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Abstract: The G-modified Helmholtz equation is a partial differential equation that enables us to
express gravity intensity g as a series of spherical harmonics having radial distance r in irrational
powers. The Laplace equation in three-dimensional space (in Cartesian coordinates, is the sum
of the second-order partial derivatives of the unknown quantity equal to zero) is used to express
the Earth’s gravity potential (disturbing and normal potential) in order to represent other useful
quantities—which are also known as functionals of the disturbing potential—such as gravity distur-
bance, gravity anomaly, and geoid undulation as a series of spherical harmonics. We demonstrate
that by using the G-modified Helmholtz equation, not only gravity intensity but also disturbing
potential and its functionals can be expressed as a series of spherical harmonics. Having gravity
intensity represented as a series of spherical harmonics allows us to create new Global Gravity Mod-
els. Furthermore, a more detailed examination of the Earth’s isogravitational surfaces is conducted.
Finally, we tabulate our results, which makes it clear that new Global Gravity Models for gravity
intensity g will be very useful for many geophysical and geodetic applications.

Keywords: gravity; gravity anomaly; gravity disturbance; vertical gradient of gravity; disturbing
potential; spherical harmonics; isogravitational surfaces
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1. Introduction

Spherical harmonics are important in many theoretical and practical applications
(electromagnetic fields, electron configurations, gravitational fields, geoids, computer
graphics, cosmic microwave background radiation, etc.). Some of these applications are
briefly mentioned in this work. Spherical harmonics have been extensively studied and are
widely applicable due to their numerous convenient properties. In computer graphics [1],
they are quite useful since they share many of the same strengths as Haar wavelets, and
there are techniques that bridge the gap between them. This enables the representation of
low-frequency and high-frequency functions. Additionally, in [2–4], they are used in the
formation of a realistic global lightning model.

Gravity potential is a quantity expressed as a series of spherical harmonics. This
series is utilized for formulating Global Gravity Models and Local Gravity Models. A
Global Gravity Model [5], also referred to as a Global Geopotential Model, serves as a
mathematical representation of the external gravitational potential of a celestial body. Here,
we focus on the scenario where the Earth is the attracting body. The use of Global Gravity
Models enables us to determine all the related gravity field functionals—for example,
gravity vectors and gravity.

It is important to note that these models [6–9] are crucial as they offer valuable insights
into Earth’s features, including geoid undulation, gravity anomalies, gravity disturbances,
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and vertical deflection. It is worth mentioning that these models have wide-ranging applica-
tions, including orbit determination, inertial navigation for airplanes and missiles, oceano-
graphic studies of ocean circulation, and geophysical research into density distributions.

The Earth’s magnetic vector field [10] is related to the scalar geomagnetic potential
that obeys the Laplace equation and can be represented as a series of spherical harmonics.
The applications of the geomagnetic potential [11,12] are incredibly vast; they range from
studying hydromagnetic wave propagation and ionospheric currents to investigating tides,
monitoring changes in tropospheric weather, and exploring the Earth’s crust.

The intensity of gravity and electrostatic forces can be mathematically expressed as
a series of spherical harmonics. This series arises from the solution of the G-modified
Helmholtz equation. The intensity of electrostatics plays a critical role in a diverse array of
applications [13], ranging from heat and mass transfer to the synthesis of nanomaterials
and the reduction inCO2 emissions. Furthermore, spheroids [14–16] have been employed to
address electromagnetic scattering problems and analyze electrostatic interactions between
spheroidal particles in different scenarios. The intensity of gravity is very valuable in vari-
ous applications. It plays a crucial role [17,18] in detecting seismic faults, estimating simple
spherical structures within the Earth, determining geoid and quasi-geoid (which define the
physical shape of the Earth and reference surface of physical heights), [19] analyzing sea
surface topography, understanding the structure of the lithosphere, inferring the thickness
of floating ice, and [20] even detecting archaeological structures during exploration.

In this study, we present a novel method for determining the disturbing potential
that is independent of the Laplace equation. By expressing [21] gravity anomaly and
gravity disturbance as series of spherical harmonics using the modified Helmholtz equation
(with the radial distance, r, raised to irrational powers), we can effortlessly determine the
disturbing potential through a simple partial differential equation. This new approach
allows us to represent relative quantities associated with gravitational potential (i.e., its
functionals) in a new series of spherical harmonics. In addition, by expressing gravity
intensity as a series of spherical harmonics, we can conduct a more thorough analysis of
isogravitational surfaces. It is important to emphasize that, in this context, the Earth is
regarded as a non-rotating body.

2. Laplace Equation, Disturbing Potential, and Relative Quantities

Focusing on the case of the Earth, the disturbing potential T [22] (which is the difference
between Earth’s actual gravity potential W and the normal potential U generated by a
suitable ellipsoid of revolution) is a solution of the Laplace equation.

