
Citation: Muzaffar, Q.; Levin, D.;

Werman, M. Approximating a

Function with a Jump

Discontinuity—The High-

Noise Case. AppliedMath 2024, 4,

561–569. https://doi.org/10.3390/

appliedmath4020030

Academic Editor: Claude Chaudet

Received: 29 February 2024

Revised: 2 April 2024

Accepted: 15 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Approximating a Function with a Jump Discontinuity—The
High-Noise Case
Qusay Muzaffar 1,*, David Levin 2 and Michael Werman 1

1 Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
michael.werman@mail.huji.ac.il

2 Department of Applied Mathematics, Tel Aviv University, Tel Aviv 6997801, Israel; levin@tauex.tau.ac.il
* Correspondence: qusay.muzaffar@mail.huji.ac.il

Abstract: This paper presents a novel deep-learning network designed to detect intervals of jump
discontinuities in single-variable piecewise smooth functions from their noisy samples. Enhancing
the accuracy of jump discontinuity estimations can be used to find a more precise overall approxi-
mation of the function, as traditional approximation methods often produce significant errors near
discontinuities. Detecting intervals of discontinuities is relatively straightforward when working with
exact function data, as finite differences in the data can serve as indicators of smoothness. However,
these smoothness indicators become unreliable when dealing with highly noisy data. In this paper,
we propose a deep-learning network to pinpoint the location of a jump discontinuity even in the
presence of substantial noise.
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1. Introduction

Jump discontinuities occur when a function experiences a sudden, finite change in
its value at a specific point. Functions containing jump discontinuities are prevalent in
various fields, including physics, electrical engineering, computer vision, geology, biology,
and other applied domains [1–3]. Consequently, the task of approximating these functions
from sampled data frequently arises. Estimating the location of the discontinuity is crucial
as standard approximation methods often introduce significant errors due to the loss of
regularity near jump discontinuities.

Several papers have investigated algorithms to approximate piecewise smooth univariate
functions with a particular focus on detecting the interval of discontinuities, including [4,5]. In
a more recent paper [6], a function of the differences in the data, referred to as the signature,
was used to approximate the function. However, the aforementioned methods fail when
dealing with noisy data.

Alternative algorithms designed for noisy data have been proposed and discussed
in other papers, such as [7]. However, these methods rely on prior knowledge of the
function, on finding a type of function, called an averaging function, and on regularization
parameters. In addition, no information about the amount or the type of the additive noise
is given. In [8], another method is presented based on the numerical second derivative,
albeit limited to samples on a uniform grid. It requires knowing the supremum of the
second derivative of the function and is limited to noise that is less than a sixth of the length
of the jump. In [9], a third method is described using convolution with a filter function.
However, a comparative analysis demonstrates a lower success rate when contrasted with
the proposed method.

AppliedMath 2024, 4, 561–569. https://doi.org/10.3390/appliedmath4020030 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath4020030
https://doi.org/10.3390/appliedmath4020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0002-0665-967X
https://doi.org/10.3390/appliedmath4020030
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath4020030?type=check_update&version=1


AppliedMath 2024, 4 562

Deep learning is a methodology in machine learning where artificial neural networks
with multiple layers of processing are used to extract progressively higher level features
from data between the input and output. Deep learning models are composed of multiple
layers of neurons that hierarchically process the input data. Each layer learns to transform
the data into a more abstract representation, with the final layer providing the model’s
output (e.g., classification, regression, generation). The learning process involves iteratively
adjusting the parameters of the neural network (e.g., weights and biases) using optimization
algorithms such as gradient descent [10].

Deep learning models can be trained on large datasets to automatically learn patterns
and features directly from the data, eliminating the need for manual feature engineering.
This ability to learn complex representations from raw data has gained widespread ac-
ceptance as the preferred approach in various applications, including speech recognition,
visual object recognition, object detection, natural language processing, drug discovery,
and genomics [11].

In this paper, we propose a novel fully convolutional neural network [10] to estimate
the position of the jump discontinuity of a univariate function from a set of noisy samples.
Subsequently, we employ two cubic splines to approximate the function, one for the data
on the left side of the jump discontinuity and the other for the right side. Our method is
shown to be superior to previous methods demonstrated through a series of experiments.

2. Our Approach

In this section, we present our approach for approximating the location of the disconti-
nuity of a univariate piecewise smooth function f from a sample with iid additive noise
{(xi, f (xi) + ωi)}N

i=0, where {
ωj
}
∼ N

(
0, σ2) .

