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Abstract: A co-infection model for onchocerciasis and Lassa fever (OLF) with periodic variational
vectors and optimal control is studied and analyzed to assess the impact of controls against incidence
infections. The model is qualitatively examined in order to evaluate its asymptotic behavior in relation
to the equilibria. Employing a Lyapunov function, we demonstrated that the disease-free equilibrium
(DFE) is globally asymptotically stable; that is, the related basic reproduction number is less than
unity. When it is bigger than one, we use a suitable nonlinear Lyapunov function to demonstrate the
existence of a globally asymptotically stable endemic equilibrium (EE). Furthermore, the necessary
conditions for the presence of optimum control and the optimality system for the co-infection model
are established using Pontryagin’s maximum principle. The model is quantitatively analyzed by
studying how sensitive the basic reproduction number is to the model parameters and the model
simulation using Runge-Kutta technique of order 4 is also presented to study the effects of the
treatments. We deduced from the quantitative analysis that, if there is an effective treatment and
diagnosis of those exposed to and infected with the disease, the spread of the viral disease can be
effectively managed. The results presented in this work will be useful for the proper mitigation of
the disease.

Keywords: onchocerciasis; Lassa fever; co-infection; global stability; optimal control; periodic
variational vectors

MSC: 00A71; 93D05

1. Introduction

Onchocerciasis is a neglected tropical illness caused by the filarial worm parasite
Onchocerca Volvulus [1-4]. The disease is spread from person to person through frequent
bites from black flies, and is particularly prevalent in sub-Saharan Africa. However, another
word for it is riverine blindness, which infers that the disease burden is higher in regions
near rivers, as the presence of riverine hatching sites for black flies has a substantial impact
on the incidence of onchocerciasis infection in a community. The disease is more common in
adults under the age of 30. Many researchers have worked on numerous ways of reducing
the spread of the disease using different modeling approaches, both mathematically and
statistically, suggesting ways of mitigating the disease. The modeling of different kinds of
viral diseases extended to optimal control and the study of the co-infection of infectious
disease dynamics have been the subjects of several studies (see [5-12]). In [2], the authors
used a computer algebra system (CAS) simulation procedure to study the model to prevent
onchocerciasis using macrofilaricide, which kills the adult worms. The study provided
in [3] looked at the effects of four distinct methods of control on disease spread. Ref. [13]
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used a microsimulation model to assess the time required to combine annual ivermectin
therapy and vector control in the West African onchocerciasis Control Programme. For
example, in [14], scientists performed a skin snip survey in west Africa to assess the
impact of larviciding on the suppression of black flies. The Arena virus (Lassa virus)
causes Lassa fever, a viral disease. It is zoonotic and acute, causing severe hemorrhagic
fever with symptoms like nausea, sore throat, vomiting, chest and stomach discomfort,
muscle cramps, fever, and ocular discharges. When humans come into contact with the
virus on these contaminated surfaces, they can become infected indirectly. Rodents can
also become infected because they share rubbish, eat on surfaces polluted with infectious
rodent excretions, and do not die from disease but carry the infection and continue to
spread it throughout their lives. Infections can be regularly diagnosed throughout the
year; however, peak times in tropical regions have been seen between January and May
throughout the period of drought [15-17]. Ref. [15] created a mathematical representation
of Lassa fever transmission and dynamics in two interacting populations. In another
breakthrough, [18] created a mathematical model for Lassa fever transmission dynamics,
examined endemic stability, determined the stability of the disease-free equilibrium, and
estimated the threshold value. Our work is motivated based on the research in [19], wherein
the authors consider the co-infection model of malaria—Lassa using optimal control. The
developed model reflected seasonal fluctuation in vectors and showed that co-infection
with malaria and Lassa fever increased mortality in infected patients. Research on the
optimal control of the co-infection of diseases has been highly explored; however, to the
best of the authors” understanding, optimal control analysis is not currently used in the
literature to study the co-infection of onchocerciasis and Lassa fever. This study investigates
the global stability properties and optimal control analysis of onchocerciasis-Lassa fever
co-infection in three interacting populations of humans (the host), black-flies (the vector),
and rodents, which incorporate periodic variational vectors and diagnostic factors for the
treatment of onchocerciasis-Lassa fever co-infection. To show the novelty of our work in
this paper, and to the best of our knowledge, this is the first time that research has sought
to understand the co-infection model for onchocerciasis and Lassa fever dynamics and its
optimal control. We use a search engine procedure, such as Google scholar, Web of Science,
and Scopus search, to validate the novelty of this research. The key findings of this research
help us understand that, in the process of disease mitigation, treatment is more likely to
reduce the infection. With the treatment procedure comes the tool of insecticides that also
enhance the process of mitigation, i.e., this process has a positive implication in ensuring
that the community is onchocerciasis-Lassa-free. Another mitigation method from this
research is the optimal control investigation and sensitivity analysis. The optimal control
and sensitivity analysis shows the effect of the control parameters on the basic reproduction
number, which efficiently inform the public and health officials of the possibility of reducing
the infection and transmission rates where the disease is predominant.

The remainder of the paper is structured as follows: Section 2 contains the model’s
formulation as well as its basic features. Section 3 qualitatively analyzes the co-infection
scenario without controls. Section 4 considers the optimal control model, whereas the
numerical simulation of the model and the discussion of the results are presented in
Section 5. The concluding remarks, limitations, future work, and key results are discussed
in Section 6.

2. OLF Co-Infection Model

This work sought to study the transmission dynamics of OLF co-infection in three
interacting populations of humans (the host), black flies (the vector), and rodents, which
incorporate periodic variational vectors [19-21], because we know that zoonotic and vector-
borne diseases have some environmental drivers and diagnostic factors for the treatment
of onchocerciasis—Lassa fever co-infection, and we formulate a model which subdivides
the total human and rodent population sizes at time ¢ and discrete age ¢; and d; denoted

by Ny (t,¢i) = Ni(t,¢;) + NE(t,¢i) + Ni(t, ¢i) + NI(t ¢i) + Ni(t, ;) + Ni (t,¢;) + Ni(t, ¢;) +



AppliedMath 2024, 4

91

Ny (t,ci), Ni(t, d;) = Si(t,d;)+ Er(t,d;) + I:(t,d;) withi =0,1,2,...,.L,j=0,1,2,..., T and
cr, and dr are the maximum age of humans and rodents in the population. Similarly, the
total black fly population size at time t is denoted by N (t) = Sy,(t) + E,(t) + Iy (t).

The state variables N¢, Ni and N! denote the number of people in the human popula-
tion that were exposed to Lassa fever, infected by Lassa fever, and recovered from Lassa
fever, respectively, but susceptible to onchocerciasis. Moreover, N;, N7 and N; represents
those exposed, infected and recovered from onchocerciasis, respectively, but susceptible to
Lassa fever. It is imperative to note that N} denotes the number of those that recovered from
both diseases. However, N represents the number of those susceptible to both diseases. The
rodent population was classified as S;, E;, and I, representing those that were susceptible,
exposed, and infected, respectively. Furthermore, the black fly population was classified
as Sy, Ep, and I, denoting those that were susceptible, exposed, and infected, respec-
tively. Let Ag(t) = co(c;)(1+ beos(2rt + T))I, be the onchocerciasis infection rate, where
colci) = %, W is the contact rate between humans and black flies, and b is
the rate at which humans are being bitten by black flies. Similarly, A,(t) = po(c;)(1 +
wy(d;) cos(27tt + T)) L (t,d;) and Ay(t) = oo(c;) (1 + wq(c;) cos(27rt + T))NL(t,c;) are the

forces of infection for Lassa fever, where 0y = 4(e) and 00 = da c; ) . In the black fly and

Ny (t,c;) Ny (t,c;)
rodent populations A, (t) = ¢o(1+bcos(27t +T)) and A, (t) = Bo(d;)(1+ wa(d;) cos(27tt +
T)), ¢o = I‘\% and Bo(d;) = % The subscripts 7, b represent the Lassa fever (rodent)
r(Ed;

and onchocerciasis (black fly), respectively. Ribavirin (anti-viral drug) is effective when it is
administered early. It is assumed that both exposed and infectious humans are treated at
rates of 1 (c;)a(c;)NE(t, ¢;) and 771 (c;)o(c;)NL(t, ¢;), respectively. NI (t,c;) represents those
who are infected with both diseases.

The formulation of the compartmental model is based on the following assumptions
because of our knowledge of both diseases and the research performed in [19]:

1. Every person is born with the ability to catch Lassa fever and onchocerciasis, implying
that humans are at risk of contracting the diseases.

2. Once susceptible people become sick, they transform into exposed people with immu-
nity but are not yet contagious.

3. Only individuals who are exposed to the virus become contagious.

4.  Infectious individuals can die naturally or as a consequence of the disease, and if they
do otherwise, they can recover as a result of treatment.

5. That person could simultaneously contract both Lassa fever and onchocerciasis.

6.  All rodents including black flies have vulnerability during birth.

7. Each type of rodent species may perish spontaneously or as a result of hunting and
the application of pesticides.

8.  Infected sensitive rodents are exposed but not contagious rodents.

9.  Only exposed rodents and black flies become infected.

10. Infected rodents become infected when they consume or consume fluids from ill rodents.

11. Afflicted rodents and black flies are infectious for life, implying that there is no
recovered class for rodent and black fly populations.

Following that, we obtain a 14-dimensional system of ODEs that explains disease
spread as follows:
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M) = 7(ci) = Lo To(Aa + Ap)NE(t i) — Th g ABNS (1, )y
—p(ci)N3(t,ci) +vp(ci) N7 (t, ¢;)
an; (tcl = Lio Limo(Aa + Ap)NE(E ci) — Xig O (i) ABNE (£ ci) Iy
—(#( )+%(Cz) (Cl) + 7(ci) ) NS (¢, ¢i)
M) — $E O T(c)NE(t ¢r) — Tk g 8y (ci) ABNE (i) Ip — (p(cy)
+77v(cz) (c ))N (t,ci)
NELG) — oL (o (i) (ci)NE(E ¢i) + 170 (ci) o (¢ )Nt ¢1)) — (e NI (t, ;)
i) _ L NS (e - 0 X0 80 (ci) (Ao + Ap)NE(t,ci) — (p(c)
;}\'Il—h( i))Ne (t,ci)
L) vl (e Nt o) — Do Ko 8r(ci) (Ao + Ap)N3 (8, 1)
—(Su( ¢;) +ep(ci)By(ci) )N (1, 1) @
dNT(ttCi) = ZZL oeb(cz)ﬁb(cz)Nf(fr ci) = (vu(ci) + pu(ci) )N; (£, ci)
Dt 9 (ci) A (NE (£, ¢;) + Ni(t,¢;)) Iy — p(ci)NE (¢, ;)
+Z Z _ ( i)(Aa + Ap) (NG (¢, ¢i) + Ni (t,¢i))
”’5’5;“ Ar( (1 + & cos(2tt + T)) = Lo ArSy (£ d) (8, d;) — (ur(dy) + 6,(d)))S, (8, )
2t ;) = Yo At d) I (8 d5) — (wr(d;) + e () + 0,(d))) Er (1, )
avfun) ST ) () — (o) + &) 10, )
% = Gp(14xpcos(27tt 4 T)) — ApSpN7 (t, ;) — Sy
;ﬁ’ = ApSpN;(t, ¢i) — (pp +ap) Ep
Tt = apEp — pply
and the ICs

N:(0,¢;) = N(s)s(ci)'Nse(O/ ci) = Ngs(ci>/Ns<0r i) = N(i)s(cz)/

Nsr(or Ci) = NSS(CZ-),NES(O, Cz) = Née(ci)/st(Or CZ) = NSj(Ci)f )

Nf((), C,‘) = NSr(Ci)/Sr(O/dj) = SOr/ E,(O,dj) = Eor, Ir(O,d]') = IOr/

Sp(0) = Sop, Ex(0) = Eqp, I;(0) = Igp

In Table 1, we present the definition of the parameters of model (1), and in Table 2, we
present the parameter values used for the quantitative aspect of the research.

