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Abstract: The infinite series solution to the boundary-value problems of Laplace’s equation with
discontinuous Dirichlet boundary conditions was found by using the basic method of separation of
variables. The merit of this paper is that the closed-form solution, or the singular similarity solution
in the semi-infinite strip domain and the first-quadrant domain, can be generated from the basic
infinite series solution in the rectangular domain. Moreover, based on the superposition principle,
the infinite series solution in the rectangular domain can be related to the singular similarity solution
in the semi-infinite strip domain. It is proven that the analytical source-type singular behavior in the
infinite series solution near certain singular points in the rectangular domain can be revealed from
the singular similarity solution in the semi-infinite strip domain. By extending the boundary of the
rectangular domain, the infinite series solution to Laplace’s equation in the first-quadrant domain
can be derived to obtain the analytical singular similarity solution in a direct and much easier way
than by using the methods of Fourier transform, images, and conformal mapping.

Keywords: Laplace’s equation; infinite series; similarity solution; source-type singularity

1. Introduction

Laplace’s equation is one of the important equations in studying applied physics,
mathematics, and engineering problems [1,2]. In the study of heat conduction problems,
Laplace’s equation describes situations of a steady-state and equilibrium temperature
distribution. In this paper, the analytical method is applied to solve Laplace’s equation in a
two-dimensional domain with Dirichlet boundary conditions, to find a solution T(x,y) for a
certain domain in D such that T(x,y) on the boundary of D is equal to a given function [3,4].

There are many analytical methods for solving the boundary-value problem of Laplace’s
equation, such as Fourier transform, similarity transform, the method of images, and the
method of conformal mapping for different domains [5–7]. The solution in the rectangular
domain is expressed in an infinite series through the basic method of separation of variables,
and the solution is slowly convergent near certain singular points in the domain through
numerical calculation. However, after we expand the domain into the semi-infinite strip
domain and first-quadrant domain, the infinite series solution converges rapidly to a closed-
form solution or analytical singular similarity solutions. We can also prove that there is
analytical source-type singular behavior near a singular point in the domain.

The merit of this paper is that certain analytical singular similarity solutions can be
easily and directly generated from the simple rectangular domain, which is an improvement
on using Fourier transform, the method of images, or the method of conformal mapping.
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2. Boundary-Value Problem of Laplace’s Equation with Discontinuous
Dirichlet Conditions
2.1. Rectangular Domain

In the finite rectangular domain shown in Figure 1, Laplace’s equation is described
as follows:

∂2T
∂x2 +

∂2T
∂y2 = 0, 0 < x < L, 0 < y < H (1)

BCs

T(0, y) = f (y) =
{

T0,
0,

0 < y < a
a ≤ y < H

}
(2)

T(L, y) = 0 (3)

T(x, 0) = T(x, H) = 0 (4)

where T (x, y) is the temperature in the rectangular domain and T0 is a constant, as shown
in Figure 1.
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Through the method of separation of variables, the general solution for temperature
in Equation (1) is easily solved, as shown in Equation (5):

T(x, y) =
∞

∑
n=1

AnXn(x)Yn(y) =
∞

∑
n=1

Ansinh
nπ(L − x)

H
sin

nπy
H

(5)

The Fourier coefficient An in Equation (5) is calculated based on the BCs (Equations (2)–(4)):

An =
2T0

πsinh nπL
H

(
1 − cos

nπa
H

)
(6)

Substituting Equation (6) into Equation (5), we obtain the infinite series solution T(x, y)
in the rectangular domain, as follows:

T(x, y) = 2T0
π

∞
∑

n=1

1
n
(
1 − cos nπa

H
) sinh nπ(L−x)

H
sinh nπL

H
sin nπy

H

= 2T0
π

∞
∑

n=1

1
n
(
1 − cos nπa

H
)

Γn(x; L)sin nπy
H

(7)
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where

Γn(x; L) =
sinh nπ(L−x)

H

sinh nπL
H

(8)

The numerical calculation of the 3D plot from Equation (7) with a/H = 1/3, L/H = 1,
T0 = 10 is shown in Figure 2, and the 2D distribution from Equation (7) with a/H = 1/3,
L/H = 1, T0 = 10 is plotted in Figure 3.
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In Figure 2, showing the calculation of infinite series to find the converged temperature
distribution, there is an oscillation phenomenon (the so-called Gibbs’ phenomenon [8])
near the singular points (0, 0) and (0, 1/3).
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If a = H, the solution for 0 < x < L, 0 < y < H in Equation (7) is simplified to

T(x, y) = 4T0
π

∞
∑

n=1,3,5,...