∇2T = 0 (1)

The concept of disturbing potential holds significant importance, as it is vital for
calculating the geoid undulation N, which represents the distance between the geoid’s
surface and the surface of a suitable ellipsoid of revolution. Additionally, it plays a crucial
role in determining other important quantities such as gravity disturbance δg, gravity
anomaly ∆g, and deflections of the vertical. There are three classical problems [5] for
determining the disturbing potential T from boundary values on a sphere: (a) the Poisson
problem, (b) the Hotine problem, and (c) the Stokes problem.

The first problem is a Dirichlet problem on a sphere with a radius of R, where the
values of T are given on the sphere. The second problem, as a spherical approximation,
involves solving a Neumann problem. In this problem, we are provided with the values
of gravity disturbance δg (representing the radial derivative of the disturbing potential T).
The third problem (as a spherical approximation) is a Robin problem in which the values of
gravity anomaly ∆g are given on the geoid fulfilling the following relation:

∂T
∂r

+
2
R

T = −∆g (2)
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Instead of solving boundary value problems to determine the disturbing potential
T, we use Global Geopotential Models (GGMs). A Global Geopotential Model [5,23] is a
mathematical expression that enables the calculation of the disturbing potential through
spherical harmonic expansion. The harmonic series of a GGM is finite and also provides
a collection of mathematical expressions, numerical values, and algorithms. With these
tools, users can easily perform computations to determine numerical values of quantities
associated with the disturbing potential (such as gravity disturbance and gravity anomaly).
Additionally, these computations enable the evaluation of specific errors that are linked to
these quantities.

We present some finite series expressions [22–24], in spherical coordinates (r, θ, λ) (θ is
measured from the z-axis, (normalized coefficients).

T(r, θ, λ) =
Nmax
∑

n=2

(
R
r

)n+1
Tn(θ, λ) =

= GM
r

Nmax
∑

n=2

n
∑

m=0

(
R
r

)n+1
(Cnm cos mλ + Snm sin mλ)Pnm(cos θ)

(3)

δg(r, θ, λ) = −∂T
∂r

=
GM
r2

Nmax

∑
n=0

(n + 1)
(

R
r

)n+1
Tn(θ, λ) (4)

∆g(r, θ, λ) =
GM
r2

Nmax

∑
n=0

(n − 1)
(

R
r

)n+1
Tn(θ, λ) (5)

Geoid undulation is calculated by

N(θ, λ) =
1

γellispoid(θ, λ)
T(R, θ, λ) (6)

where γ is the value of normal gravity [22] on the ellipsoid, G is the gravitational constant
and M is the mass of the Earth. Components of the deflection of the vertical [23] are

ξ(r, θ, λ) = − 1
rγ(r, θ, λ)

∂T
∂θ

(7)

η(r, θ, λ) = − 1
rγ(r, θ, λ) sin θ

∂T
∂λ

(8)

∂T
∂θ

=
GM

r

Nmax

∑
n=2

n

∑
m=0

(
R
r

)n+1
(Cnm cos mλ + Snm sin mλ)(Pnm+1(cos θ)− m tan θ · Pnm(cos θ)) (9)

∂T
∂λ

= −GM
r

Nmax

∑
n=2

n

∑
m=0

(
R
r

)n+1
m(Cnm sin mλ − Snm cos mλ)Pnm(cos θ) (10)

In Equations (7) and (8) normal gravity [22] is determined on a suitable point which is
located on an appropriate equipotential surface of the normal gravity field. The disturbing
potential, T, is a quantity that cannot be directly measured. Therefore, other measurable
quantities are required to determine its value. However, we will demonstrate an alternative
method for determining T in the following paragraph.

3. G-Modified Helmholtz Equation, Disturbing Potential, and Relative Quantities

Assuming that the gravity disturbance δg is a continuous function on the surface of the
geoid, we can determine it by solving the Dirichlet problem that involves the G-modified
Helmholtz equation.

∇2(δg)− 2
r2 δg = 0

δg|S = f1(θ′, λ)
(11)
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The expression of gravity disturbance in spherical harmonics [21] is as follows:

δg(r, θ′, λ) =
+∞

∑
n=0

n

∑
m=0

r−
1+

√
9+4n(n+1)

2 [aδg
nmPnm(sin θ′) cos mλ + bδg

nmPnm(sin θ′) sin mλ] (12)

According to [22], on the surface of the geoid, which, as a spherical approximation,
corresponds to a sphere of radius R, we can derive

f1(θ′, λ) =
+∞

∑
n=0

n

∑
m=0

R− 1+
√

9+4n(n+1)
2 [aδg

nmPnm(sin θ′) cos mλ + bδg
nmPnm(sin θ′) sin mλ] (13)

Putting

Aδg
nm = R− 1+

√
9+4n(n+1)

2 aδg
nm (14)

Bδg
nm = R− 1+

√
9+4n(n+1)

2 bδg
nm (15)

The series in Equation (13) becomes

f1(θ′, λ) =
+∞

∑
n=0

n

∑
m=0

[Aδg
nmPnm(sin θ′) cos mλ + Bδg

nmPnm(sin θ′) sin mλ] (16)

Thus,

2π∫
0

π
2∫

− π
2

f1(θ′, λ)Pjk(sin θ′) sin θ′dλdθ′ =

=
2π∫
0

π
2∫

− π
2

{
+∞
∑

n=0

n
∑

m=0
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ]

}
·

·Pjk(sin θ′) sin θ′dλdθ′

(17)

and the coefficients [22] of series (17) are equal to

Aδg
n0 =

2n + 1
4π

2π∫
0

π
2∫

− π
2

f1(θ′, λ)Pn(sin θ′) sin θ′dλdθ′ (18)

Aδg
nm =

2n + 1
4π

(n − m)!
(n + m)!