Table 1. The definitions of the parameters in model (1).

Definition Symbols
Susceptible to human recruitment Z(ci)
Susceptible to black fly recruitment Sp
Susceptible term for rodent recruitment Ar(d))
Rate of black fly biting b
Rodent interaction rate wy(d;)
Human interaction rate w1 (c;)
Onchocerciasis transmission rate in humans cp(ci)
Onchocerciasis transmission rate in black flies op
Lassa fever transmission rate in individuals by infectious individuals dy(c;)
Lassa fever transmission rate in individuals by infectious rodents dy(c;)
Lassa fever transmission rate in rodents by infected rodents Br(d;)
Human mortality rate per capita u(ei)
Black fly mortality rate per capita Uy
Rodent death rate per capita pr(d;)
Rodent mortality rate due to hunting or(d))
Black fly seasonal variation Kp
Rodent seasonal fluctuation &

Lassa fever progression rate in an exposed individual

.—1
—
o
v
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Table 1. Cont.

Definition Symbols
Onchocerciasis progression rate in the exposed human host T (ci)
Lassa fever progression rate in exposed rodents ar(d;)
Onchocerciasis progression rate in exposed black flies wp
The proportion of effective human onchocerciasis treatment €p(cy)
Infectious human onchocerciasis treatment rate By (ci)
Proportion of successful Lassa fever treatment for exposed humans Yo(ci)
Lassa fever diagnostic tests for humans who have been exposed a(c;)
Proportion of successful Lassa fever treatment for infected humans o(c;)
Infectious human Lassa fever treatment rate 1no(ci)
Force of infection for Lassa fever in humans by infectious humans Aa
Force of infection for Lassa fever in humans by infectious rodents Ap
Force of infection for Lassa fever in rodent population by infectious rodents Ay
Onchocerciasis infection rate AB
Rate of recovery from Lassa fever 9,
Rate of recovery from onchocerciasis W
Rate of loss of immunity to onchocerciasis Yp(ci)
Table 2. The parameter values of the OLF co-infection model.
Symbols Value Source
{(ci) 0.000212 Estimated
Ch 0.065 [11]
Ar(d}) 0.0054 [16]
b 0.8 Fixed
wy(d;) 0.75 Assumed
w1 (c;) 0.55 Assumed
cp(ci) 0.099 [22]
o 0.089 [22]
di(c;) 0.00814 [22]
dy(c;) 0.055 [16]
r(d}) 0.073 Assumed
u(ci) 0.0000545 Estimated
Up 0.0665 Estimated
pr(d;) 0.058 [23]
or(d)) 0.295 Assumed
Kp 0.5 Assumed
Cr 0.00021 Assumed
(c;) 0.082 [24]
T (c;) 0.0585 Assumed
ar(d;) 0.83 Assumed
Xy 0.0554 Assumed
€p(c;) 0-0.1 Assumed to vary
By(ci) 0-0.1 Assumed to vary
Yo(ci) 0.09 Assumed
a(ci) 0.049 Assumed
o(c;) 0-0.189 Assumed to vary
0(¢;) 0.43 Assumed
Tp(ci) 0.0013692 Assumed
o 0-0.2 Assumed to vary
9 0-0.3 Assumed to vary
Aa 0-0.2 Assumed to vary
Ap 0-0.3 Assumed to vary
Ay 0-0.5 Assumed to vary
A 0-0.4 Assumed to vary
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Basic Model Features Model (1) without Controls

The respective results which guarantee the OLF-model co-infection model, governed
by model (1), represent a mathematically well-posed and feasible region () defined by

Q=0,x0, xQ, CRE xR xRS

where (0 = {N;(t, ) Ne(t ci), Nyt ¢i), NE(,¢i), N (8, ¢0), Ni (t,¢1), N (t,¢), N (1, ¢;) €

{
L
RS : Ny (t,¢;) SZ

T )
O = (S (L d)), Bt d), b (6 d), € R < Ny(tdy) < Y2 @)L+ &reosGri £ 1))

j=0 ,ur(d]) “1‘51’(11]) }

and
1+ xp cos(2mtt + T))

Hbp }

O = (S5(0), Ey(8), (1), € R < Ny (1) < 24

Theorem 1. The feasible region () deﬁned by Q = {Ni(t,¢c;), Ne(t ci), Ni(t,c;), Ni(t,c;),
N5 (t,¢i), N3 (t,ci), Ns(tc) NI (t,¢;), Sr(t,d}), Er(t,d;), I (t, dj), Sp(t)Ep(t), Iy(t) € RM

(ci) L Ar(dj)(1+&rcos(2mtt +T))
Ny (0,¢;) < Ny(t,¢;) < IX;).“(CZ) ,N:(0,d;) < Ni(t,dj) sg TREAESRE ,
Np(0) < Np(t) < SlHecC@mDIy ghigy 1C's N3(0,¢;) > 0,NE(0,¢;) > 0,Ni(0,¢;) >
0,NI(0,¢;) > O,N3(0,¢;) > O,N5(0,¢;) > O,N5(0,¢;) > O,N/(0,¢;) > 0,5.(0,d;) >
0,E/(0,d;) > 0,1;(0,d;) > 0,5,(0) > 0,E;(0) > 0,1,(0) > 0 is a non-negative variant
for model (1).
Proof. If Nj(t,c;) = N:i(tc;) + Né(tc;) + Ni(t¢;) + NI(tc;) + Ni(t,c;), Ni(t, c;)+

N; (t,¢;) + N[ (t,¢;) represent the sum of the population of human, the sum population of
the rodent is N;(t,d;) = S;(t,d;) + E,(t,d;) + I;(t,d;) and the complete size of black fly
community is N (t) = Sp(t) + Ep + Ip. Then, from model (1)

ANy (t, ¢;)
hggt > Z,M )N (t, ¢;) 3)
dN, L
T Ar(dj)(1+ & cos(2mtt +T)) — Z(:)(yr(dj) +6:(d;) )Ny (t,d)) 4)
1=
dN
dtb < ¢p(1 + K cos(27t 4 T)) — Ny (5)
Considering the inequalities of the ODE of (3), (4), and (5), respectively,
L A L
Ny (t ¢;)e! D < Ny(0,¢:) + Y % Z
i=0 ]’ll’l( ) i=0
so that . .
Alc Alc
N, (t,¢c;) <N O,C .uh( )t+ e ,uh 1
( 1) h( z) 1;0 Vh ;} Vh
this implies
L
t Cl < Z ]/l 1 — el )t) +Nh(0 c,)e p(ci)t (6)
i=0 h

similarly, for Equation (4), we have
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¥(t,d;) <Z

_ _ T Ay (d;) (14 & cos(2mt + T)) , ,
N, (£ d el @@t < 3 N (0,d) 4+ 2\ e ()40, ()1
(td) < L N0 @) +0.)
Ay (dj)(1+ Gy cos(2mtt + T))
pr(d;) + 6,(d))

so that
T (AN s Ar(dj)(1+ & cos(2mtt + T))
N;(t,d; N, (0, d;)e~ (#r(d)+0:(dj))t
)= oar P @) e @)
 Ar(dj) (1 +Grcos(2mt + T))

e*(Vr(dj)JF‘Sr(dj))t
,ur( ) + 5r(d])

this implies
)(1+&rcos(2mtt +T))

ﬂ ( ) + 5 (d ) (]. — e_(ﬂr(d]‘)"r&r(dj))t) + Nr(o’ dj)e—(yr(dj)+(5r(dj))t (7)
=0 r
Also,
Ny(t)e"! < N, (0) + ¢p(1 4 1y cos(2rtt + T>)eﬂbt ~ gp(1+xycos(2mt +T))
Ho Hb
so that Np(t) < Np(0)e " + Am  Gp(1+ Ky cos(27tt + T))e—;lbt
; ]’lb ]’lb
this implies
Ny (1) < SeLERCORTED) (3 oty 4y, (0)e ®)

Hop

L .
Taking the limits of Equations (6)-(8) as t — oo gives Ny (t,¢;) < Z C(Cl? ,Ni(t,dj) <

i Ar(d) (14 ¢rcos(2mt 4 T))
j=0 pr(dj) + 0r(d))

ble region Q0 = {N3(t, c;), N¢(t,¢;), Ni(t ¢i), NI (t,¢;), N (£, ¢;), Ni (£, ¢), Ni(t,¢;), Ny (¢, ¢;),
T Ar(dj) (14 & cos(2mt + T))

L
Si(t,d;), Er(t,d), I (t,d;), S, Ep, Iy € RY = Ny(t,e) < i) N d) <
r( ) r( ) V( ) br Lbr b h( 1) l;[)]’l(cz) r( j) ];) ]/lr(d/)-‘r(sr(d])

and N, () < el+0 cZi(Znt+T)) Thus, the following feasi-

1 2 T
Ny () <D€h( +KbC<;i( T+ ))}_

3. Analysis of Model (1) with Non-Controls

Itis crucial to remember that, given the recruiting terms, there are no trivial equilibrium
locations, {(c;), Ar(d;)(1+ ¢y cos(27tt + T)) and Ay (1 + &, cos(27tt + T)) that are non-zero.
This implies that the equilibrium points (NZ(t,¢;), N¢(t,¢;), Ni(t, ¢;), NI(t,¢;), Ni(t,¢;),
Nis(t/ Ci)’ Nf (t/ Ci)/ N;"(t/ Ci)/ Sr(tl d])/ Er(t/ d])/ Ir(tl d])/ Sb/ Eb/ Ib) 7& (Or 0,0,0,0,0,0,0,0,0,0,
0,0,0).

Subsequently, we shall analyze model (1) by showing the existence of the endemic equi-
librium and the stability properties of both the DFE and EE through the basic reproduction
number of the model.