1
n

sinh nπ(L−x)
H

sinh nπL
H

sin nπy
H

= 4T0
π

∞
∑

n=1,3,5,...

1
n Γn(x; L)sin nπy

H

(9)

In terms of numerical calculation, the 3D plot of Equation (9) with a
H = 1, L

H = 1,
T0 = 10 is shown in Figure 4, and the 2D plot of Equation (9) with a

H = 1, L
H = 1, T0 = 10

is shown in Figure 5.
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It is clear that the temperature distribution in Figure 4 is the same as that shown in
Figure 2, and there is an oscillation phenomenon [8] near the singular points (0, 0) and
(0, 1).

2.2. Semi-Infinite Strip Domain

For the semi-infinite strip domain 0 < x < ∞, 0 < y < H shown in Figure 6, Laplace’s
equation in the domain is shown below.

∂2T
∂x2 +

∂2T
∂y2 = 0, 0 < x < ∞, 0 < y < H (10)

BCs

T(0, y) = f (y) =
{

T0,
0,

0 < y < a
a ≤ y < H

}
(11)

T(∞, y) → 0 (12)

T(x, 0) = 0, T(x, H) = 0 (13)
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As the semi-infinite strip length from Equation (8) L → ∞ , the approximate result is
found as follows:

lim
L→∞

Γn(; L) = lim
L→∞

sinh nπ(L−x)
H

sinh nπL
H

→ lim
L→∞

(
e

nπL
H e−

nπx
H − e−

nπL
H e

nπx
H

)
(

e
nπL

H − e−
nπL

H

) → e−
nπx

H (14)

When substituting Equation (14) into Equation (7), then the solution can be expressed
as follows:

T(x, y) =
2T0

π

∞

∑
n=1

1
n

e−
nπx

H sin
nπy

H
− 2T0

π

∞

∑
n=1

1
n

e−
nπx

H cos
nπa

H
sin

nπy
H

(15)

From the trigonometric relation, we have

cos
nπa

H
sin

nπy
H

=
1
2

[
sin

nπ

H
(a + y)− sin

nπ

H
(a − y)

]
(16)
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Then, Equation (15) becomes

T(x, y) = 2T0
π

∞
∑

n=1,3,5...

1
n e−

nπx
H sin nπy

H + T0
π

∞
∑

n=1,3,...

1
n e−

nπx
H sin nπ(a−y)

H

− T0
π

∞
∑

n=1,3,5,...

1
n e−

nπx
H sin nπ(a+y)

H

+ 2T0
π

∞
∑

n=2,4,6...

1
n e−

nπx
H sin nπy

H + T0
π

∞
∑

n=2,4,6...

1
n e−

nπx
H sin nπ(a−y)

H

− T0
π

∞
∑

n=2,4,6,...

1
n e−

nπx
H sin nπ(a+y)

H

(17)

Mathematical manipulation [9] yields

∞

∑
n=1,3,...

1
n

e−
nπx

H sin nπy
H = 1

2 tan−1
(

sin πy
H

sinh πx
H

)
(18)

∞

∑
n=2,4,...

1
n

e−
nπx

H sin
nπy

H
=

1
2

tan−1

(
e−

2πx
H sin 2πy

H

1 − e−
2πx

H cos 2πy
H

)
(19)

Substituting Equations (18) and (19) into Equation (17) yields the closed-form solution,
Tc(x, y), in a semi-infinite domain for 0 < x < ∞, 0 < y < H:

Tc(x, y) = T0
π tan−1(

sin πy
H

sinh πx
H
) + T0

2π tan−1(
sin π(a−y)

H
sinh πx

H
)− T0

2π tan−1(
sin π(a+y)

H
sinh πx

H
)

+ T0
π tan−1

(
e−

2πx
H sin 2πy

H

1−e−
2πx

H cos 2π
H y

)
+ T0

2π tan−1

(
e−

2πx
H sin 2π(a−y)

H

1−e−
2πx

H cos 2π(a−y)
H

)

− T0
2π tan−1

(
e−

2πx
H sin 2π(a+y)

H

1−e−
2πx

H cos 2π(a+y)
H

) (20)

The closed-form solution in Equation (20) is unexpectedly complicated, so it is tedious
to derive the singular similarity form; meanwhile, the temperature is no more in an infinite
series form. The 3D plot of the complicate closed form of the temperature distribution
(Equation (20)) with a

H = 1
3 , 0 < x

H < 3, 0 < y
H < 1, T0 = 10 is shown in Figure 7, and

the 2D plot of Equation (20) with a
H = 1

3 , 0 < x
H < 3, 0 < y

H < 1, T0 = 10 is shown in
Figure 8.