2π∫
0

π
2∫

− π
2

f1(θ′, λ)Pnm(sin θ′) cos mλ sin θ′dλdθ′ , m ̸= 0 (19)

Bδg
nm =

2n + 1
4π

(n − m)!
(n + m)!

2π∫
0

π
2∫

− π
2

f1(θ′, λ)Pnm(sin θ′) sin mλ sin θ′dλdθ′ (20)

Hence, the desirable expression for gravity disturbance is

δg(r, θ′, λ) =
+∞

∑
n=0

n

∑
m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[Aδg
nmPnm(sin θ′) cos mλ + Bδg

nmPnm(sin θ′) sin mλ] (21)

Gravity anomaly can also be identified through a similar Dirichlet problem if the
values of gravity anomaly ∆g are known on the geoid’s surface.

∇2(∆g)− 2
r2 ∆g = 0

∆gS = f2(θ′, λ)
(22)

The expression of gravity anomaly is
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∆g(r, θ′, λ) =
+∞

∑
n=0

n

∑
m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[A∆g
nmPnm(sin θ′) cos mλ + B∆g

nmPnm(sin θ′) sin mλ] (23)

Now, we are ready to find the disturbing potential. The function T will be deter-
mined [22] from the following partial differential equation:

∂T
∂r = −δg ⇔

⇔ ∂T
∂r = −

+∞
∑

n=0

n
∑

m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[Aδg
nmPnm(sin θ′) cos mλ + Bδg

nmPnm(sin θ′) sin mλ]
(24)

The solution of this partial differential equation is

T(r, θ′, λ) =

=
+∞
∑

n=0

2R√
9+4n(n+1)−1

(
R
r

)√
9+4n(n+1)−1

2{
n
∑

m=0
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ]

}
+ fδg(θ′, λ)

(25)

The function fδg is an arbitrary function, but it can be determined from the following
boundary condition [22]:

δg = ∆g +
2
R

T (26)

Substituting the necessary quantities from Equations (21), (23), and (25) we have

+∞
∑

n=0

n
∑

m=0
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ] =

=
+∞
∑

n=0

n
∑

m=0
[A∆g

nmPnm(sin θ′) cos mλ + B∆g
nmPnm(sin θ′) sin mλ]+

+
+∞
∑

n=0

4√
9+4n(n+1)−1

n
∑

m=0
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ]+

+ 2
R fδg(θ′, λ)

(27)

Therefore, the function fδg is expressed as a series of spherical harmonics.

fδg(θ′, λ) =
+∞

∑
n=0

n

∑
m=0

[AnmPnm(sin θ′) cos mλ + BnmPnm(sin θ′) sin mλ] (28)

The coefficients of the above series are equal to

Anm =
R
2

[√
9 + 4n(n + 1)− 5√
9 + 4n(n + 1)− 1

Aδg
nm − A∆g

nm

]
(29)

Bnm =
R
2

[√
9 + 4n(n + 1)− 5√
9 + 4n(n + 1)− 1

Bδg
nm − B∆g

nm

]
(30)

Finally, the disturbing potential T is given as

T(r, θ′, λ) =

=
+∞
∑

n=0

2R√
9+4n(n+1)−1

(
R
r

)√
9+4n(n+1)−1

2{
n
∑

m=0
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ]

}
+

+
+∞
∑

n=0

n
∑

m=0

R
2

[(√
9+4n(n+1)−5√
9+4n(n+1)−1

Aδg
nm − A∆g

nm

)
Pnm(sin θ′) cos mλ+

+

(√
9+4n(n+1)−5√
9+4n(n+1)−1

Bδg
nm − B∆g

nm

)
Pnm(sin θ′) sin mλ

]
(31)
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The procedure of finding Equation (31) can be named the alternative gravimetric
determination of the disturbing potential.

The expression for the disturbing potential given by Equation (31) can be replaced with
a finite series of spherical harmonics in order to develop a new Global Geopotential Model.
Following geodetic terminology, in this model, the disturbing potential is a functional of
gravity disturbances. For n = Nmax, Equation (31) becomes a finite series and allows us
to determine the third-order partial derivatives of the disturbing potential in spherical
coordinates. These derivatives can be expressed in different Cartesian systems [25] and
effectively used in various geophysical studies and explorations.

