/blob/main/cvss_lookup.js
https://redhatproductsecurity.github.io/cvss-v4-calculator/
https://www.first.org/cvss/v4-0/
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Figure A3. CVSS v4.0 Environmental and supplemental metrics (source: https://www.first.org/
cvss/v4-0/ (accessed on 1 September 2023). Copyright © 2023 Forum of Incident Response and
Security Teams, Inc. All Rights Reserved).

Appendix C

In Table A1, vulnerabilities “officially” exploited, data collected [8] from 1999 to 2022,
are shown. These apparently record only post-disclosure exploits of the vulnerability, not
accounting for “0-day” exploits in the pre-disclosure highest risk period.

Table A1. Vulnerabilities exploited.

Year No. of Vulnerabilities
No. of Exploits

Total % Exploits
1 2 3 4 5

1999 894 2 0 0 0 0 2 0.22
2000 1020 0 0 0 0 0 0 0
2001 1677 2 0 0 0 0 2 0.12
2002 2156 1 0 0 0 0 1 0.05
2003 1527 5 0 0 0 0 5 0.33
2004 2451 5 0 0 0 0 5 0.2
2005 4935 12 1 0 0 0 13 0.26
2006 6610 26 2 0 0 0 28 0.42
2007 6520 43 1 0 0 0 44 0.67
2008 5632 66 3 0 1 0 70 1.24
2009 5736 430 48 4 0 0 482 8.4
2010 4653 685 390 8 3 0 1086 23.34
2011 4155 312 117 1 2 0 432 10.4
2012 5297 493 58 2 2 0 555 10.48
2013 5191 176 12 2 0 0 190 3.66
2014 7939 336 23 4 1 1 365 4.6
2015 6504 116 6 0 0 0 122 1.88
2016 6454 1 0 0 0 0 1 0.02
2017 14,714 4 1 0 0 0 5 0.03
2018 16,557 4 0 0 0 0 4 0.02
2019 17,344 13 0 0 0 0 13 0.07
2020 18,325 50 7 0 0 0 57 0.31
2021 20,171 0 0 0 0 0 0 0
2022 19,500 0 0 0 0 0 0 0

Total 185,962 2782 669 21 9 1 3482 1.87

https://www.first.org/cvss/v4-0/
https://www.first.org/cvss/v4-0/
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Appendix D. Zipf and Pareto Extensions

The Zipf law and the Pareto I law are in a strict sense power laws, respectively, discrete
and absolutely continuous, and are closely related. Both have useful generalizations,
namely the generalized Pareto described in Section 4.

Zipf’s law is a special case q = 0 of the Zipf–Mandelbrot family of discrete models with

a probability mass function P[X = k] = (k+q)−α

HN,q,α
, k = 1, . . . , N, q ≥ 0, HN,q,α = ∑N

j=1
1

(j+q)α ,
where k is the rank of the data and HN,q,α is a generalization of the harmonic number.

The CDF is F(x) =
H⌊x⌋,q,α

HN,q,α
, where ⌊x⌋ is the largest integer not greater than x.

The interested reader may find detailed discussion in Johnson et al. [71], and varied
useful information in Sornette [41] and Saichev et al. [72].

The Pareto I family of random variables with CDF (1) has several generalizations with
additional parameters providing more flexibility:

• X ⌢ Pareto II(λ, δ, α), λ ∈ R, δ > 0, with CDF

F(x) =


0 , x < λ

1 −
(

1 +
x − λ

δ

)−α

, x ≥ λ
,

with the special case λ = 0 being the Lomax distribution;
• X ⌢ Pareto III(λ, δ, γ), λ ∈ R, δ, γ > 0, with CDF

F(x) =


0 , x < λ

1 −

1 +

(
x − λ

δ

) 1
γ

−1

, x ≥ λ
;

• X ⌢ Pareto IV(λ, δ, γ, α), λ ∈ R, δ, γ > 0, with CDF

F(x) =


0 , x < λ

1 −

1 +

(
x − λ

δ

) 1
γ

−α

, x ≥ λ
.

(Note that Pareto IV(δ, δ, 1, α) reduces to Pareto I(δ, α), Pareto IV(λ, δ, 1, α) reduces to
Pareto II(λ, δ, α), and Pareto IV(λ, δ, γ, 1) reduces to Pareto III(λ, δ, γ).)

For more information, consult Johnson et al. [60] and the monograph of Arnold [57].
The PDF of Z = X

Y , where X and Y are independent random variables,
X ⌢ Exponential(1) and Y ⌢ Gamma(α, 1), is

fZ(z) =
∫ ∞

0
e−zy yα−1e−y

Γ(α)
y dy =

1
Γ(α)

∫ ∞

0

(
t

(1 + z)

)α

e−t dt
1 + z

=
α

(1 + z)α+1 , z > 0,

hence, W = δ (1 + Z) has PDF fW(w) =
α

δ

(
w
δ

)−α−1

I[0,∞)(w), i.e., W ⌢ Pareto I(δ, α).

Observing this, Feller [47] (p. 50) defined a family of Feller–Pareto random variables

W = λ + δ

(
X
Y

)γ

⌢ FellerPareto(λ, δ, α1, α2, γ), where X and Y are independent random

variables X ⌢ Gamma(α1, 1) and Y ⌢ Gamma(α2, 1), with special cases:

• FellerPareto(δ, δ, 1, α, 1) ≡ Pareto I(δ, α);
• FellerPareto(λ, δ, 1, α, 1) ≡ Pareto II(λ, δ, α);
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• FellerPareto(λ, δ, 1, 1, γ) ≡ Pareto III(λ, δ, γ);
• FellerPareto(λ, δ, 1, α, γ) ≡ Pareto IV(λ, δ, γ, α).
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