As a/H → 1, L → ∞ , from Equation (15), the infinite series solution becomes

T(x, y) =
4T0

π

∞

∑
n=1,3,5,...

1
n

e−
nπ
H xsin

nπ

H
y (21)

From Equation (18), the infinite series Equation (21) converges to an exact singular
similarity solution, Ts(x, y), as follows:

Ts(x, y) =
4T0

π

∞

∑
n=1,3,5,...

1
n

e−
nπ
H xsin

nπ

H
y =

2T0

π
tan−1 sin π

H y
sinh π

H x
=

2T0

π
tan−1 η = f (η) (22)

where the similarity variable η =
sin π

H y
sinh π

H x , 0 < η < ∞, and the similarity function f (η)
satisfies the second-order ordinary differential equation in the following form [10]:

(
1 + η2

)d2 f
dη2 + 2η

d f
dη

= 0, 0 < η < ∞ (23)
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BCs
f (0) = 0, f (∞) = T0 (24)

The singular similarity solution of Equation (23) is shown in Equation (22).
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𝑇 (𝑥, 𝑦) = 4𝑇𝜋 1𝑛, , ,…  𝑒  sin 𝑛𝜋𝐻 𝑦 =  2𝑇𝜋  tan sin 𝜋𝐻 𝑦sinh 𝜋𝐻 𝑥  = 2𝑇𝜋  tan 𝜂 =  𝑓(𝜂)   (22)

where the similarity variable 𝜂 = , 0 < 𝜂 < ∞, and the similarity function 𝑓(𝜂) sat-

isfies the second-order ordinary differential equation in the following form [10]: (1 + 𝜂 ) 𝑑 𝑓𝑑𝜂 + 2𝜂 𝑑𝑓𝑑𝜂 = 0, 0 < 𝜂 < ∞  (23)

BCs 𝑓(0) = 0, 𝑓(∞) = 𝑇  (24)

The singular similarity solution of Equation (23) is shown in Equation (22). 
From Equation (22), the dimensionless similarity solution for temperature 𝑇∗(𝑥, 𝑦) 

is 𝑇∗(𝜂) = 𝑇 (𝑥, 𝑦)(2𝑇𝜋 ) = tan 𝜂 , 0 < 𝜂 < ∞  (25)

The plot of 𝑇∗(𝜂) from Equation (25) is shown in Figure 9 for 0 < 𝜂 < ∞. 

Figure 8. The 2D distribution of temperature from Equation (20).

From Equation (22), the dimensionless similarity solution for temperature T∗
s (x, y) is

T∗
s (η) =

Ts(x, y)(
2T0
π

) = tan−1 η, 0 < η < ∞ (25)

The plot of T∗
s (η) from Equation (25) is shown in Figure 9 for 0 < η < ∞.



AppliedMath 2024, 4 603AppliedMath 2024, 4, FOR PEER REVIEW 9 
 

 

 

Figure 9. Dimensionless similarity solution 𝑇∗(𝜂) in Equation (25). 

The 3D plot of Equation (22) with  𝑎/𝐻 = 1, 𝐿 → ∞, 𝑇 = 10 is shown in Figure 10, 
and the 2D plot of Equation (22) with  𝑎/𝐻 = 1, 𝐿 → ∞, 𝑇 = 10 is plotted in Figure 11. 

 
Figure 10. The 3D distribution of temperature from the closed form of Equation (22). 

 
Figure 11. The 2D distribution of temperature from the closed form of Equation (22). 

Figure 9. Dimensionless similarity solution T∗
s (η) in Equation (25).