In Equation (31), for r = R, the disturbing potential is determined on the surface of the
geoid. The result is as follows:

T(R, θ′, λ) ≡ T(θ′, λ) = R
2

{
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ]−

−[A∆g
nmPnm(sin θ′) cos mλ + B∆g

nmPnm(sin θ′) sin mλ]
} (32)

The above formula can be written as

T(θ′, λ) =
R
2
[δg(θ′, λ)− ∆g(θ′, λ)] (33)

Hence, on the surface of the geoid, the disturbing potential is equal to the difference
between gravity disturbance and gravity anomaly, multiplied by R/2.Using Equation (6),
the geoid undulation can be expressed in a new alternative form.

N(θ′, λ) =
R

2γ(θ′, λ)
[δg(θ′, λ)− ∆g(θ′, λ)] (34)

Equations (33) and (34) also represent the significance of gravity disturbance and
gravity anomaly (determined by measurements). An interesting theoretical result occurs if
δg and ∆g are substituted with their equals.

T(r, θ′, λ) =
R
2
[γellepsoid(θ′, λ)− γgeoid(r, θ′, λ)] (35)

N(r, θ′, λ) =
R
2

(
γellepsoid(θ′, λ)− γgeoid(r, θ′, λ)

γellepsoid(θ′, λ)

)
(36)

Therefore, if the value of normal gravity γ is known on the surface of the geoid, then
the disturbing potential (on this surface) and the geoid’s undulation are known (again as a
series of spherical harmonics).

The intensity of gravity g is a highly significant quantity that can be expressed as a
series of spherical harmonics.

g(r, θ′, λ) =
+∞

∑
n=0

n

∑
m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[Ag
nmPnm(sin θ′) cos mλ + Bg

nmPnm(sin θ′) sin mλ] (37)

This formula is much more manageable than the typical formula.

g(r, θ′, λ) = ∥gradVE∥ (38)

where VE stands for the Earth’s Newtonian gravity potential. Equation (33) is also valuable
for various conversions between different types of heights, such as orthometric height
correction and dynamical correction.
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As a spherical approximation, the vertical gradient of gravity is equal to the ra-
dial derivative of gravity intensity; thus [22] (we remind that we are dealing with a
non-rotating Earth),

∂g
∂r

= −2gJ (39)

where J is the mean curvature of the relative equipotential surface.

∂g
∂r =

+∞
∑

n=0

n
∑

m=0
− 1+

√
9+4n(n+1)

2r

(
R
r

) 1+
√

9+4n(n+1)
2

[Ag
nmPnm(sin θ′) cos mλ + Bg

nmPnm(sin θ′) sin mλ] , r > R
(40)

By combining Equations (39) and (40), we can determine the mean curvature of the
equipotential surfaces of the Earth’s gravity field.

4. Study of the Earth’s Isogravitational Surfaces

Equation (37) enables us to investigate the isogravitational surfaces of the Earth’s
gravity field. On these surfaces, the value of gravity remains constant. As indicated in [26],
isogravitational surfaces closely resemble spheres. In order to conduct a localized study of
the isogravitational surfaces, we initiate the following transformation:

X = r cos θ′ cos λ
Y = r cos θ′ sin λ , θ′ = π

2 − θ
Z = r sin θ′

(41)

The Cartesian system (X, Y, Z) [22] has its center at the Earth’s center of gravity, the
Z-axis coincides with the Earth’s mean axis of rotation, the X-axis is on the meridian plane
of Greenwich pointing outwards, and the Y-axis makes the system right-handed. Then,

∂(X, Y, Z)
∂(r, θ′, λ)

=

 cos θ′ cos λ cos θ′ sin λ sin θ′
−r sin θ′ cos λ −r sin θ′ sin λ r cos θ′
−r cos θ′ sin λ r cos θ′ cos λ 0

 (42)

The unit normal vectors are

ε1 = (cos θ′ cos λ, cos θ′ sin λ, sin θ′) (43)

ε2 = (− sin θ′ cos λ,− sin θ′ sin λ, cos θ′) (44)

ε3 = (− sin λ, cos λ, 0) (45)

Let P an arbitrary point with spherical coordinates (rP, θP
′, λP). We define a second

Cartesian system (x, y, z), such that its center is at point P, and the z–axis has the same
direction asthe vector ε1 (Equation (43)). The x-axis is tangent to the meridian of a sphere
of radius rP and center the Earth’s center of gravity, and it has the same direction as the
vector ε2. The y-axis makes the system right-handed. The transformation between (X, Y, Z)
and (x, y, z) [27] isX

Y
Z

 =

− sin θ′ cos λ sin λ cos θ′ cos λ
− sin θ′ sin λ − cos λ cos θ′ sin λ

cos θ′ 0 sin θ′


P

 x
y

z + rP

 (46)

The first- and second-order partial derivatives of gravity intensity expressed in the (x,
y, z) system [27] are given as follows:

∂g
∂x

= −1
r

∂g
∂θ′ (47)
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∂g
∂y

= − 1
r cos θ′

∂g
∂λ

(48)