2.1. The Model

Our deep learning model consists of a total of ten convolutional layers, as illustrated
in Figure 1. Through experimentation, we determined that a ten-layer model strikes the
best balance between simplicity in terms of learnable features and output accuracy. These
ten layers consist of one input layer, one output layer, and eight intermediate layers. Each
layer is equipped with two convolution operators that utilize filter sizes of 3 and 5. We
choose two different filter sizes so that the model can capture the function’s behavior
through its samples in two different ways. It is worth mentioning that we choose filters
with odd numbers so that the size of the output after the convolution operation is the same
as the input after padding. For example, if we have an input of size N, we add zeros at
the beginning and at the end of the input, and then, we apply a convolution with a filter
size of 3, and we retain the original size of the input, which is N. If we were to choose
a filter of size of 2, then the output size would be N + 1 in this case. Retaining the size
of the input helps with capturing the details of the model. The output channels of these
two operators are concatenated as shown in Equation (1). The initial layer accepts 8 input
channels, Equation (3), and outputs 64 channels. For the i-th intermediate layer, the input
is 64× i channels, and it generates 64 channels. The output of the i-th intermediate layer is
concatenated with its input channels and is passed to the (i + 1)-th layer. v ∗ C f3 v ∗ C f5

. (1)

The last layer has an input of 64 channels and outputs a probability vector.

v(x) =

{
x, 0 ≤ x < 1
2− x, 1 ≤ x ≤ 2

(2)
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Figure 1. The model architecture. Each rectangle represents a layer, and the two numbers indicate
the number of input and the number of output channels. In each layer, there are two convolutional
operations as in Equation (1). In the intermediate layers, each output is concatenated to the input of
the same layer and is passed to the next layer.

The activation function, Equation (2) (see Figure 2), is applied to the outputs of the
two convolution operators after they are concatenated before being passed to the next layer.

(a) (b)
Figure 2. The graph of the activation function (a) and the graph of its derivative (b).

The samples x and y of size N + 1, where N is arbitrary, are part of the input data
for the model. We augment the input data with first-order, second-order, and third-order
forward differences as presented in Equation (3).

(x, y)→
(

x, y, ∆x, ∆y, ∆2
x, ∆2

y, ∆3
x, ∆3

y

)
(3)

The output of the model is a vector of probabilities, of length N, where the kth entry is
the probability that there is a discontinuity between the kth and k + 1th sample. The loss
function is cross-entropy [10] as the problem is classification.

L(x) = −
N

∑
n=1

C

∑
c=1

log
exn,c

∑C
i=1 exn,i

(4)
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LetM be the model, and let p =M
((

x, y, ∆x, ∆y, ∆2
x, ∆2

y, ∆3
x, ∆3

y

))
. Then, ĩ = arg max {p}

is the index of the closest sample to the discontinuity point from the left side. We define

ξ̃ =
xĩ + xĩ+1

2
(5)

as the approximated discontinuity point.

2.2. Training Data

In this section, we outline the process of generating synthetic data for training the
model, both as input and output. We recall that a random number between a and b from a
uniform distribution is denoted as

c ∼ U
(
[a, b]

)
We start by generating univariate piecewise functions, each containing a jump discon-

tinuity, from which we randomly sample points. To create a realistic scenario, we introduce
white noise to these samples and use them as input data. The output data consist of the
index of the closest sample to the left side of the jump discontinuity. Let

t =
{
− 3∆t + i∆t

}T

i=0
(6)

be the set of knots where ∆t ∼ U
(
[ 3

10 , 5
10 ]
)

and T =
⌊

∆−1
t

⌋
+ 7, so there are enough knots

inside and outside the interval, and let

g(x) =

{
1 , x < 0
0 , 0 ≤ x

.

Now, we let

f (x) = ag(x− ξ) + bxg(x− ξ) +
T−k−1

∑
i=0

ciBi,k,t(x). (7)

Here, Bi,k,t are cubic B-splines basis functions (k = 3). The coefficients of the cubic B-splines
{ci}T−k−3

i=0 are selected randomly from a uniform distribution:

{ci}T−k−3
i=0 ∼ U

(
[−2, 2]

)
.

Similarly, the coefficients a and b are selected.

a, b ∼ U
([
− 2,− 4

10
]
∪
[ 4

10
, 2
])

Finally, the location of the discontinuity point is as follows:

ξ ∈
[ 6

N
, 1− 5

N
]

The input data consist of points sampled from a function f (x) of the form as in
Equation (7):

S =
{
(xi, f (xi) + ωi)

}N
i=0, (8)

where

ωi ∼ U
([

0,
a
3

])
.
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Here, {ωi}N
i=0 is the additive noise. The output is a unit vector of length N − 1 where the 1

is located at the closet sample from the left of the jump discontinuity. We train the model
with the ADAM [12] stochastic gradient descent algorithm.