The 3D plot of Equation (22) with a/H = 1, L → ∞, T 0 = 10 is shown in Figure 10,
and the 2D plot of Equation (22) with a/H = 1, L → ∞, T 0 = 10 is plotted in Figure 11.
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Note that the singular similarity solution for a semi-infinite strip domain in Equation (22)
was confirmed using the method of conformal mapping by Greenberg [9]. In Greenberg’s
study, it was proposed that the closed-form solution ascertained through the method of
conformal mapping is much superior to the solution in an infinite series form obtained
via the method of separation of variables. However, in this study, the singular similarity
solution (Equation (22)) was directly derived through the infinite series, a much better
approach than using the method of conformal mapping. Also, it is worth mentioning
that, in Figure 10, the temperature distribution shows no Gibbs’ phenomenon [8] near the
singular points from the singular similarity solution.

It is interesting to point out that the infinite series solution (Equation (9)) in the rectan-
gular domain can be expressed in terms of the singular similarity solution (Equation (22))
in the semi-infinite strip domain. The derivation is shown as follows:

T(x, y) =
4T0

π

∞

∑
n=1,3,5,...

1
n

sinh nπ(L−x)
H

sinh nπL
H

sin
nπy

H
=

2T0

π
tan−1 sin πy

H
sinh πx

H
− Rn(x, y; L) (26)

where the reminder solution Rn(x, y; L) in the region L < x < ∞ is expressed as

Rn(x, y; L) = 2T0
π tan−1 sin πy

H
sinh πx

H
− 4T0

π

∞
∑

n=1,3,5,...

1
n

sinh nπ(L−x)
H

sinh nπL
H

sin nπy
H

= 4T0
π

∞
∑

n=1,3,5,...

1
n

(
e−

nπx
H − sinh nπ(L−x)

H
sinh nπL

H

)
sin nπy

H

= 4T0
π

∞
∑

n=1,3,5,...

1
n Qn(x; L) sin nπ

H y

(27)

where the Qn(x; L) in Equation (27) is

Qn(x; L) =
(

e−
nπx

H − sinh nπ(L−x)
H

sinh nπL
H

)
=

(
e−

nπx
H − e

nπL
H e−

nπx
H −e−

nπL
H e

nπx
H

e
nπL

H −e−
nπL

H

)
= e−

nπL
H

sinh nπx
H

sinh nπL
H

(28)

Substituting Equation (28) into Equation (27), for L < x < ∞, 0 < y < H, yields

Rn(x, y; L) =
4T0

π

∞

∑
n=1,3,5,...

1
n

e−
nπL

H
sinh nπx

H

sinh nπL
H

sin
nπy

H
(29)

Finally, we obtain the infinite series solution (Equation (9)) of the rectangular domain
in terms of similarity solution Ts(x, y) in Equation (22) of the semi-infinite strip domain
as follows:

T(x, y) = 4T0
π

∞
∑

n=1,3,5,...

1
n

sinh nπ(L−x)
H

sinh nπL
H

sin nπy
H

= 2T0
π tan−1 sin πy

H
sinh πx

H
− 4T0

π

∞
∑

n=1,3,5,...

1
n e−

nπL
H

sinh nπx
H

sinh nπL
H

sin nπy
H

(30)

It is difficult to justify the singular behavior near certain singular points of the rectan-
gular domain from the infinite series (Equation (9)). However, we can express Equation (9)
in the similarity form, which is the first term on the right-hand side of Equation (30),
subtracting the second term on the right-hand side of Equation (30). As we know, when
L→∞, the second term on the right-hand side of Equation (30) will be diminished, and
the left-hand side of Equation (30) will be equal to the first term on the right-hand side of
Equation (30), as discussed in Equation (18).
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The 3D and 2D temperature distributions with the infinite series solution of the left-
hand side of Equation (30) are shown in Figures 4 and 5, respectively, and the 3D and 2D tem-
perature distributions of the right-hand side of Equation (30), shown in Figures 12 and 13,
can be used to justify the correctness of Equation (30). There is no significant difference in
temperature distribution between Figures 4 and 12 except near the singular points (0,0) and
(0,1), where Gibbs’ phenomenon from the infinite series solution is shown in Figure 4. Also,
when comparing Figures 5 and 13, it can be seen that the 2D projection of temperature
distribution is the same.
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Moreover, considering the singular behavior near the origin, where
( x

H , y
H
)
=
(

x∗
H , y∗

H

)
→

(0, 0), Equation (30) becomes



AppliedMath 2024, 4 606

lim
x → x∗

y → y∗

T(x, y) =
(

4T0

π

)
lim

x → x∗

y → y∗

∞

∑
n=1,3,5,...