3.1. Disease-Free Equilibrium e

The disease-free equilibrium point, €y for the OLF-model (2.1) implies that N*}(¢;) #
0,N%5(ci) = Niilei) = N'se(ci) = Ng(ci) = Nry(ci) = 0,5;(d;) # 0, Ej(d)) = I(d;) =
0,5, # 0,E; = I; = 0 and putting these into (2.1) yields N, (cl) =0,N{, = 0,NZ%(c;)
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D ox . Ar(146 cos(2mt+T . (1t 24T
;%E;%'Sd _ A g,f;(f((s,ﬁ ) and S; = 6 Kbczz( mt+T))
obtain ¢€; as
. A (d))(1+E cos(mt+ T
£ 0,0,0,0,0,0,0, 24 * &rcos ) 0,0, oLt Ky c0s@rt+T)) g
p(ci) pr(d;) + 6,(d}) Hp

, respectively. Consequently, we

€) =

©)

3.2. Basic Reproduction Number, Ry (t, c) and Rog(t,a)

The Ry for Lassa fever and onchocerciasis represented as Ry (¢, a4) and Rop(t,a) can
be obtained through the next-generation matrix approach described in [17].

Basic reproduction Ry is a measure of how contagious an infectious disease is. This
shows how many new infections, on average, one infected individual can cause in a
community that is fully vulnerable to the illness. A high R value indicates that the disease
is more contagious and can spread more quickly. Understanding R, is important for
developing effective strategies to prevent and control infectious diseases, which is the
reason it necessitates the subsequent section, and we will evaluate the sensitivity of the
parameters in the model.

Ry, the spectral radius, FV-1 is given as

L op(ci) (1 + wy(c;) cos(2mt + T))Z (c;)T(cy)

Rop(a,t) =
i;o Rof

where R,r = p(c;)(170(ci)o(ci) + p(ci)) (vo(ci)a(ei) + T(c;i) + p(ci)), and, using a similar
argument, the Ry for onchocerciasis is obtained as

(10)

| & mlei)oo(ei) (1 + beos(2rtt + T))g(ci)gp(1 + 15 cos (27t + T) ) apepo
Ro(ent) = Jg H(e (0 (@) + e (enle)Bolen) + ple (e + s

Rop(a,t) = VR R (12)

_ cp(1+xp cos(27tT) ) appo _ 1p(ei)oo(ci)(14+bcos(2mtT))(c;)
where Ryp = 0= 20D Rim = 570305, (e 000 V(e @) Bole) ()

3.2.1. Analysis of the Ry’s Sensitivity, Ry (¢, ¢)

Observing the partial derivative of the Ry with respect to each of its parameters gives
the sensitivity analysis. It tells us the parameters that have the greatest impact on the spread
of the disease and evaluates how the uncertainty of the parameters can affect the dynamics
of the epidemic. The sensitivity index of the Ry, Rop.(#, ¢) with respect to its parameters, say

Q, is given by: Rou(te) ARy (1) . 0
Q B aQ ROL(t/ C)

Six of the sensitivity indices are negative while the others are positive, as can be seen
in Table 3. The sensitivity analysis of the basic reproduction number shows that there is a
direct relationship between Ry (¢, c) and the proportion of effective treatment of infectious
humans for Lassa fever, the recruitment term of susceptible humans, and the progression
rate of Lassa fever in the exposed human host while other parameters have an inverse
relation with Ry (¢, ¢). Table 3 and Figure 1 present the sensitivity indices as they relate to
Ro L (t ,C ) .

What can be deduced from the sensitivity analysis of Ry (¢, ¢) is that, if the rates of
the proportions of effective treatment, diagnostic for treatment, and the treatment rate are
increased for the human populations exposed to and infected by Lassa fever disease, the
threshold parameter Ry (t, ¢) will decrease, which means that the spread of the disease
will be curtailed.

S
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Table 3. Parameter sensitivity index for Rop (£, ¢).

Parameters Sensitivity Index
o(ci) 1
wy ci) —0.828483245781356
{(ei) 1
T(c;) 0.849041859804287
n(ci) —0.967222373292614
u(ci) —1.06060720384700
o(c;) —0.967222373292614
Yolci) —0.821212282664678
a(c;) —0.821212282664678
10
05
g
2
= 00
=
s
-1.0

Talcl) wel)  Ee)  tiel) nla) wpla) ofg) wic) ald)
Parameters

Figure 1. Graph of parameters and their sensitivity indices.

3.2.2. Sensitivity Analysis of Basic Reproduction Number, Rog(t,a)
The sensitivity index of the basic reproduction number, Rop(t,a) with respect to
parameter its parameters say P is given by:

SROB(t,IZ) — aROB(t, ﬂ) . P
g 9P Ros(t,a)

Five of the sensitivity indices are positive while other five are negative, as can be
seen in Table 4. The sensitivity analysis of the basic reproduction number, Rop(f,a) shows
that the bite rate, seasonal variation of black fly and treatment of infectious human for
onchocerciasis have an inverse relation with Rop(t,a). Table 4 and Figure 2 present the
sensitivity indices as they relate to Rop(f,a).

What can be deduced from the sensitivity analysis is that if the rate of treatment of
infectious human for onchocerciasis is increased, the threshold parameter Rop(t,a) will
decrease, which means the spread of the disease will be curtailed.

Table 4. Parameter Sensitivity Index of Rog (¢, a).

Parameters Sensitivity Index

ap 0.498408501754949
Sb 0.5

p(ci) 0.5

T (ci) 0.105493469772452

{(ci) 0.5
b —1.02094596559

K(ci) —0.361379512214456
Up —1.42094596559

u(ci) —1.12094596559

Bo(ci) —0.12094596559
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Figure 2. Graph of parameters and their sensitivity indices.

Treatment is critical in the treatment and management of onchocerciasis and Lassa
fever. Treatment with the medicine ivermectin for onchocerciasis can efficiently destroy
the microfilarial worms that cause the disease, limiting further transmission and lowering
the risk of blindness. In addition to ivermectin, vector control strategies such as insecticide
spraying can be used to limit the number of disease-carrying black flies. For Lassa fever,
ribavirin is most effective when administered early in the course of the illness, which can
significantly improve the patient outcomes. Additionally, supportive care, including fluid
and electrolyte management, oxygen therapy, and the treatment of secondary infections, is
essential for managing Lassa fever. The effective treatment of OLF can significantly reduce
the burden of these diseases and improve the quality of life for the affected individuals.
However, the treatment alone is not sufficient for controlling these diseases; comprehensive
control strategies that include vector control and public health education are also essential.

3.3. Existence of Endemic Equilibrium

Using the basic reproduction number obtained from the model (1), we analyze the
stability of the equilibrium point in the following result.

Theorem 2. The OLF co-infection model (1) has no endemic equilibrium when R, (c), RS, (c), Rog(c),
RY,(c),Rf,(c) < 1and a unique endemic equilibrium exists when R% (c), RS (c) Ros
Riz(c) > 1.

Proof. Let E;* = (N3*(c;), N&**(c;), NE** (c;), NU™ (i), N§* (ei), N§*™* (i), N3 ** (ci), S,
E;*, I, S5 (dj), E;*(d;), I;*(d;)) be a non-trivial equilibrium of the model (1). The steady
state of the OLF co-infection model (1) are

Lo () (R%,(c) — 1)

N = LR (k2 (o) 1)

srn s Qe (rp(cq) + () (plei) + e (ci) Bi(ci) ) (R (c) — 1)
N = L e B Ry O (RE(€) — Dmaler)
Sk o L g(cl)('Yh(Cz)"'.u(Cl))(R%B() 1)

N = L R ORG @) — 1)

ey b L) (Ry(e) ~ 1)

N = L R (R (0) = Dma(e)”

s = . — SO+ rconlont+ D)) 0 R () 1))
0= L T Tralen) + R(e)2(@) (Rag () — 1) + R2p(0) (R3,, (€) — 1)y (e)Bo’
£ _ 3 99BNl + H(e))Ele ><R33<> 1)

b = RZ(0)(R%(c) — 1) yp(ci) (mp + ap)en(ci) By (ci) By
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N (e)

N (e)

NI (c)

N (e)

54" (e)

Ej"(e)

I3 (e)

[ — i apep (i) By (i) GpAn (o (ci) + p(ci))Z(ci) (RGg(c) — 1)

b e R35(c)(R%, (c) = 1)y (up + ap)ep(ci) Bo(ci) By~

where

Bo = €5(ci)Bi(ci) (p + Gpcp) and By = Ay (yp(ci) + p(ci))(ci) (Rg(c) — 1) + R3p(c) (RE,
(c) - 1)7b(cz)€b(cz)ﬁb(cl)74b

R% (c) = i (u(ci)pp(pp + ap) + apApcy(1 + 1, cos(27tt + T))6,
bl =5 1o (ci)apApgp(1 + Ky cos(2mt + T)) T (ci)ep(ci) By (ci)”

R2 (c) = i (e pp(up + ) R35(c) + apApgy(1 + 1 cos(2mt + T)))6,
v = re(ei)apApgy(1+xy cos(27tt + T)) 1y (ci)ep(ci) Bo(ci)

Op = (u(ci) + 1w (ci)) (vp(ci) + plei)) (lci) + €v(ci) i (ci)). Therefore,

Z (vp(ci) + plei) (pci) + ep(ci)B(ci))Z(ci) (Rg(c) —1) + 6k
= Ty (ci)ep(ci) Bu(ci) R (c)vp(ci) (R%, (c) — 1) '

where 6 = Z(c;) (7s(ci) + p(ci) ) (R3g(c) — 1)1 (ci)ep(ci) By (ci)
For the Lassa fever class, it follows that:

I = N&* + N§* =

-y Tlei)plei)§(ci)Rg (€)

;)]Xé) mi(er)aler) (uer) +mle)o(er) +(ei)m(er)ele)’
L T

2 Y (eR; (@

i=0j=0

T A(d)(1+ & cos(2nt 4 T))
=0 ARG () + pr(d)) + 61 (d))

i ARG () Ar(dj) (1 + Gy cos(27tt + T))
j= = (ARG, (¢) + pir(d )+5r( ) (er(d) + pr(d) + 6,(d}))’

ar (dj) Ay (dj) (1 + &y cos(27t + T)) B2 (d;) (ar (dj) + pr(dj) + 61 (d)) — Ag
(mr(d)) + 0, (dj)) (ar (d)) + pir(d)) + 6, (d;)) B2 (d) w2 (d;)

where

= Ry (c)

L T
R0 = L e+ (eo e (u(e) + (e ale + 1e0) + p(ed o]
0s = u(ci) +71(ci)al(ci), Ag = Ar(dj)(1+ Grcos(2mt + T))(pr(d;) +6,(d}))

Similarly,

sk ek z** L 1\ i T(C; c
0= M) PN = 0 e (rle) + i (e)ete) + e (@)oter))