∂g
∂z

=
∂g
∂r

(49)

∂2g
∂x2 =

1
r

∂g
∂r

+
1
r2

∂2g
∂θ′2 (50)

∂2g
∂x∂y

=
1

r2 cos θ′
∂2g

∂θ′∂λ
− sin θ′

r2 cos2 θ′
∂g
∂λ

(51)

∂2g
∂x∂z

=
1
r2

∂g
∂θ′ −

1
r

∂g
∂r∂θ′ (52)

∂2g
∂y2 =

1
r

∂g
∂r

+
1

r2 cot θ′
∂g
∂θ′ +

1
r2 cos2 θ′

∂2g
∂λ2 (53)

∂2g
∂y∂z

=
1

r2 cos θ′
∂g
∂λ

− 1
r cos θ′

∂g
∂r∂λ

(54)

∂2g
∂z2 =

∂2g
∂r2 (55)

The above equations (Equation (47) to Equation (55)) are referred to as point P. Due to
the non-zero partial derivative of g with respect to r, a parameterization of the isogravita-
tional surface [21] for a small region near point P is

s : (−ε, ε)× (−ε, ε) → ℜ3 : (x, y) → s(x, y) = (x, y, z(x, y)) (56)

The function z is not known, but its partial derivatives can be determined. Hence, the
coordinate vectors are

∂s
∂x

=

(
1, 0,

∂z
∂x

)
=

(
1, 0,−

∂g
∂x
∂g
∂z

)
(57)

∂s
∂y

=

(
1, 0,

∂z
∂y

)
=

1, 0,−
∂g
∂y
∂g
∂z

 (58)

The normal vector is

NC =
∂s
∂x

× ∂s
∂y

=

 ∂g
∂x
∂g
∂z

,
∂g
∂y
∂g
∂z

, 1

 (59)

The unit normal vector is

N =

∣∣∣∣∂g
∂z

∣∣∣∣ 1
∥gradg∥NC (60)

Fundamental elements [21] of the first kind are

E =

(
∂g
∂x

)2
+
(

∂g
∂z

)2

(
∂g
∂z

)2 (61)

F =

∂g
∂x

∂g
∂y(

∂g
∂z

)2 (62)
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G =

(
∂g
∂y

)2
+
(

∂g
∂z

)2

(
∂g
∂z

)2 (63)

Fundamental elements of the second kind are

L = ⟨N,
∂2s
∂x2 ⟩ =

∣∣∣∣∂g
∂z

∣∣∣∣−
∂2g
∂x2

(
∂g
∂z

)2
+ 2 ∂2g

∂x∂z
∂g
∂x

∂g
∂z − ∂2g

∂z2

(
∂g
∂x

)2

(
∂g
∂z

)3
∥gradg∥

(64)

M = ⟨N,
∂2s

∂x∂y
⟩ =

∣∣∣∣∂g
∂z

∣∣∣∣
∂2g

∂x∂z
∂g
∂y

∂g
∂z + ∂2g

∂y∂z
∂g
∂x

∂g
∂z − ∂2g

∂x∂y

(
∂g
∂z

)2
− ∂2g

∂z2
∂g
∂x

∂g
∂y(

∂g
∂z

)3
∥gradg∥

(65)

N = ⟨N,
∂2s
∂y2 ⟩ =

∣∣∣∣∂g
∂z

∣∣∣∣−
∂2g
∂y2

(
∂g
∂z

)2
+ 2 ∂2g

∂y∂z
∂g
∂y

∂g
∂z − ∂2g

∂z2

(
∂g
∂y

)2

(
∂g
∂z

)3
∥gradg∥

(66)

Let P be a point far away from the Earth, i.e., rP takes a large value. As we slowly
approach Earth along the polar axis r = rP, gx and gy are small quantities. Thus, Equation
(61) to Equation (66) become

EP = 1 (67)

FP = 0 (68)

GP = 1 (69)

LP =

∂2g
∂x2

∥gradg∥

∣∣∣∣∣∣
P

= −
∂2g
∂x2

∂g
∂z

∣∣∣∣∣∣
P

= − 1
rP

− 1
r2

P

∂2g
∂θ′2
∂g
∂r

∣∣∣∣∣∣
P

(70)

MP =

∂2g
∂x∂y

∥gradg∥

∣∣∣∣∣∣
P

= −
∂2g

∂x∂y
∂g
∂z

∣∣∣∣∣∣
P

= − 1
r2

P cos θP′

∂2g
∂θ′∂λ

∂g
∂r

∣∣∣∣∣∣
P

+
sin θP′

r2
P cos2 θP′

∂g
∂λ
∂g
∂r

∣∣∣∣∣
P

(71)

NP =

∂2g
∂y2

∥gradg∥

∣∣∣∣∣∣
P

= −
∂2g
∂y2

∂g
∂z

∣∣∣∣∣∣
P

= − 1
rP

+
1

r2
P cot θP′

∂g
∂θ′
∂g
∂r

∣∣∣∣∣
P

+
1

r2
P cos2 θP′

∂2g
∂λ2

∂g
∂r

∣∣∣∣∣∣
P

(72)