1
n

sinh nπ(L−x)
H

sinh nπL
H

sin
nπy

H
→ 2T0

π
lim

x∗ → 0
y∗ → 0

tan−1 y∗

x∗
(31)

From (31), it can be proven that for a rectangular domain, there is source-type sin-
gular behavior near the origin in Figure 3. In the numerical calculation near that sin-
gular point, the convergence is very slow due to the source-type singular behavior in
(31). Of course, there is more source-type singular behavior near the singular point at( x

H , 1 − y
H
)
=
(

x∗
H , 1 − y∗

H

)
→ (0, 1), as shown in Figure 5.

2.3. First-Quadrant Domain

For the first-quadrant domain 0 < x < ∞, 0 < y < ∞ shown in Figure 14, Laplace’s
equation is expressed as

∂2T
∂x2 +

∂2T
∂y2 = 0, 0 < x < ∞, 0 < y < ∞ (32)

BCs

T(0, y) = f (y) =
{

T0,
0,

0 < y < a
a ≤ y < ∞

}
(33)

T(x, 0) = 0, T(∞, y) → 0, T(x, ∞) → 0 (34)

where T(x, y) is the temperature in the domain, and T0 is a constant.
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As H → ∞ , from the closed-form solution Tc(x, y) in Equation (20) of the semi-infinite
strip domain, we can find the following forms:

T0

π
lim

H→∞
tan−1

(
sin πy

H
sinh πx

H

)
→ T0

π
tan−1 y

x
(35)

T0

2π
lim

H→∞
tan−1

(
sin π(a−y)

H
sinh πx

H

)
→ T0

2π
tan−1 a − y

x
(36)
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T0

2π
lim

H→∞
tan−1

(
sin π(a+y)

H
sinh πx

H

)
→ T0

2π
tan−1 a + y

x
(37)

T0

π
lim

H→∞
tan−1

(
e−

2πx
H sin 2πy

H

1 − e−
2πx

H cos 2πy
H

)
→ T0

π
lim

H→∞
tan−1

2πy
H + · · ·

1 −
(
1 − 2πx

H + · · ·
) → T0

π
tan−1 y

x
(38)

T0

2π
lim

H→∞
tan−1

(
e−

2πx
H sin 2π(a−y)

H

1 − e−
2πx

H cos 2π(a−y)
H

)
→ T0

2π
tan−1 a − y

x
(39)

T0

2π
lim

H→∞
tan−1

(
e−

2πx
H sin 2π(a+y)

H

1 − e−
2πx

H cos 2π(a+y)
H

)
→ T0

2π
tan−1 a + y

x
(40)

Substituting from Equation (35) to Equation (40) into Equation (20), we obtain the
similarity solution Ts(x, y) in the first-quadrant domain:

Ts(x, y) =
2T0

π
tan−1 y

x
+

T0

π
(tan−1 a − y

x
− tan−1 a + y

x
) (41)

Ts(x, y) =
T0

π
tan−1 2xy

x2 − y2 − T0

π
(tan−1 2xy

x2 − y2 + a2 ) (42)

Ts(x, y) =
T0

π
tan−1 2a2xy

(x2 + y2)
2
+ a2(x2 − y2)

(43)

From the trigonometric relation, we have

tan−1 A + tan−1 1
A

=
π

2
(44)

Then, the similarity solution Ts(x, y) in Equation (43) can be expressed as

Ts(x, y) = T0

[
1
2 − 1

π tan−1 (x 2+y2)
2
+a2(x 2−y2

)
2a2xy

]

= T0

(
1
2 − 1

π tan−1 η) = f (η)

(45)

where the similarity variable η(x, y) =
(x 2+y2)

2
+ a2(x2−y2)

2a2xy ,−∞ < η < ∞, and the similarity
function f (η) satisfies the second-order ordinary equation.

(
1 + η2

)d2 f
dη2 + 2η

d f
dη

= 0,−∞ < η < ∞ (46)

BCs

f (−∞) = T0, f (∞) = 0 (47)

The singular similarity solution of Equation (46) is shown in Equation (45). Then, the
dimensionless similarity solution for temperature T∗

s (η) is

T∗
s (η) =

Ts(x, y)
T0

= (
1
2
− 1

π
tan−1η),−∞ < η < ∞ (48)

The plot of T∗
s (η) for Equation (48) is shown in Figure 15 for −10 < η < 10.
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Figure 15. Dimensionless singular similarity solution, T∗
s (η) in Equation (48).