The endemic state exists whenever R¢; (c), RS, (c), Rop(c), R, (c), Rj,(c) > 1. O
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4. OLF Co-Infection Model Optimal Control

Into the model (1), we introduce preventative measures that are time-dependent v (¢)
and the treatment v;(¢) which employs the use of insecticide (or pesticide) v3(t) effort
to curtail the transmission of OLF co-infection. The function 0 < v1(t) <1 governs the
measure regarding the utilization of face nets and long cloths for effective protection, as
well as the use of rodent-proof containers, infection control measures such as complete
equipment sterilization, improved home hygiene, and strict barrier nursing such as masks,
gloves, gowns, and goggles to prevent human-to-human contact. The function 0 < v, (t) <
1 is the control in the treatment of OLE. The insecticide used for the black fly net is lethal
to the black flies and other insects and repels the black flies, thus reducing the number
that attempt to feed on people in the sleeping areas with the nets. Hence, the transition
dynamics are given by

ML) = 7(er) — T T p(Aa + Ap) N3 (1,c) (1 — 01) — Thg AN (1, 1) I (1 — 07)
NAG ) S(tci) + (i) N (t,ci)

MER) = L (YT o(Aa + Ap) NS (1 ) (1= 01) — Tk 8y (c))ANE (£, ¢) Iy (1 — 1)
—(V( )+'71(Cz) (ci)va + T(ci) NS (£, ¢;)

ML) — $L (e )NE( ¢r) — TE o 8y (ci) ABNE(, 1) Ip (1 — vy)
(‘”(Cl)Jrﬂl(Cl) (61)02) (t Cz) ‘
NSLG) — oL (o (ci)a(ci)aNE (1 ;) + 1 (ci)or(er) valNi(t, ;) — p(er) NE(t ¢;)

dN (t W= v AN () Ip(1 — v1) — B B 0,(c) (A + Ap) N3 (1,¢1) (1 — 1)
—(V( i) + 1 (ci) )NZ (¢ ¢i)
W) = 7 (e)NS(tei) — Yio Ejmo Br(ci) (A + Ap)N; (i) (1 = 1)

—(u( i) +ep(ci)Bu(ci)v2) N (t, ¢;) (13)
ahehe) - %oebu p(c)0aNE (1, ¢;) — (i) + uler)) N2 ( ;)
aNfli) _ YL g (e A (NE(t i) + Ni(t, e)) (1 — o0)Ty — (e N (1 1)

S(t

+Z 0L ( i)(Aa+Ap) (NG (2,
D) — A(d}) (1 + & cos(2mt + T)) — ©o Sy (8, d)) (8, )

dE(#trd( i) +6r(dj) + (1 —v3))S(t, d;

g = Lo ArSy(t,d) 1 (1, dj) — (ar(df) + pr(d)) + 61 (dj) + (1 — 03))Er (£, dj)

= Lo ar(d))Er(t,dj) — (pr(d)) + 6,(d)) + (1 = 03)) I, (t, d})

@ = ¢pAr(d;(1+ Ky cos(27tt + T)) — ApSpNE(t, ;) (1 — v1) — (pp + (1 —03))Sp
t b= ApSpN; (L ci) (1 — 1) — (up +ap + (1 —03))Ep

Gt = ayEy — (up + (1= 03)),

i)+ N (tc;)(1—01)
i)

dr( td

4.1. Global Stability Analysis

This is achieved for both the disease-free and endemic equilibria for the special case
with no loss of immunity acquired by the recovered individuals and no reduction in the
black fly and rodent groups.

Theorem 3. The disease-free equilibrium point €y of the model (13) is globally asymptotically stable
in Q) ifROL(x) < 1land ROB(X) <1

Proof. The Lyapunov function is given by

P = u(e) (e (ci)os + (e )NE(E i) + oo(1 4wy (c;) COS(27Ti(JCri)T))C(Ci)T(Ci)N§(f, ci)

+ u(ci) Ny (t, ci) (e (ci) By (ci)va + plci)) pp (ap + pp) Ne (£, ¢;)
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N Tp(ci)co(ci) (1 + beos(2mt + T))Z(ci)apgn(1 + xp cos(27tt + T))goN; (¢, ¢i)
T

N 0o (1 +wi(c;) cos(27tt + T))Z(ci)T(ci) I (t, ;)
pr(dj)pu(ei) (1 (ci)o(ci)o2 + ulei)) (va(ei)a(ci)vr + (i) + p(ci)

T (ci)co(ci) (1 +beos(27tt + T))Z(ci)angp (1 + x5 cos(27tt + T) ) oLy (£)
p(ci)Ni(t, ¢i) (tp(ci) + plci)) (ep(ci) Bo(ci)va + p(ci)) py (ap + pp)
N 00(1 + w1 (c;) cos(2mt + T))C(ci)T(ci) Er(t, dj)
(ar(d;) + pr(dj) + 6,(d;)) (1 (ci)o(ci)va + p(ci)) (vi(ci)alci)va + T(ci) + plci))
Ty (ci)eo(ci) (14 beos(27tt + T))Z(¢;)apgy (1 + xp cos(27tt + T) ) o Ep (¢)
p(ci)Nu(t, ci)(tp(ci) + p(ei)) (ep(ci) By (ci)va + plci) ) o (ap + pip)

The time derivative of P yields

(14)

L T
P = plci)(m(ci)o(e)oa + p(c (Z Y (Aa 4 Ap)NE(tci) (1 — vl))

i=0j=0

— p(ci) (m(ei)o(ci)vr + p(ci))
j
H

(i Oy (ci)ABNs (t,¢;)Ip(1 — vl))
i=0
_l’_

— p(ci)(m(ei)o(ei)va + plei)) (pu(ci) + 71 (ci)alei)va + T(ei) )N (¢ ¢i)

00(1 4+ w1 (c;) cos(2mt 4+ T))Z(c;)T(c;) [ & L ;

0 1 A (E;T ; ci)ApNg( tc)b;(l—m))
00(1 + w1 (c;) cos(2mt + T))Z(c;i)T(c;

e ) (e + me)oteeanit,c,))

+ u(ci) Ny (t, ci) (ep(ci) Bo(ci)oa + p(ci)) (ap + py) (ABNi(t/ ci)Ip(1 — 01))

i=0;=0

— p(ci) Ny (t, ci) (e (ci) By (ci)va + plei)) (ay + pp) (2 Y- 9 (dj) (Aa + Ap)NZ (t,ci) (1 — Ul))

p(ci)Nu(t, ci) (ep(ci) Bo(ci)va + plei)) (ap + pp) ((ci) + T (ci) No (£, ¢i))
T (ci)eo(ci)co(ci) (1 + beos(27tt + T))Z(ci)gppo
T (ci)

X (irb( IN; (8, ¢i) 2219 )(Aa+ Ap)N; (8, Ci)(1—01)>

i=0 i=0j=0

+

_ Tb(Ci)CO(Ci)(l+bCZ§Ef§t+T))@(Ci)f;b“bfl’o( (c1) + e (ci)Bolei)or) NE(E i)
oo(ci) (1 4 w1 (c;i) cos(2mt + T)){(ci)T(ci)
pr(dj)p(ei) (m1(ci)o(ci)o2 + ulcei)) (p(ei) +v1(ci)alci)vr + T(ci))

(Z ar(dj)Er(t,d;) — (u(d;) +5,(dj))lr(t,dj))

co(ci)eo(ci) (1 + beos(27tt + T)) 1 (c:) G (ci)gp (1 + Ky cos(27tt + T) )apgpo (
p(ci)Ni(t, ci) (y(ci) + p(ci)) (en(ci) Bu(ci)va + plci) ) g (ap + pp)

+

apEp + pply)
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oo(ei) (1 + wi(e) cos(2rt + T))g(ei) (i)
(ar(dj) + pr(dj) +6:(d))) (1 (ei)o(ci)oz + p(ei)) (11 (ci)a(ei)va + T(ei)p(ci))

M
(Z r(t, d I (t, dj) (o (d ) +V7(d) )

T (ci)co(ci) (1 +beos(2rtt 4 T))Z(ci)6p(1 4 x5 cos (271t + T) ) ap oA
plei) Nu(t,ci) (o (ci) + p(ci)) (€n(ci) By (ci)oa + plei) ) pn (ap + pip)

where
App = ApSpN; (t, i) (1 —v1) — (up + ap) Ep

Further simplification gives

P < —ple;)(m(ci)o(ci)oa + ple;)) (pei) + 7 (ci)a(ei)vr + (i) )N (¢, ¢;)
+ 00 (1 + wq (c;) cos(27t + T))¢ () T(ci) N5 (¢, i)
oo(1 + wy(c;) cos(27tt + T))¢ E ; (i) (1 (ci)o(ci)va)Ni(t, ci)
T(c;
— u(ci)N(t,ci)(€p(ci) Bo(ci)va + p(ci) o (e + pp) ((ci) + (i) )N (8, ¢i)
+ 1y (ci)eo(ci) (1 + beos(27tt + T))ep (i) By (ci)vag (ci)apPoNe (¢, c;)

~ w(ci)eo(ci) (1 +beos(2mt + T))gp(1 + xp (27t + T))(ci)appo(pe(ci) + €p(ci) Bi(ci)v2) N} (¢, ci)

T (ci)
T (ci)eo(ci) (1 +beos(2mtt + T))gp(1 +xp(27t + T))
p(ci)Ny(t, ci) (p(ci) + 1 (ci)) (ep(ci) By (ci)va + plci))

Equation (15) becomes

(ci)apPoly(t)
ty(ap + py) (5

P < oows (c:)Z(ci)T(ci)(Row(x) — 1)NE(t, ¢;)
p(ci) (va(ei)a(ci)va + T(ei) + plei)) (m(ci)o(ci)va + p(ci))*Ro (x) NE(t, ¢;)
7(ci)
+ u(ci) Ny (b, ci) (o (ci) + m(ci)) (ep (i) By (ci)va + plci)) o (ap + pp) (R (x) — DINE(t,¢;)
~ (ep(ci)Bo(ci)oz + P‘(Ci))ZV(Ci)Nh(tT/hC(iC)igTb(Ci) +p(ci)) o (ap + py) R (x) R2L()L,(H) (16)

P < 0if Ror(x) < 1and Rop(x) < 1.

The maximum invariant set: {(N:(t,¢;), N¢(t,¢;), Ni(t,¢;), NI(t,¢;), N5 (t,¢;), N3 (t,¢;),
Ni(t,¢;), NI(t,ci), Sy, Er, Iy, Sp, Ep, Ip) € Q : P = 0} is the singleton €. In this set, Nj, (£, ¢;) —

) Ar(d:) (14 cos(2mtt+T g .
/;((CC;)),Nr(t,dj) o M ]);(1,(d§)j—(:55((oij7)r )), and Ny (t) — co(14¢ Czsb(szrT)) ast — +co. This

shows that all solutions approach the disease-free stationary state. Thus, when Rop(x),
Ror(x) < 1both diseases will be eliminated from the system. If Rop(x), Ror(x) > 1, then
P may be > 0 for N§ = Ni=N; = N; = I, = Ij close to the disease-free state except for
N¢{ = N{ = Nj = N; = I, = I, = 0. Thus, the disease-free state is globally asymptotically
stable when R3;(x), Ror(x) < 1.