At point P, the principal curvatures, k1 and k2, of the isogravitational surface [28] are
the roots of the following equation:

(EG − F2)Pk − (EN − 2FM + GL)Pk + (LN − M2)P = 0 ⇒
⇒ k2 − (L + N)Pk + (LN − M2)P = 0

(73)

Hence,

k1 =
L + N +

√
(L − N)2 − 4M2

2

∣∣∣∣∣∣
P

(74)

k2 =
L + N −

√
(L − N)2 − 4M2

2

∣∣∣∣∣∣
P

(75)
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The mean and Gaussian curvatures of the isogravitational surface at point P are
equal to

H =
L + N

2

∣∣∣∣
P
=

1
2

− 1
rP

− 1
r2

P

∂2g
∂θ′2
∂g
∂r

∣∣∣∣∣∣
P

− 1
rP

+
1

r2
P cot θP′

∂g
∂θ′
∂g
∂r

∣∣∣∣∣
P

+
1

r2
P cos2 θP′

∂2g
∂λ2

∂g
∂r

∣∣∣∣∣∣
P

 (76)

KG = LN−M2

EG−F2

∣∣∣
P
=

(
− 1

rP
− 1

r2
P

∂2g
∂θ′2
∂g
∂r

∣∣∣∣∣
P

)(
− 1

rP
+ 1

r2
P cot θP ′

∂g
∂θ′
∂g
∂r

∣∣∣∣
P
+ 1

r2
P cos2 θP ′

∂2g
∂λ2
∂g
∂r

∣∣∣∣∣
P

)
−

−
(
− 1

r2
P cos θP ′

∂2g
∂θ′∂λ

∂g
∂r

∣∣∣∣∣
P

+ sin θP ′
r2

P cos2 θP ′

∂g
∂λ
∂g
∂r

∣∣∣∣
P

)2 (77)

If point P is far away from the Earth, Equations (76) and (77) become

H = − 1
rP

(78)

KG =
1
r2

P
(79)

Therefore, for large values of r, the isogravitational surfaces are spheres of radius rP.
Approaching the Earth along polar axis r = rP, the mean curvature is given by Equation
(76) and the Gauss curvature is derived from the following relation:

Kr>
G =

1
r2

P
+

1
r3

P

− 1
cot θP′

∂g
∂θ′
∂g
∂r

∣∣∣∣∣
P

− 1
cos2 θP′

∂2g
∂λ2

∂g
∂r

∣∣∣∣∣∣
P

+

∂2g
∂θ′2
∂g
∂r

∣∣∣∣∣∣
P

 (80)

The Gauss curvature at point P characterizes the shape of the isogravitational surface
around that point. The second term of Equation (80) describes the deviation of the isogravi-
tational surface’s shape from that of a sphere. As point P gradually approaches Earth (with
a small δr), isogravitational surfaces form closed surfaces with a positive Gauss curvature.
Around point P, the shape of the isogravitational surface is an elliptic paraboloid.

Figure 1 shows the shape of the isogravitational surface around point P which is a
paraboloid. The shape of isogravitational surfaces becomes more complicated when point
P is close to the Earth. Assuming the geoid represents the true shape of the Earth, let P be a
point on the geoid, particularly at the North Pole (θ’ = π/2). The isogravitational surface
passing through point P cannot intersect the geoid. Hence, both surfaces are tangent at
point P, i.e., they have common tangent plane. Around point P, the z - coordinates of the
neighboring points have a positive sign.

Let γ be a curve on the isogravitational surface that is formed by the intersection
of the isogravitational surface and a meridian plane. Since isogravitational surfaces are
closed surfaces, this means that as we move further from point P along the curve γ, we
reach a point A where the Gauss curvature is positive and the neighboring points of the
isogravitational surface have negative z-coordinates. Consequently, on the curve γ between
point P and A, there is a point, Q, where the Gauss curvature is equal to zero and the
z-coordinates of the neighboring points are also equal to zero. This means that point Q is a
singular point, i.e., LQ = MQ = NQ = 0.

The isogravitational surface that passes through point P intersects the equatorial plane
and lies outside the geoid, without any singular points. The set of points that have a zero
Gauss curvature is defined as a singular ring of the isogravitational surface. Close to the
surface of the geoid, each isogravitational surface has at least one singular ring.