2.3. Approximating the Function from Its Samples

After locating the discontinuity interval and approximating the discontinuity point’s
location, we utilize two cubic spline approximations to approximate the function with
its jump discontinuity. We use the cubic spline approximation because approximating
with cubic splines is advantageous due to their smoothness, flexibility, accuracy, ease of
implementation, and numerical stability. These properties make cubic splines a versatile
and widely used tool for data interpolation, curve fitting, and modeling in various fields,
including mathematics, engineering, computer graphics, and scientific computing [13].
First, we split the data into the left groups and the right groups as follows:

x` =
{

x is a component of, (x, y) ∈ S : x < ξ̃
}

xr =
{

x is a component of, (x, y) ∈ S : x > ξ̃
}

y` =
{

y is a component of, (x, y) ∈ S : x < ξ̃
}

yr =
{

y is a component of, (x, y) ∈ S : x > ξ̃
}

(9)

where S is defined as in Equation (8) and ξ̃ is from Equation (5).
Then, by using a least squares approximation, we find two cubic splines, Γ`(x), which

approximates the function from the left side of the jump discontinuity by using the data
of x` and y` and second one, Γr(x), which approximates the function from the right side
of the jump discontinuity by using the data of xr and yr. Before proceeding, we begin by
constructing the knots for both splines. Let

∆` =

⌊
ξ̃ ∗ N

5

⌋−1

and ∆r =

⌊(
1− ξ̃

)
∗ N

5

⌋−1

,

and let T` = ∆−1
` + 7 and Tr = ∆−1

r + 7. Then, the two sets of knots for the left and the
right approximations are

t` =
{
− 3∆` + i∆`

}T`
i=0 and tr =

{
− 3∆r + ξ + j∆r

}Tr
j=0

We denote the set of the coefficients of Γ`(x) and Γr(x) by c` and cr, respectively. To find the
optimal sets of coefficients c` and cr, we find a closed-form solution for the following equation:

arg min
c`∈RT`−4

cr∈RTr−4

∥∥∥∥∥
(

M` 0
0 Mr

)(
c`
cr

)
−
(

y`
yr

)∥∥∥∥∥
2

L2

+

∥∥∥∥∥
(

λ`D` 0
0 λrDr

)(
c`
cr

)∥∥∥∥∥
2

L2

.

Here, the matrices of M` ∈ R‖x`‖×‖c`‖ and Mr ∈ R‖xr‖×‖cr‖ are the data matrices and are
defined as follows:

M` =


. . .

...
...

. . . Bj,k=3,t`(x`,i) . . .
...

...
. . .

, Mr =


. . .

...
...

. . . Bj,k=3,tr (xr,i) . . .
...

...
. . .


The matrices of D` ∈ R

(
‖c`‖−2

)
×‖c`‖ and Dr ∈ R

(
‖cr‖−2

)
×‖cr‖ are the second difference

matrices. Those matrices are used in the above equation so that the optimal solution is the
one with a minimal second-derivative.
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3. Numerical Results

In this section, we illustrate the two aspects of our approach: approximating the
location of a jump discontinuity in a given function and approximating the function itself.
Furthermore, we conducted a statistical test to show the effectiveness of our method
compared to two alternative methods. Lastly, we performed another statistical test to
present the average error of our final approximation.

3.1. Detecting the Interval of the Discontinuity and Approximating the Function

In this section, we present our approach to approximating the discontinuity point of
a randomly generated function and subsequently approximating the function itself. To
accomplish this, we generated two functions following the format described in Equation (7).
We took 40 random samples from [0, 1]. These samples were then subjected to the addition
of white noise with a variance equal to one-third of the jump’s height.

Next, we employed our model to determine the index of the closest sample from the
left of the discontinuity. Subsequently, we utilized the procedure outlined in Section 2.3 to
derive an approximation of the function. The results of these experiments are presented in
Figure 3.

Figure 3. We demonstrate our method visually by approximating the location of the discontinuity
point of two univariate piecewise smooth functions from their samples, to which white noise was
added. The upper-left and lower-left figures show the samples with the added noise. All samples
are red-colored except for the point that indicates the closest sample from the right to the jump
discontinuity, which is green-colored. Our approach found the green point. The upper-right and the
lower-right figures show the approximations for the two functions, which were achieved using two
cubic splines for each one of the functions.