The nonlinear Lyapunov function of the Goh—Volterra type is used for the endemic
equilibrium. See, for instance, [11] for the application of this Lyapunov function. [

Theorem 4. The unique endemic equilibrium, E,, of the model (15) is globally asymptotically stable
if Rog(x) > 1, Rop(x) >1and 0 < vy < 1.

Proof. Let Ror(x), Rop(x) > 1and 0 < v; < 1 so that a unique endemic equilibrium exists
and consider the following nonlinear Lyapunov function defined by
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Nss**(cl,

~—

Ns t, | Kok
N = NE(t c5) — NE™ () — N2 () 1n< H C’)) NS ) — N2 ()

— NS (cy) 1n< z(t(‘;D + N3 (£ ;) — N§™ () — N§™ () In < e (L C{%)

5 (ci
“l/l(Cl')—0—’)/1(Ci)Dc(Ci)Z)2+T(Ci) it c: Tk ix% n Nsi(tfci)
+ T(c;) [NS(t' i) = N (e) = N (e (Né**(ci)>]

(i) + o(ci)

- T (ci)

+ 5,1, dj) = S} (d)) - S**(dﬂ“(ii(j])))+Er<f/d> EF*(d)) — E**(d”“(?*g(j >) )

+y’(df)+i’((d‘jj))+‘5’(df> {Ir(t,dj)—lf*(d)—lr**( )1 < If* d) )]

I,
+sb—s;*—s;;*1n<ss**)+15 —E*—E*In (E** “b“‘b[ ~I*In (1)] (17)

with the Lyapunov time-derivative obtained as

N = Ni(t¢;) — @(( §>Ns(t ¢i) + Ne(t, ;) — (1;1](( ;)Ne(t ci)

() - (ﬁz:,(jg)w:(t,c»

L ) +71(C;)(oéf)ci)02+7(ci) Ni(h c;) (ZZ(( .§>Nl(t )
LS4 ( 5*(* (d )))M a)) + En(t,dy) - (50(2)) > Ei(t,d;)
e (d, )+o<,(d]))+5r( ){L(t,dj) <m>jr(t,dj)]

— S E, — E, I — | 2= |I 18
+ 5p (517) b+ Ep <Eb) +— o Ib p| (18)

Using the appropriate equations of the model (15) in (18) further gives

L Sk L Sk %
N_,Zg(c')<1+zs(( ) ZOV ONE(E¢;) <1+zs<( ;)
L T L
+ )Y (A H AN (er) (1 —vi(4)) + Y AN (ci) Ip(1 — w1 (1))

i=0j=0 i=0
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L C: ek (o —0
-y y et AR =) () 4 eataontt) + (e INE )

i=0j=0
L S . Skk (o, o
_ ;O )\BNS (t, CZ)NI\e]eS(E/Ci)Ih(l Ul(t)) + (,’l/l(Cl) + Tb(ci))Nes** (Ci)

B i (u(ci) + riei)a(ei)va(t) + T(ci)) By (ci) ApNi(t ci) I,(1 — 1 (1))
i=0 7(ci)

(u(ei) + mlen)ale)va(t) + (i) (i) + m(ci)o(ei)va(t))Ni(t i)

7(c;)
i (p(ci) + ri(ci)a(ci)oa(t) + T(ci) )NF* () NE(t, i)
i=0 st<t z)
n L 9y (ci) ABNE (i) I (8) (1 — 01 (1)) (u(ci) + 71 (ci)ae(ci)va(t) + T(ci))
i=0 7(ci)
. (#(ci) + 71 (ci)alci)oa(t )+T(61)2N1**( ¢i) (p(ci) +ni(ci)o(ci)va(t))
L Or(ci)(Aa + Ap)NE(E, ¢ i i) (1—
_E)Jg (ci)(Aa + Ap) N (2, CT)b((V()C)+Tb(C))( v1(t))
(i) +eplei) Bylei)va(t)) (ulei) + w(ei) )N; (t ci)
T (ci)
L (ulci) + 1 (ci) )NF** () N5 (1, ;)
_z';() : Ns(f Ci)
LI 8(ci) (Aa + Ap)NE*(ci) (1 — 01 (£)) (p(ci) + T (ci))
_i_;:)];, : T (ci) 1 :
+(#(Cz)+€b( i)By(ci)va(t)) N7 (c;) (m(ci) + T (ci))
T (ci)

K (. T k(o
ZAr 1+§,cos(2mf+T))<1+ :ié%) — Y (ur(dj) +6(d;))Se(t, d)( Ss(tf;'j))>

=0
Ar(8)Se(t,dj) I (¢, dj) E3* (dj) (1 — v3(t))

T T
+ ;}Ar(t)sz*(dj)lr(tldj)(l —o3(t)) = )
p

= E(t,d,)
0 )+ 6 )y ) - ) TGN

 (ar(d)) + pr(d;) + 0(d))) 13" (d)) Er (£, ) N (ar(d}) + pr(d)) + 0r(dj)) 177 (d}) (e (d;) + 01 (d}))
I”(t’d]) Déy(d])

cp(1+&pcos2mt+T)) [ 14+ 2 | —wpSp | 1+ ) — (@ ¥ 1)1y By
Sp Sp Iy

[F*
Vh(“bl:_ ) Iy + (2 +lxyb) b + Ay SZ*Ns(f ) (1= o1 (1))
b b

ApSpN; (t,c;) (1 —v1(t))E;*

+

(Wp +ap)E;". (19)
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At the endemic equilibrium, it is seen from Equation (15) that

plei) +y(e)ale;) +t(ei)
p(ei) +mlci)ole)

plei) + o (ci)

plei) +ep(ci)Bulei)
ar(dj) + pr(d;) + 61(d;)
pr(dj) +6:(d))

Mo+ ap
Ay (c;)(1+ &y cos(2mt +T))
Zlei)

¢p(1+xpcos(2mtt + T))

(Aa* F AFFINT™(ci) — 0(ci) ApNE* (i) I}

NEg*(c;)
(e ) NE*(c;) — By (ci) AN (¢;) I
N (c;)
ARNS*(ci) I — 0 (ci) (A3 + A5 )NZ**(c;)
N (c;)
O () (A" + AN (i) + T (ei) NE™ (i)
N?**(c;)
AG"Sy"(dj) 13" (d;)
E}*(d;)
I7*(d;)
)\Z*SZ*N?** (i)
e

N3 ()1 () + (o) + () S5 ()
(AF" 4 037 NE™ (e9) A5 N (@) 5+ (e)NE™ (1)

leE**
Mo = ot (20)
b

Using Equation (20) in Equation (19) and then systematically adding and subtracting

the following i )i(;@q AN

i=0 j=0
BN Iy (1) A (NG ) (1-21)
T @) f(Ny)

one gets
_ Nss (tr Ci)
N (ei)

. L *k NS**(CZ)
N = DN (ei) | 2
¥ ule) <w< N

()1 =01), AN (ci) ;" (1 —v1) 22

A3 S (@) () (1~ vs),

(AF* + AP NS (i) (1 — v1) I (t, ) fA(N;F)
i20j=0 L (ci) f(Ny) 4
v (be;) (1-03) f2 (N} AFESEENE (1) (101 fA(N¥)

D o o s i
o Ap SN (e) (1= o), b s

d S**(

L T
+ 3 2 (Aa+Ap)NT () (1 — 01) f(N")

i=0,j=0
o g Nelei)  Ng™(e)Ns(tei)  Ne™(ci)Ng(tci)  In(t i) f(NG™)
Ni(t i) Ng™(ei)Ng(t ci) Ni(t ei) I (ei) f(Ny)

L T
=2 Y NG () (X = o) f(N)

i=0j=0

XP_M@MﬂWf_ﬂMW

N fN | A
Wt e f(NG™ f(N) |

R~

Nu)  f(NG)

N A~

i=0

= )_co(1+beos(2rt + T)) (e;)N5™ (ci) ;™ (1 = 01) F(N;™)

— Y co(1 + beos(2rt + T))NE™ () I;*(1 — v1) F(N;™)
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Ng**(c;)  N&™*(c)INE(t ;) NP (ci)Ng(t,ci)ly Ih(fc)f(Nﬁ*)]

T Nha) NN LT | Ni(beghr L (e f(Ny)
L ixx e(t ¢
- Z O (a1)co(ci) (1 +beos(2mt + T))Ng* (¢;) I " (1 — v1) f(N; ™) [1 N 1(\];1()Nl(t 1)]

S
C
L T Ns** C Ns t¢;
~ L X 8 (A" + AN (@) (1= o) F () [1 M) 1
l

i=0j=0
*ok S** ) S (t Cl)

Mﬂ

j=0

+Z)\5 dj) 157 (dj)(1 = v3) f(Ng")

Se(t,d;)  Ej(d)L(td;) Sy (d)I;*(d)E.(t,d;)  I;*(d;)f(Ny)

Xl4_s;*(dj) 1;*(51])57(,‘1]) Se(t,d;)1(t,d;)E}*(d)) Ir(t,dj)f(N;*)]

0 — oy [ HEDINE) N
- ZA” Sd Id (d )(1 3>f(Nd ) |? f(Nr)(I;*(d]))z I;*(d])f(N;*)]

st <2— ; Sf*>+/\s NE (e) (1 — o1) f(N*)

l4_s;;* I¥*E,  SpN3(t,¢;)Ef* Ibf(N;*)]

Sy Ejl, SpNI(c)E, L F(Np)

*k NTSHK (- S Kk _ st(t’cl)f(N;*) _ le(t’cl)f(Nl;k*
- Absh Ni (Cz)(l 1)f(Nb ) [2 le**(cz)f(Nb) (st**(cl))Zf(Nb)‘|

Further simplification gives

L T
N=—A;— A=Y Y (A + AN () (1 —v1) f(N;)
i=0j=0
o | ) fING)  f(Ny)
L*(ci) f(NR)  f(N
« |2 = Ih(t,C,‘)f(N;*) . f(Nh)
e Ny NG L
L T

" llNl**(CJM] 53 0(ci) (A + Ap)

L
= 2 AN () ;T (1 = v1) f(NT)
i=0

L
— Az — ) O (ci) AN (i) ;™ (1 — v1) f(NG)

NE(t, ¢;)NE(c;) i=0j=0
X N () (1 — 0n) F(N}) [1 - Zi’?i:?ﬁiffi ;
sk — sk . Ir(t, d])f(N;*) f(Nr)Ir(t d; )
- D Si" (@)1 (@) (L= o0 f(N; )[2 FOND (I @2~ T @) F(Ny)