Figure 2 shows a simplified representation of a singular ring. As point P moves
along the z-axis, rP increases. We have demonstrated that as the polar distance r reaches
high values, the isogravitational surfaces become spheres. This indicates that the Gauss
curvature at point P approaches zero. Simultaneously, as the singular rings slowly shrink,



AppliedMath 2024, 4 590

they reach a critical point when the Gauss curvature at point P becomes zero. Point P
represents the location of the singular ring on this surface. If rP surpasses the critical value,
the isogravitational surfaces will exhibit a positive Gauss curvature throughout, resulting in
the absence of singular rings. Finally, as rP takes on large values, isogravitational surfaces
become spheres with a radius of rP.
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Figure 3 shows a simplified image of a family of singular rings.
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5. Disturbing Isogravitational Surfaces, Anomalistic Isogravitational Surfaces, and a
Comparison between the Two Methods of Determining Disturbing Potential

A disturbing isogravitational surface is characterized by a constant value of gravity
disturbance δg. Similarly, an anomalistic isogravitational surface is characterized by a con-
stant value of gravity anomaly ∆g. This local study is similar to that of the isogravitational
surfaces, where the mean and Gaussian curvatures are given by Equations (76) and (77),
respectively, with g replaced by δg (or ∆g).

In the table below, we present a summary of the findings from Sections 3 and 4. The
first column lists the gravitational quantities, while the second column indicates whether
each quantity is expressed as a series of spherical harmonics provided by the Laplace
equation. We use “yes” to indicate when the quantity is explicitly expressed as such and
“no” when it is not. In the third column, “yes” is selected when the quantity is represented
as a series of spherical harmonics obtained from the G-modified Helmholtz equation. The
term “direct” is used to describe a quantity that satisfies the chosen partial differential
equation and remains either measurable or constant on the boundary. Conversely, we
utilize the term “indirect” when the conditions mentioned above are not met. In addition,
the symbols “Ve” and “VE” represent the Earth’s and ellipsoid’s Newtonian gravitational
potential, respectively.

From Table 1, we can observe that the Laplace equation offers an advantage in the
analysis of gravitational potential, whereas the G-modified Helmholtz equation has an
edge in the study of gravity intensity, gravity disturbance, and gravity anomaly. It is
worth noting that the process of determining the disturbing potential using the G-modified
Helmholtz equation is quite straightforward, as it only involves solving a simple partial
differential equation (see Equation (24)).

Table 1. Comparison between Laplace and G – modified Helmholtz equation.

Quantity
Laplace Equation Spherical
Harmonics, Radial Distance

in Rational Powers

G-Modified Helmholtz
Equation, Spherical

Harmonics, Radial Distance
in Irrational Powers

Disturbing Potential T Yes, indirect determination Yes, indirect determination

Ellipsoid’s gravity potential Ve Yes, direct determination * No

Earth’s gravity potential VE Yes, indirect determination No

Gravity disturbance δg Yes, indirect determination Yes, direct determination

Gravity anomaly ∆g Yes, indirect determination Yes, direct determination

Gravity intensity g No Yes, direct determination

Ellipsoid’s gravity intensity γ No Yes, direct determination

Vertical gradient of g No Yes, indirect determination

Vertical gradient of γ No Yes, indirect determination

Component ξ Yes, indirect determination Yes, indirect determination

Component η Yes, indirect determination Yes, indirect determination

Geoid undulation N Yes, indirect determination Yes, indirect determination
* For details, we refer to [22].

6. Summation of the Results

In this section, we tabulate the new results that were presented in Section 3.
Table 2 represents the significance of the G–modified Helmholtz equation, which

enables us to study gravitational quantities independently of gravity potential and express
them as a new kind of series of spherical harmonics. We chose to express the most significant
formulae in detail, which are related to gravity g, gravity disturbance δg, gravity anomaly
∆g, disturbing potential T, geoid undulation N, vertical gradient of gravity, and normal
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gravity on the geoid (marked in bold). Moreover, Table 2 also includes the components of
the deflection of the vertical.

Table 2. New spherical harmonic expressions occured from G—modified Helmholtz equation.

Quantity Expression

Gravity g g(r, θ′, λ) =
+∞
∑

n=0

n
∑

m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[Ag
nmPnm(sin θ′) cos mλ + Bg

nmPnm(sin θ′) sin mλ]

Gravity disturbance δg
δg(r, θ′, λ) =

+∞
∑

n=0

n
∑

m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[Aδg
nmPnm(sin θ′) cos mλ + Bδg

nmPnm(sin θ′) sin mλ]

Gravity anomaly ∆g ∆g(r, θ′, λ) =
+∞
∑

n=0

n
∑

m=0

(
R
r

) 1+
√

9+4n(n+1)
2

[A∆g
nmPnm(sin θ′) cos mλ + B∆g

nmPnm(sin θ′) sin mλ]

Disturbing potential T in
three-dimensional space

T(r, θ′, λ) =
+∞
∑

n=0

2R√
9+4n(n+1)−1

(
R
r

)√
9+4n(n+1)−1

2 {{
n
∑

m=0
[Aδg

nmPnm(sin θ′) cos mλ + Bδg
nmPnm(sin θ′) sin mλ]

}
+

+
+∞
∑

n=0

n
∑

m=0

R
2

[(√
9+4n(n+1)−5√
9+4n(n+1)−1

Aδg
nm − A∆g

nm

)
Pnm(sin θ′) cos mλ+

+

(√
9+4n(n+1)−5√
9+4n(n+1)−1

Bδg
nm − B∆g

nm

)
Pnm(sin θ′) sin mλ

]
Disturbing potential on the geoid T(θ′, λ) = R

2 [A
δg
nmPnm(sin θ′) cos mλ + Bδg

nmPnm(sin θ′) sin mλ]−
−[A∆g

nmPnm(sin θ′) cos mλ + B∆g
nmPnm(sin θ′) sin mλ]