The 3D plot of Equation (45) with L → ∞, H → ∞, a = 1, T 0 = 10 is shown in
Figure 16, and the 2D plot of Equation (45) with L → ∞, H → ∞, a = 1, T 0 = 10 is
plotted in Figure 17.
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From Equation (43), there is a source-type singular solution near the origin (x, y) =
(x∗, y∗) → (0, 0), as shown below:

lim
x → x∗

y → y∗

Ts(x, y) = T0
π lim

x → x∗

y → y∗

tan−1 2a2xy
(x2+y2)2 + a2(x2−y2)

→ T0
π lim

x∗ → 0
y∗ → 0

tan−1 2x∗y∗

(x∗2 − y∗2)

→ 2T0
π lim

x∗ → 0
y∗ → 0

tan−1 y∗
x∗

(49)
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Of course, from Equation (43), there is another source-type singular solution near the
singular point (x, y) = (x∗, a − y∗) → (0, a), as shown below:

lim
x → x∗

y → a − y∗

Ts(x, y) = T0
π lim

x → x∗

y → a − y∗

tan−1 2a2x∗(a−y∗)

[x∗2+(a−y∗)2]
2
+a2[x∗2−(a−y∗)2]

→ T0
π lim

x∗ → 0
y∗ → 0

tan−1 x∗
y∗

(50)

The similarity solution (Equation (45)) in the first-quadrant domain can also be solved
by the Fourier sine transform [11–13].

T(x, y) =
2T0

π

∫ ∞

0

(1 − cos aα)

α
e−αxsin αydα (51)

When comparing Equation (51) with Equation (42), the complicated integral solution
in Equation (51) can easily be found analytically as

T(x, y) = 2T0
π

∫ ∞
0

(1−cos α)
α e−αxsin αydα

= T0
π tan−1 2xy

x2−y2 − T0
π (tan−1 2xy

x2−y2+a2 )
(52)

Carefully investigating the integral solution [14] for Equation (52) yields

∫ ∞

0

e−αx

α
sin αydα =

1
2

tan−1 2xy
(x2 − y2)

= tan−1 y
x

(53)

∫ ∞

0

cos aα

α
e−αxsin αydα =

1
2

tan−1 2xy
(x2 − y2 + a2)

(54)

The integral results of Equations (53) and (54) can be verified from reference [14].
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Now, considering Ts(x, y) from Equation (43), we also have the following result [13,14]:

∫ ∞

0

(1 − cos aα)

α
e−αxsin αydα =

1
2

tan−1 2a2xy
(x2 + y2)2 + a2(x2 − y2)

(55)

As a → ∞ , from Equation (43), we obtain the fundamental singular similarity solution.

Ts(x, y) =
T0

π
tan−1 2xy

x2 − y2 =
2T0

π
tan−1 y

x
=

2T0

π
tan−1 η = f (η) (56)

with the similarity variable η(x, y) = y
x , 0 < η < ∞.

Near the origin (x, y) = (x∗, y∗) → (0, 0), and from Equation (56), we have

lim
x → x∗

y → y∗

Ts(x, y) → 2T0

π
lim

x∗ → 0
y∗ → 0

tan−1 y∗

x∗
(57)

Therefore, there is only one source-type singular solution near the origin in Equation (56)
with T0 = 1, as shown in Figure 18.
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Note that the singular similarity solution in Equation (45) for the first-quadrant domain
can also be found via Fourier transform and the method of images [13]. However, in this
study, it is proven that the analytical singular similarity solution can be derived in a more
powerful and easier way through direct application of the basic method of separation of
variables for a rectangular domain.

3. Conclusions

The traditional solution to Laplace’s equation for the temperature distribution in a
confined domain with discontinuous boundary conditions can be obtained by applying the
method of separation of variables. Numerical computation is applied to find the infinite
series solution in a very slowly convergent way accompanied by Gibbs’ phenomenon,
especially near certain singular points in the domain. In this study, the temperature
distribution solutions in terms of the closed form and similarity solution show no oscillation
phenomenon near the singular points.

The singular similarity solution derived from the infinite series of the rectangular
domain, by extending the domain into a semi-infinite domain, offers a better approach
than the closed form of a semi-infinite strip solution obtained through the method of
conformal mapping.
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By extending the rectangular domain into the first-quadrant domain, the singular simi-
larity solution can be derived from the infinite series solution in a more powerful and direct
way than Fourier transform, the method of images, or the method of conformal mapping.
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