—Absz*Nf**m)(l—vl>f<N;*>[z R - (fj;iitgfj)))ﬁ%b)] @

— Ay — As

— A — A7

where
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L NS**(C') Ns(t C')
A — Ci NS** Ci 27 S o S /Ad]
1 l:ZOI’l( 1) s ( 1)( Nss(tlci) Nss**(cl)
L T
Ay =YY (a4 Ap)NS™ (i) (1 —v1) f(N;)
i=0j=0
g N(e)  N&t(eo)Ns(tei) N (e)NS(t, i) () fINGT)
N§(t,c;)  N&**(ci)NE(E i) Ni(t, ¢;) (i) f(Np)
2/\17 Ns** I**(l _ Ul)f<N;;*)
s**( D) NTH(e) NS (b ei) NP (ei)Ne(tei) Iy In(t ci) f(N™)
X 4= Kok ok s ok T Tk
Ns(t,ci)  Ne**(ci)Ni(t,ci) I} Ni(t,ci)l; L*(ci) f(Np)
T S¥*(d;) S (t,¢)
) +6:(d)S5(d) | 2 — 2L — o
As = L)) ord)Si ,)( S,(te) ST (d)
T
As =Y ASE(d;) I3 (dj) (1 — v3) f(N™)
j=0
i S;*(dj) B I;*(d]-)E,(t,dj) B Sr(t,dj)lr(t,d]-)Eg*(dj) B Ir(t,dj)f(N;*)
Se(t,d;)  Epr(dplL(t,d;)  Sy(dj)ly*(dj)E(t,d;)  I7*(d;)f(Nr)
S** S
Ar — sk o b _ b
6 Vbsb ( Sb SZ*>
A7 = ApSy N7 (ci) (1 —v1) f(N,™)
o la— Sp* B I Ey _ SbNis(t,Ci)E;* _ Ibf(Ng*)
Sy Effl,  SPENZ(ci)Ey L f(Np)
We need to show that A; > 0, A, > 0, A3 >0, Ay > 0, A5 > 0, Ag > 0,and Ay > 0.
(Ns™*(c))? + (N5(t,¢1))* = 2NE* (¢;)NE(t,¢) > 0 so that, (Nq(tg; + i —2) >0

Hence, £1 > 0.

_ NSFH(e) L NE()F(Ny) o N f(NG)
Furthermore, let x = NS (C_),y = Ng(t,c,-)]{(N;l*)'Z = NG Cf)f(N;i:*)'
NE** NE*(e)NE(te) | NP (c)NE(t, Iy (tei) f(N;™) :
Then, Ng(( )) + Ns**g ;N;’Etii; + Igicg()t,ci)( ci) + }I**(cl)f(I\Z,) —4} can be written as
e ¥z 1
f(x,y,z)—x—i—x—b—y—i—z 4 (22)

It suffices to show that f(x,y,z) > 0. Since fy = f;, = f. = O givesrisetox =y = z
and that fyy > 0, fy > 0, f2z > 0, one can see that the minimum of f (x,y,z) is attainable
at x = y = z. In what follows, (4.10) is reduced to (x —1)> > O or (y —1)> > 0 or
(z—1)? > 0 with equality if and only if x = T ory = 1 or z = 1, respectively. Hence,
Ay > 0. The proof of A3 > 0,As > 0 and A7 > 0 is similar to Ay > 0 while that of
A4 > 0and Ag > 0is similar to A7 > 0, and it follows from (4.9) that ' < 0 with ' = 0
if and only if Ni(t,¢;) = N&**(c;), N¢(t,c;) = Ni*(ci), Ni(t,c;) = Ni*(c;), Ni(t¢;) =
I\fs*gk (Ci),Nl-S(t,Ci) = Nf**(ci)S,(t, d]) = S:l* (dj),Er(t, d]) = E;lk*(d]), Ir(t,d]') = I;* (d]),Sb =
Sy Epy = Ej*, I, = I;*,0 < vy <1,0 < o3 < 1. Therefore, by LaSalle’s principle, the
largest compact invariant subset of the set where A/ = 0 is the endemic equilibrium point
E,. Thus, every solution in R approaches E, for Ry (x), Rop(x) >1,0<v; <1,0<wv3 <1
and E, is globally asymptotically stable. This complete the proof. [
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N™ (e)
N™ (ei)
N (i)

Ng™(ci)

i=0j=0

i=0j=0

i=0j=0

i=0j=0

4.2. Invasion and Co-Existence

Since onchocerciasis is already endemic in many parts of sub-Saharan African, we
assumed that, to have a co-infection of both diseases, infectious rodents or humans with
Lassa fever have to interact with individuals that are already infected with onchocerciasis.
This would simply imply that the recruitment into the susceptible pool of Lassa fever is
already infected with onchocerciasis; that is, {(c;) = Ij;. With this new definition, after
setting the onchocerciasis subpopulation to zero and solving the resulting Lassa fever
system, the following stationary state is obtained

L (p(ci) + ep(ci)Bo(ci)) + T (ci)ep(ci) By (ci)
281 (Rena () = DVa(Rop ) - ”la(a)eb(cz)ﬁb(czmw X)70(60) (Rt () — 1)]

(
(o (ci) + plei))* (p(ei) + e (ei)Bo(ci))(er) (Rop(x) — 1)V
Ty (ci)ep(ci) o (i) Ros (x) 16 (ci) (Rep (x) — 1)

3 (ve(ci) + plei)) (ulei) + e (i) o (ci) )2 (ci) (Ros(x) — 1)V
ZgS(Resl(x) )[ ( )Gh(C

T
Z gZ(Resl(x) - 1)

i)Bo(ci) Rom (x)7p(ci) (Repr (x) — 1)

u ((ci) +ep(ci)Bo(ci) + w(ci)ep(ci) Bo(ei)
L (Ren(3) = DVa(Rop(x) - ”lrm)eb(c,-)ﬁb<ci>ROB<x>vb<cf><Rem<x>—1)]

where

= C(ci) (7o +p(ci)), Viy = w(ci)ep(ci)Bulci),

(V(Ci)+')’1“1(Ci)+r(cl))(.u(z +771(Cz) ( )) (Ci)(Resl(x)_l)
Aabr[71(ci)alci) (plei) +m(ci)o(ci)) + T(ei)m(ci)o(ei)]
)

=~

pa

Il
-
1=

Il
=}
=
Il
<}

vy (p(ci) + 1 (ci)or(ei))p(ei) (Res(x) —
= e ) £ e T Ie e
L T one

83

Il
™7
7

i
o
S
|
o
=2
-

(ci)a(ei) (p(ei) +mei)o(ci)) + T(ei)m(ei)o(ci)

From these equations, we let Iip = N¢**(¢;) + Ni**(c;)

Iig — ii(gz+g3)Va(Rog( )= 1) (p(ci) +ep(ci)Bo(ci) + w(ci)ep(ei) Bo(ci)

o Y T een(e) Bolei) Ros (1)1 (c) (Repa (x) — 1)
esl )(Rgb( ) 1)
fip = ZZ(:) ]Z REOB JRo(x)—1) 0

T(Res(x) — 1)(R35(x) — 1)

Reos(@) (Ren (1)~ 1)~ *

where

L T

. (m(ci) +ep(ci)Bo(ci)) + Tp(ci)en(ci)Bo(ci)
' ;:)];)(gz 8V Ty (ci)en(ci) Bo(ci) 1o (ci)

and this implies that the endemic equilibrium is feasible if both R%B(x)and Req1(x) >
1. From this expression, it can be noted that, for the co-infection of Lassa fever and
onchocerciasis to prevail, both R (x)and R, (x) > 1. For humans to successfully transmit
to the Lassa virus,

Br(dj)wa(d;) 1Ty

M= TN )
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L T TB(di)wy(d )ReS(x)(R(Z)B() 1)
- LL UMRM)m% )

Transmission is reduced as B,(d;) — 0. The increase in B,(d;) will in turn increase the basic
reproduction number. However, the transmission is reduced if rodent-human interactions
are reduced, i.e., as wz(dj) — 0. Hence, we can conclude that if both OLFs exist in the
population protected against rodent and human interaction, the black fly biting rate will
reduce the reproduction number. Therefore, the infections will be completely eradicated in
the population.

Whether or not one is infected with Lassa fever, in an endemic state, it will invade the
onchocerciasis endemic state, and can only be judged by looking at the growth rate of the
aggregate contributions of Lassa fever into the population.

Let the aggregate contribution of Lassa fever infection be Iy. Then,

dly _ dNg(t ;) N dNi(t,c;) Ll
dt dt dt dt

ZZ Ag+ Ap(£))NE(t, ;) — i (c)AB(t)NE(t, ¢,
i=0j=0 i=0
— (u(ci) + volei)aler) + T(ei) )NS (¢ ¢i)

L L
+ L T@Ni )~ L 0 s ONEC )l ()
i=0 =0
' T
+ 1o (ci)o(ci) ) Ns(t, ¢i) + Z(:)"‘r(dj>Er<tr dj) — (ur(d;) + 0r(d})) I (2, d;)
j=
In an endemic state,
dIO L I ** e** Kk ex %
Z(:)Z(;))\ o+ Ap)N§ Zﬁb JABNG™ (ci)Iy™ — (u(ci) + 1 (ei)a(ei) + T(ei) )Ng™ (ci)
=07
L L . .
+ ZOT(Ci)Nﬁ**(Ci) — 2 0 (c) AN (i) I — ((ei) +m(ei)or(ei) )N (e;)
i= =0

+ Z”‘r DE;(dj) — (ue(d)) + 60 (dj) 177 (d;)

dIO LT (Aa(+Ap)C(ci) (R, (x) — 1)
lzojzo u(c R%B( J(R2,(x) —1)

_ i (ci) +mi(ci)o(c; ))g(cl)y( Ci)Res(X) [ &

zo%“@ﬂwwwww< +dmmmwm>+gﬂmmw

— (u(er) +r1(ei)alci) +t(ei))Ng™ (ci)

M(Cz)+771(cz) (i) + T(ei)m(ci)o(ci)
= (uler) + m(e)o(e))NE*(ci) = (ur(d)) + 0, (d)) 1" (d)).