}
=

= R
2 [δg(θ′, λ)− ∆g(θ′, λ)] , r = R

Geoid
undulation N

N(θ′, λ) = R
2γellispoid(θ′,λ)

[δg(θ′, λ)− ∆g(θ′, λ)]
or
N(r, θ′, λ) = R

2

(
γellepsoid(θ′,λ)−γgeoid(r,θ′,λ)

γellepsoid(θ′,λ)

)
Vertical gradient of gravity ∂g

∂r =
+∞
∑

n=0

n
∑

m=0
− 1+

√
9+4n(n+1)

2r

(
R
r

) 1+
√

9+4n(n+1)
2

[Ag
nmPnm(sin θ′) cos mλ + Bg

nmPnm(sin θ′) sin mλ] , r > R

Component ξ ξ(r, θ′, λ) = − 1
rγ(r,θ′,λ)

∂T
∂θ′

Component η η(r, θ′, λ) = − 1
rγ(r,θ′,λ) sin θ′

∂T
∂λ

Normal gravity on the geoid γgeoid(r, θ′, λ) =
n0

∑
n=0

a2nr−
1+
√

9+4n(n+1)
2 ·

·
{

P2n(sin θ′) + e2(2n + 1) sin θ′[P2n(sin θ′) sin θ′ − P2n+1(sin θ′)]
}

Along with the Laplace equation, the G-modified Helmholtz equation can also be
classified as a fundamental partial differential equation of Physical geodesy.

7. Conclusions

In this work, we presented new alternative formulae for various quantities related to
the Earth’s gravity field.

The G-modified Helmholtz equation is a partial differential equation that allows us to
calculate the intensity of gravity as a series of spherical harmonics. The intensity of gravity
plays a crucial role in a wide range of applications. The harmonic series of gravity intensity
is a series in which the powers of the radial distance are irrational numbers. This series
allows us to represent the vertical gradient of gravity as a series of spherical harmonics.
The vertical gradient of gravity is very important for numerous geophysical applications.

Gravity disturbance and gravity anomaly are very significant. They are expressed as
a series of spherical harmonics, as provided by the Laplace equation or the G-modified
Helmholtz equation. In the first scenario, their determination is not straightforward, as we
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have to solve either a Neumann (Hotine problem) or Robin (Stokes problem) boundary
value problem. In the second case, their determinations occur as solutions to Dirichlet
boundary value problems, which are simpler than the previous two cases.

The G-modified Helmholtz equation offers an additional advantage: it enables us to
calculate the Earth’s disturbing potential using a simple partial differential equation. The
solution of this equation involves only the integration of the harmonic series of gravity
anomaly with respect to radial distance, r. Moreover, the G-modified Helmholtz equation
can also be used to find the components ξ and η of the deflection of the vertical and the
geoid undulation.

In addition, on the surface of the geoid, the disturbing potential and the geoid undula-
tion take the elegant form of a series of spherical harmonics, which shows the dependence
on the difference between gravity disturbance and gravity anomaly on this surface. An
interesting theoretical result that occurs is that both disturbing potential and geoid undula-
tion can be determined if the value of normal gravity is known on the surface of the geoid.
All the new formulae that occur from the G-modified Helmholtz equation are tabulated in
Section 6.

The harmonic series of gravitational intensity gives us a significant advantage in
studying the Earth’s isogravitational surfaces. The Earth’s gravitational potential’s first-
and second-order partial derivatives can be conveniently expressed in Cartesian systems.
This simplifies the expressions of the partial derivatives and the required approxima-
tions. It is shown that isogravitational surfaces are closed surfaces with a non-negative
Gauss curvature.

At very high altitudes, when the value of the radial distance “r” is large, isogravita-
tional surfaces are spheres with a radius equal to the selected radial distance. As we move
closer to Earth, their appearance becomes progressively more intricate. Each isogravita-
tional surface near Earth has at least one set of points defined as a singular ring. This name
is attributed to the fact that all points belonging to this set are singular points. The family
of singular rings converges to a single point located on Earth’s mean axis of rotation.

Future work could involve the development of new Global Gravity Models for gravity
intensity g, gravity disturbance δg, and gravity anomaly ∆g. A Global Gravity Model
for gravity intensity would represent a significant advancement with a wide range of
applications, such as in the fields of geophysics, archaeology, geodesy, orbit determina-
tion, and inertial navigation. Furthermore, it would be advantageous to develop new
Global Gravity Models for gravity anomaly and gravity disturbance, separate from Global
Geopotential Models. This evolution may present us with opportunities to improve present
techniques for manipulating gravity data, leading to a deeper comprehension of the Earth’s
gravity field.
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