3.2. Comparing Our Approach with Two Other Approaches

In [6], the signature, of degree k, of g, is σk(g) ∈ RN+k, which is the forward kth-
order difference of the samples of g padded by k zeros on each side. In [9], a method was
developed based on the use of a filter function with which a convolution is computed
for detecting the discontinuity point. In this experiment, we compare our method with
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the other two aforementioned methods on a large number of samples with various noise
levels. The samples are taken from univariate piecewise smooth functions with several
discontinuity jump heights. Tables 1–3 each represent the results of one of the approaches.
The columns represent the height of the jump, and the rows represent the variance in the
additive white noise. As shown in the tables, our approach has an increase of between
twofold and tenfold compared to the other methods.

Table 1. The probability of detecting the interval of the discontinuity location using the method in [6].
Columns and rows represent jump height and noise level, respectively. Each cell contains the average
success of 1000 trials.

0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40
0.00 0.38 0.47 0.50 0.49 0.48 0.49 0.48 0.49
0.10 0.10 0.28 0.45 0.50 0.50 0.53 0.48 0.51
0.20 0.10 0.21 0.29 0.42 0.46 0.46 0.50
0.30 0.12 0.14 0.24 0.29 0.37 0.42
0.40 0.11 0.14 0.19 0.25 0.31
0.50 0.11 0.13 0.17 0.22
0.60 0.11 0.13 0.17
0.70 0.10 0.12
0.80 0.12

Table 2. The probability of detecting the interval of the discontinuity location using the method in [9].
Columns and rows represent jump height and noise level, respectively. Each cell contains the average
success of 1000 trials.

0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40
0.00 0.24 0.24 0.28 0.24 0.26 0.25 0.24 0.23
0.10 0.30 0.27 0.25 0.25 0.27 0.24 0.25 0.27
0.20 0.30 0.26 0.28 0.24 0.25 0.28 0.25
0.30 0.33 0.28 0.29 0.26 0.28 0.28
0.40 0.34 0.30 0.30 0.26 0.30
0.50 0.34 0.32 0.30 0.28
0.60 0.32 0.29 0.33
0.70 0.34 0.31
0.80 0.33

Table 3. The probability of detecting the interval of the discontinuity location using our method.
Columns and rows represent jump height and noise level, respectively. Each cell is the average
success of 1000 trials.

0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40
0.00 0.89 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.10 0.53 0.93 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.67 0.92 0.98 1.00 1.00 1.00 1.00
0.30 0.73 0.92 0.97 0.99 1.00 1.00
0.40 0.76 0.90 0.95 0.98 0.99
0.50 0.79 0.89 0.94 0.97
0.60 0.79 0.88 0.95
0.70 0.79 0.88
0.80 0.79

3.3. Error Measurement of Approximations of Functions

In this experiment, we compare our approach with the approach of using the signature [6]
in approximating a univariate piecewise smooth function from its noisy samples. As before,
we ran a test on many samples with various noise levels. We measure the error of the
approximation by using the L∞ metric on the set

[
0, min (ξ, ξ̃)

]
∪
[

max (ξ, ξ̃), 1
]
, where ξ

and ξ̃ are the real and the approximated point of discontinuity. Additionally, we measure
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∣∣ξ̃ − ξ
∣∣. We created two graphs, in Figures 4 and 5, for the two approaches and the two

measurements. The x-axis represents the variance of the additive white noise, whereas the
y axis represents the height of the jump. Each point in the graph represents the average
error of 100 trials. In the first test, the error of our approach was less than half of the error
of the other approach, and in the second test, the error of our approach was fifth.
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0
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The signature approach

Figure 4. This graph shows the L∞-error of the approximation on the set
[
0, min (ξ, ξ̃)

]
∪[

max (ξ, ξ̃), 1
]
, where ξ and ξ̃ are the real and the approximated point of discontinuity. Here, ξ

and ξ̃ are the real and the approximated point of discontinuity.
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Figure 5. This graph shows the error of
∣∣ξ̃ − ξ

∣∣. Here, ξ and ξ̃ are the real and the approximated point
of discontinuity.
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4. Conclusions

We presented a new approach, which is based on deep learning, to approximate the
location of the point of jump discontinuity from given samples, with highly additive noise,
of a univariate piecewise smooth function with a jump discontinuity. We compared our
approach against two other methods and illustrated the significantly higher success rate of
our method against them. In addition, we demonstrated our approach to approximating
the location of the discontinuity in synthetic data of generated piecewise smooth univariate
functions. Then, we approximated these functions and showed the error measurements.
Our future work will deal with extending this work to bivariate piecewise smooth func-
tions, in which the jump does not occur at one point but rather on a one-dimensional
curve. In case that the two-dimensional data are equally distanced along the y-axis, we
can utilize this approach to locate the nearest points to the one-dimensional curve. How-
ever, approximating the one-dimensional curve is not intuitive and will be a subject for
future work.
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