By substituting Ag, Ag, Ap, I;: *, and then simplifying and ignoring some terms, we obtain

L T ci)Ap(H)T(ci)p(ci){(ci)Rest (%) « (
+zz(:)]zo'710‘ c,) i) +Z r E
(

— Oy (ci)(xa + xp)

dly L T )(RE,(x) —1)
>;¥%m>&g>mﬁ<>n

this implies that
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oy p @) (R~ )

i=0j= o 1) Rip(x )(Rebl( ) —1)(xs + xp) (23)

where

X, = iipO(Ci)(l—'_wZ( )COSEZT[t—i—T)) es2 (%) [v1e(c;) (p(ci) + 11 (ci)o (')H"‘ya

=5 mie(ei) (plei) +m(ei)o(ei)) + t(ei)m(ci)o(c;)
v, — ii ¢i)(1+beos(2mt +T)) (p(ci) + 11(ci)o(ci) pr(ci) Rest (x) apyp
i=0 j=0 'Yl(cz) (ci)(pu(ci) +n1(ci)o(c; )R%B(x (R%B( ) = Dye
. - iiﬁb(ci)co(ci)(l—l—bcos(Znt—l—T)) (ci)u(ci)C(ci)Res1(x)apyy
== yileales) (u(ei) +m(c)e(e) +va
and
Yo = oo(ci)(1+wi(ei)cos(27t + T))(ci)u(ci)Z(ci)Rest (x)
v = ep(ci)Bulci)en(1 +xy cos(27t + T))po (15 (ei) + p(ei) (i) (Rop(x) — 1)
Yo = po(pp+ap)ep(ci)Bulci)Ba
va = t(ci)m(ei)o(ci)REp(x) (Rg(x) — 1y (pp + wp)ep(ci) By (ci) B2

Then, onchocerciasis will invade the Lassa fever endemic state if Equation (24) holds and
vice versa if the roles of m and d are interchanged in Equation (24) by symmetry. After
invasion, whether both pathogens co-exist will depend on the values of the respective
reproduction number R, (x), Rj, (x), Rop, RS (x).

4.3. Analysis of Optimal Control

We define our objective (cost) functional as

tf .
J(o1,02,03) = [T (mNE(te) +maNi(t, i) + 2l ()
+n3Ny(t) +n3Ni(t,d;) + riug + rus +rau3)dt  (24)
where 11, 1, 13 > 0 represents the balancing cost factors for the prevention, treatment, and

use of insecticide or pesticide efforts, respectively.
We seek an optimal control v}, v3, v3 such that

J(07,03,95) = min{ ] (v1,02,05) : (01,02,03) € U } (25)
subject to the optimal control model above where
U= {(01,02, v3) : v,(t) is piecewise continuous on [0, tf],O <v, <1, r= 1,2,3} (26)

4.4. Existence of an Optimal Control

First, we obtain the boundedness of the state system given an optimal control set /.
We then establish the existence of an optimal control.

Theorem 5. Given (v1(t),va(t),v3(t)) € U, the state Equation (15) have a bounded solution.

Proof. Itis a consequence of Theorem 1.
With the boundedness of the state system established, we now prove the existence of
the optimal control using a resultin [6]. O

Theorem 6. Given an objective functional in Equation (24) subject to system (15) with initial
conditions and the admissible control set in Equation (26), then there exists an optimal control pair
(v],v3,v5) € U such that
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J(v1,03,05) = min J(01(£),v2(t), v3(t))

if the following conditions are satisfied

(i) The set of controls and the corresponding state variables are non-empty;

(ii)  The control set U is convex and closed;

(iii) The right-hand side of the state system is bounded by a linear function in the state and control;
(iv) The zntegmnd of the functional is convex on U and is bounded below by c1(|v1|? + |va|? +

o3 |? )2 — ¢y — c3 where ¢1,c,¢3 > 0and § > 1.

Proof. The result in (Theorem 1) for the system in (15) with the bounded coefficient
is used to give condition i. The control set is closed and convex by definition. By
Theorem 1, the right-hand side of system in (15) satisfies condition iii. It is clear that
mNE(t, ¢;) + naNi(t, ¢;) + naN§ (¢, ¢;) 4+ n3Ny(t) + n3N(t, dj) + ru? + rau3 + rau3 is con-
vex on U. Furthermore, since the variable states are bounded, there exists c1, ¢p,c3 > 0 and
6 > 1, which satisfy

nyNE(t, ¢;) 4+ naNi(t, ;) + naNs (¢, ¢;) + n3Ny (t) + n3 N (t, dj) + U3 + rpus + r3ul

s
> c1([o1* + [o2* + [03]*)2 —c2 —¢3
Therefore, an optimal exists. [

4.5. The Optimal System

Following the existence of an optimal control, we use Pontryagin’s maximum principle [12]
to derive the necessary conditions for this optimal control. With the co-state variables I' =
(A1, A2, A3, Ag, A5, Ag, A7, Ag, Ag, A1g, A1, A2, A13, A14), we define our Lagrangian as follows.

A= nmNE(t ;) + maNi(t ;) + n3N;(t, ¢i) + naNi (¢, ¢;)
+ n3Ny(t) + ngNr(t,d-) + rw% + rzu% + r3u§

L
+ AT ZZ (Aa+Ap)NE(t, ) (1 — 1) — Z?\BNss(f/Ci)Ib(l—v1)+ga]

i=0j=0 i=0

+)\2[ZZ a+Ap)N:(tcei)(1—v1) — Zﬁb JABNS (8, ¢) I, (1 —v1) + g
i=0j=0

Mh

+ Az | ) T(ci)Ng(t,ci) — i‘, By (i) ABNE(t, ci) Iy (1 — v1) — (u(e;) + 11 (ci)or(ci)v2)NE(, Cz‘)]
i=0 i=0
+ Ay i(’h (ci)ee(ci)vaNE(t ;) + 11 (ci)o(ci)vaNi(t, ¢i)) — u(ci)NL (¢, Ci)]
i=0

L T
+)\5 |:Z)\B (t C)Ib 1_7]1 Zzﬁr )\ +)\b) (,Ci)(1—01)+gc]

i=0 i=0j=0

L T
+ Mg Zfb NG (1, ¢;) ZZ )(Aa + Ap)N, (,Ci)(1—01)+gd]
i=0 i=0j=0
L
+ A7 Zeh ¢i)Bp(ci)vaN; (¢, ¢i) — (vu(ci) + plci) )N7 (8, Cz)]
i=0
+ Ag Zﬁb ci)AB(NE(t ei) + Nt ;) (1 = 01) I, — p(ei)NF (£, ¢1) + ge
i=0
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+ Ag

Ar(dj) (1 + & cos(2mt + T)) ZAr )Sy(t,d;) L (t,dj) — gf]

T

Z i’ d Ir t,d; ) (Dlr(d]) + “l/lr(d]) + 5r(d]) + (1 — Ug))Er(i’, d])]

+ A1

+An

Z“r )Er(t,dj) — (Vr(dj)+57(dj)+(1_03))1r(t1dj)]

j=0

+ A2 [y (1413 cos (271t 4+ T)) — ApSyN; (¢, ¢;) (1 = 01) — (pp + (1 —v3))Sy]
+ A3 [ApSpN; (8, ¢i) (1 = 01) — (pp + ap + (1 —03) ) Ey |

+ Ara[apEp — (pp + (1 = 03)) |

where gq = —p(c;) NS (£, ¢;) +7p(ci)N; (t,¢i), & = —(p(ci) +71(Ci)“(ci)vz+T(Cz))IT\ff(f/ ci),
g = (u(ei) +w(ci))Na(t,ci), ga = —(p(ci) + ep(ci)Bo(ci)va)Ni(t, i), &e = Z Y 9 (ci)
(Aa(t) +Ap(£)) (NG (t, ;) + Ni(t,¢i)) (1 — 1), g = (pr(d)) +0,(d}) + (1 —103))S,(t,d})

Theorem 7. Given an optimal control v}, v5, v3, and the solution of the corresponding optimal
control model, there exist adjoint (or costate) variables T that satisfy

d)\l L

EZ t) + Ap(t)) (1 —01)(A1 — A2) +EAB Mp(1—v1) (A — Ag) + p(ci) M (27)
i=0j=0 i=0
d)\z L L
— = m+ Y 8(ci)Ap(t)Ip(1 — 1) (A2 — Ag) — Y T(ci) Az — y1(ci)a(ci)vary + (p(ci)
i=0 i=0
+ 71(ei)alci)va + T(ci)) A2 (28)
T NNE(t,e) (1~ o)y + 1 Bl An(1— o1) (A — )+ ((6) + (€)oo
i=0
—n1(ci)o(ci)vaAy —ny (29)
T
2 e 0)
d/\S L T L
= = —my+ Y Y Be(ci) (Ao 4 Ap) (1 —01) (A6 — Ag) + (p(ci) + w(ci))As — Y (ci)Ae (31)
i=0j=0 i=0
d)\(, L T
WZ—anrZZl% )(Aa +Ap) (1 —01)(Ag + Ag) +Z€b By(ci)v2(Ae — A7)
i=0j=0 i=0
+ Ap(t)sp(1 — v3) (A2 — A13) (32)
T2 = e) (M — A7) + plei)s )
Mg

5 = Hlci)As (34)
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T
dAg 2 Ar( )(Ag — A10) + (pr(d)) + 0, (dj) + (1 — 0v3))Ag — 113 (35)
% = a,(d;) (Ao — A1) + (6:(d;) + (1 — v3))A1o — 13 (36)
d)Lll L T
P~ 37 3 polewa(d)NE(t ) (1 —01) (A — Aa) — 3
i=0j=0
L T
+ Y ) B (ci)polci) (1 + wa(d)) cos(27t 4 T))Ng (t,¢;) (1 — v1) (A5 — Ag)
i= O] 0
+ Z Z By (cipo(ci) (1 + wa(d;) cos(2mt + T)) )N (t,¢;) (1 — 1) (Ag — Ag)
=l O]
* 2 Ar( )(Ag = A1o) + (r(dj) + 6 (dj) + (1 —v3))Ann (37)
% = A ()N;(t,¢i) (1 —v1) (M2 — A1z) + (pp + (1 —v3) )A12 — 113 (38)
% = ap(A3 — Ag) + (up + (1 —v3))A13 — 113 (39)
L
% = —nz3+ Y AgNi(t,c;))(1—01) (A1 — As) + 219;, JABNE(t,¢i) (1 — 01)(Ag — Ag)
i=0 i=0
+Zl9b ABN (tci)(1—v1)(A3 —Ag) + (up + (1 —v3))A1g (40)

with the terminal condition
Al(tf) =0, /\z(i’f) =0, Ag(tf) =0, )\4(ff) =0..., /\14(tf) =0. (41)

Furthermore, v], vy, v5 are represented by

L T
uj = max | 0, min (1, % Y Y [ABN:(t i) Ip(As — A1) + Pa])
1i=0j=0
L
u; = max | 0, min Z N;(t,¢i)(Ae — A7) + Pp)
2 =0
L
u3 = max | 0, min Z —SpA2 — EpA13 — IyAqs + P
where '
P, = O(ci)ApNs(t ci)lp(As — As) + 19( D)ABNE(t ci)I(As — A2) + ApSpNi(t, ¢

)
(M3 = A2) + (Aa + Ap) NS (2, ¢i) (A2 — Ar) + 8 (ci) (Aa + Ap)N; (t,¢i) (As — Ag) + B(ci) (Ao +
Ap)N5(t,ci)(Ag — As)

= y1(ci)a(c;)NE(t ¢;) (Ap — Ag) + 11(ci)o(ci)NE(E ¢i) (Az — Ag)
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P. = —Sr(dj))\g — Er(dj))\lo - Ir(dj))Lll

Proof. The differential equations governing the adjoint variables are obtained by the
differentiation of the Hamiltonian function, evaluated at the optimal control. Then, the
adjoint system can be written as

L T L
dAl =) Y (M) +2A5(1) (1 =01) (A1 = A2) + Y Ap(H) Iy (1 —01) (A1 = Az) + p(ci) M
i=0;=0 i=0
df\z L L
— = m+ Y (i) Ap(H) (1 —v1) (A2 — Ag) — ) T(ci)As — ri(ci)alc;)vars + (u(ci)
i=0 i=0
+ 71(ci)a(ei)va + (ci)) A2 (42)
L
% = AN (i) (1= v1)As + ) 8(ci)Aply(1 = 01) (A3 = As) + (u(ci) + 1 () (ci)v2) A
i=0
—m(ci)o(ci)vaAs — n2 (43)
% = pu(ci)Ag
s L T L
T = —ny + Z Zﬁr(ci)(}\g + )1 — v1)(Ag — Ag) + (‘u(Ci) + 1(ci))As — ZTb(Ci)}%
i=0j=0 i=0
d}\6 L T
T ——n2+22197 /\ +)\b)(1—01)()\6+)t3 +Z€b ( i)vz()\(,—)w)
i=0j=0 i=0
+ Ap(t)sp(1 —v3)(A12 — A1z) (44)
% = 7p(ci) (M — A7) + ulci) Az
% = pu(ci)Ag
dAg I
i Y A(OL(Ed)) (A9 — Aro) + (ue(dj) + 6:(dj) + (1 — v3))Ag — n3
=0
% - ar(dj)(Ao — Au) + (&(d)) + (1 — ©v3))do — n3
‘““ -y Zpo NE(t,ci) (1= 01) (A1 = Ag) — 13
i=0j=0
L T
+ )Y Or(ci)poler) (1 + wa(d;) cos(27tt + T))N; (£, ¢;) (1 — v1) (As — As)
i= O] 0
+ Z Z By (cipo(ci) (1 +wa(d)) cos(27tt + T)))N; (¢, ¢;) (1 — v1)(As — Ag)
i= O]
+ 2 Ar(£)Sr(t,d;) (A9 — Ao) + (pr(d)) + 6,(d)) + (1 —v3)) A1 (45)
dA1n

I = MEONj(te)(1 — v1)(A2 — Az) + (g + (1 — v3))A2 — 13
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dA
723 = ap(M3 — A1g) + (pp + (1 —v3))A13 — 113
dA1a L ) L .
g = et Y ABNS (i) (1 — 1) (A1 — As) + Y 05 (ci) ApNE (£ ¢i) (1 —v1) (A2 — Ag)
i=0 i=0
L .
+ 2 ﬁb(Ci)ABNSl(t, Cl')(l — ”01)(/\3 — /\8) —+ (]lb + (1 — 03))/\14 (46)

i=0

with terminal or transversality conditions
Al(tf) =0, /\Z(tf) =0, )\3(tf) =0, )\4(i’f) =0..,, /\14(tf) = 0.

On the interior of the control set, where 0 < u; < 1, fori = 1,2, 3, we obtain

L T
v = 2 3 Y [ABNE(tc)p(As — Ar) + Pi]
i=0j=0
-
5 = 55 2_len(ci)Bo(ci)N; (t,¢i) (A6 — A7) + Py
i=0
L
U3 = % Y [=SpAiz — EpA13 — pArs + P
i=0
and
L T 4
vy = max | 0,min | 1, % Z Z [ABNS (¢, ¢i) I(As — A1) + Pa]
i=0j=0

I~

v5 = max | 0,min <1, ﬁ ' [ep(ci) B (ci)N; (£, ¢i) (Ae — A7) + Pb]>

~ |
o

U; =max| 0, min <1, 2173 [_SbAlZ - Eb)\13 - Ib/\l4 + PC]>)
i=0

The optimality system consists of the optimal control model with the initial condi-
tions, N3 (0, ¢;), N£(0,¢;), Ni(0,¢;), NE(0,¢;), N3 (0, ¢;), NF (0, ¢;), N5 (0, ¢;), NI (0, ¢i), S,(0, dj),
E/(0,d;), 1+(0,d;),S,(0), Ep(0), I;(0), the costate systems of Equations (27)-(40) with the
terminal condition (41) and the optimality condition (42). Any optimal control v}, v3, v}
must satisfy this optimality system.

OLF can be controlled with treatment and pesticides by lowering the number of in-
fected people and vectors, respectively. Infected people can be treated to lower their viral
load and make them less contagious. Insecticides can be used to control vectors that carry
the diseases, such as black flies and rodents, and can be used to obstruct disease transmis-
sion, which could be implemented by public health officials for disease management and
control. O

5. Numerical Simulation of the Model and Discussion of Results

We use the fourth-order Runge-Kutta technique [25] to obtain approximate solutions
(ODEs) for the model (15). We solve the co-infection system with terminal conditions in
backward time using the Runge-Kutta method of order 4, i.e., we utilize the explicit and
implicit Runge-Kutta method of order 4 to solve and obtain the solution to the numerical
system. The Runge—Kutta method, as a numerical method, is used for comparative analysis
to obtain a numerical approximation for the system of a nonlinear differential equation,
such as an infectious disease model like ours, that is applicable to other mathematical
models. In this paper, the built-in function of the fourth-order classical Runge-Kutta
method is considered to obtain an approximate solution for our co-infection model for OLF
without optimal control. To implement this method of solution, x(f, :) represents the model



AppliedMath 2024, 4

116

we developed over the time interval t € [a, b], where t = 150 in our case. The time interval

b—
is subdivided into 7 equal intervals and the step size is represented by h = %, where
h denotes the step size. We chose i = 0.1 in our case.
We consider a system of first-order ODE
X =f(t:) 0 x(to,r) = yo, (48)

The solution was obtained by building a Python algorithm which is implemented for the
numerical solution of x(t,:).

We used the initial following conditions: NZ(0,c;) = 9000, N¢(0, ¢;) = 800, Ni(0,¢;) =
10, N{(0,¢;) = 50, Ng(0,c;) = 800, N7 (0,¢;) = 20, N7 (0,¢;) = 50,5,(0,d;) = 0,E-(0,d;) =
50,1;(0,d;) = 10,5,(0) = 300, E;(0) = 500, I,(0) = 100. We chose T = 10. The parameters
used for the simulation can be found in Table 2. We varied some of these parameters while
some were estimated and taken from the existing literature.

In Figure 3, we deduce how treatments help and accelerate recovery from Lassa fever,
as can be seen in Figure 3¢, as, despite the sharp increase in humans infected with the
disease, as shown in Figure 3a, Figure 3b shows that, at the beginning of the disease spread,
there was a spike in the number of humans exposed to Lassa fever disease but gradually
tending towards zero as they are become diagnosed and isolated for treatment.

—ep(cy) = 0.1, fy(c;) = 0.666 800 —ep(c) = 0.1, B (¢;) = 0.666
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Figure 3. Effect of treatment on (a) humans infected by Lassa fever; (b) humans exposed to Lassa
fever; and (c) humans that recovered from Lassa fever.

In Figure 4, we present the dynamics of the human exposure to onchocerciasis virus in
Figure 4a; at the beginning of the time period, there was a huge spike; however, this later
faded away and, despite the increase in the value of the rate of treatment and the proportion
of effective treatment, the dynamics of the two curves remained the same throughout the
time period. Figure 4b aligns with the results of human exposure to the disease, i.e., despite
the spike at the beginning, a significant proportion of the human population recovered
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quickly but also showed that, if not properly treated and mitigated, it will take some time
for people to recover from the onchocerciasis virus.

3
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Figure 4. Effect of treatment on (a) humans exposed to onchocerciasis and (b) humans that recovered
from onchocerciasis.

In Figure 5, after about 10 days, the number of humans infected with both diseases
declined rapidly, showing the effects of treating the human population that are symptomatic
to both diseases, and enabling the quick curtailment of its spread in the population even
though varying the treatment rate parameters is insignificant in the shape of the epidemics.
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4000
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Figure 5. Effect of the treatment of humans infected with both diseases.

6. Conclusions

In the previous work [19], the co-infection of malaria and Lassa fever was extensively
analyzed on the optimal control; however, this work presents a co-infection model for
OLF with periodic variational vectors and the model was extended to the optimal control
model to analyze the impact of controls, especially in the treatment of infectious humans.
This also represents an improvement on some of the studies in [26-30]. The model is
qualitatively analyzed using both the model without control and model with control. We
investigated the asymptotic behavior of the model without control and with respect to the
equilibria. It is shown, using a Lyapunov function, that the disease-free equilibrium is
globally asymptotically stable when the associated basic reproduction number is less than
one. When it is greater than one, we prove the existence of a globally asymptotically stable
endemic equilibrium with the aid of a suitable nonlinear Lyapunov function. Furthermore,
using Pontryagin’s maximum principle, the necessary conditions for the existence of
optimal control and the optimality system for the co-infection model are established. We
showed that the optimal conditions and controls must be satisfied, and also proved that,
from the invasion and coexistence of both diseases in their endemic states, it can be deduced
that the protection against rodent, human interaction, and black fly biting rates reduces the
reproduction number. The model without control is quantitatively analyzed by studying
how sensitive the basic reproduction number is to the model parameters and the model
simulation using the Runge-Kutta technique of order 4, which is also presented to study
the effect of treatments. We deduced from the quantitative analysis that, if there is an
effective treatment and diagnosis of those exposed and infected with the disease, the
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spread of the viral disease can be effectively managed, which is in agreement with the
qualitative analysis of the control model. The limitation of this work is that obtaining
real data for the co-infection of OLF disease did not allow us to fit our model to data to
validate the model we developed, which will lead to one of our future works, i.e., fitting the
model to data using one of the classical parameter-fitting methods like the particle filtering
method. Another future work is to simulate the control model and extend the optimal
control model by showing the effectiveness of control measures using the cost-effectiveness
method. From the numerical graphs (Figures 3-5), we can deduce that a reduction in the
infected population, which infers that more treatment leads to a greater recovery in the
population. From Figures 3-5, it can be seen that the population having recovered from
Lassa fever increases based on the impact of the treatment provided, while onchocerciasis
recovery is slow, which implies that effective treatment is necessary due to the decline
in the population dynamics. This also implies that the exposed or infected populations
must be continuously treated so that there will not be a decline in the recovered population.
However, the simulation results presented in this research gives some insight into the
dynamics of the co-infection of onchocerciasis and Lassa fever virus, which can help guide
public health officials in decision making, especially in sub-Saharan Africa where it is
endemic. The numerical analysis varied the effect of treatment on the population dynamics
of both diseases.
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