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Abstract: Solar energy forecasting is essential for the effective integration of solar power into electricity
grids and the optimal management of renewable energy resources. Distinguishing itself from the
existing literature, this review study provides a nuanced contribution by centering on advancements
in forecasting techniques. While preceding reviews have examined factors such as meteorological
input parameters, time horizons, the preprocessing methodology, optimization, and sample size, our
study uniquely delves into a diverse spectrum of time horizons, spanning ultrashort intervals (1 min
to 1 h) to more extended durations (up to 24 h). This temporal diversity equips decision makers in the
renewable energy sector with tools for enhanced resource allocation and refined operational planning.
Our investigation highlights the prominence of Artificial Intelligence (AI) techniques, specifically
focusing on Neural Networks in solar energy forecasting, and we review supervised learning,
regression, ensembles, and physics-based methods. This showcases a multifaceted approach to
address the intricate challenges associated with solar energy predictions. The integration of Satellite
Imagery, weather predictions, and historical data further augments precision in forecasting. In
assessing forecasting models, our study describes various error metrics. While the existing literature
discusses the importance of metrics, our emphasis lies on the significance of standardized datasets
and benchmark methods to ensure accurate evaluations and facilitate meaningful comparisons with
naive forecasts. This study stands as a significant advancement in the field, fostering the development
of accurate models crucial for effective renewable energy planning and emphasizing the imperative
for standardization, thus addressing key gaps in the existing research landscape.

Keywords: solar energy integration; solar forecasting; artificial intelligence; meteorological conditions;
performance metrics; benchmark

1. Introduction

The pressing need for reducing greenhouse gas emissions has led to the worldwide
adoption of renewable energy sources (RESs) [1–3]. However, RESs tend to be volatile in
nature, especially solar and wind energy, making it hard to predict their power output and
making them less reliable. This volatile nature can lead to voltage fluctuations, frequency
fluctuations, and system outages [1,2,4,5].

The large-scale integration of RESs into the energy supply network requires the
development of new technologies and methods to balance supply and demand. As the
share of RESs in the energy mix increases, the load on the energy grid increases with
corresponding consequences. The intermittent nature of solar energy has proven to be an
obstacle to the large-scale integration of solar energy. For example, a massive increase in
grid-connected PV energy can result in overvoltage or congestion problems [6].

A rethinking of the traditional electricity grid is taking place in order to handle the
perceived unpredictable nature of RESs. Traditional grids are continuously evolving and
changing, becoming so-called smart grids. A smart grid can be seen as the result of fusing
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the electricity grid with Information and Communication Technologies (ICT). This allows
for a two-way flow of information between the supply side and demand side on the energy
grid [1,4], which in turn allows for the improved control of management over all the
different domains that are part of energy production and distribution [4]. Through the
creation of decision-support tools that exploit these flows of information, the distribution
and management of the grid can be optimized. Decision-support tools often deal with
a variety of tasks, such as energy distribution, energy curtailment, and energy storage
system activation. These are now being developed and often include forecasting and the
recognition of energy demand and production. Artificial Intelligence (AI) is deemed to be
very promising for dealing with these complex tasks [1,2,4].

One of the proposed solutions is to forecast solar irradiance and, in turn, to forecast
solar energy production to help balance supply and demand through combination with
electricity storage [7,8]. As a result, solar forecasting has seen an increase in interest from
researchers, grid operators, and other parties involved in the electricity market [9].

The conclusion of various parameters covered in the existing investigations is pre-
sented in Tables 1–7 in Sections 4 and 5. This review paper aims to provide an overview
and critical evaluation of the current and emerging solar forecasting techniques, with a
specific emphasis on methods based on All-Sky Imagers (ASIs), satellite data, Sensor Net-
works, the different data used, the time horizon, the evaluation metrics, and the different
applications of solar forecasting, highlighting the integration of AI. The aim is to contribute
to the advancement of solar forecasting research by identifying trends and obstacles and
offering suggestions for further exploration. However, these studies fall short in address-
ing the latest AI techniques and recent research in different solar forecasting tools, along
with their evaluations.

This present article comprehensively explores solar radiation forecasting techniques
based on AI and highlights the intriguing interest in newly discovered procedures en-
compassing the evaluation of forecasting methods, analysis of ramp events and timing,
insights into the AI technique for a special time horizon, resolution, considerations of the
spatial–temporal resolution, examination of input variables and their accessibility, location-
based accuracy assessments, and the use of evaluation metrics for intended applications.
Future recommendations focus on establishing a benchmarking framework and creating
publicly available standardized datasets. Additionally, this article elucidates the working
principles of each model, providing in-depth insights into recent research articles and
their numerical results; a block diagram summarizing the contents of different chapters
is presented in Figure 1.

Figure 1. A block diagram for solar-forecasting-based AI techniques.
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The main objectives of this study are structured as follows:

I Solar forecasting, AI methods, and performance.
II Assessment of forecasting methods.
III Current research—an overview.
IV Future recommendations and consistency of the training data.

2. Solar Forecasting, Methods, and Performance

The investigation into solar energy is an interdisciplinary pursuit that merges in-
sights from various domains of research, including atmospheric science, climatology,
statistics, data science, and Artificial Intelligence [10]. In general, the problem of solar
forecasting starts by determining the current state of the atmosphere in order to predict
its future state [11]. From this viewpoint, the process of solar forecasting can be reduced
to three important parts: (1) the collection of input data, (2) the processing of input data
through various methods, including preprocessing and postprocessing, and (3) the gen-
eration of output data or the forecast as presented in the flowchart in Figure 2. Due to
the multitude of different forecasting methods available, this abstraction will serve as an
overarching framework to connect and compare the different solar forecasting techniques
to each other. We note that this is just a simplification, as often the solar forecasting methods
can be very complex and detailed.

1. Input data (Real-time)

2. Data Pre-processing

a. Modelling (AI, LP, OA)

b. Output data

c. Post-Processing

3. Forecasted output data (GHI, PV, DNI, CCI)

Figure 2. Flowchart illustrating the steps involved in short-term solar forecasting. Abbreviations
used are further explained in the text and are AI: Artificial Intelligence, LP: Linear Programming, OA:
Optical Analysis, GHI: global horizontal irradiance, PV: photovoltaics, DNI: direct normal irradiance,
CCI: Cloud Clearness Index.

Often, the methods applied to process the input data depend on the methods used to
collect the input data. Therefore, we will describe some general approaches to solar forecast-
ing, differentiated by the method of data acquisition, as seen from different investigations in
Figure 3a in Section 2. The most common ways to gather input data for determining atmo-
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spheric conditions are Satellite Images, All-Sky Imagers, Sensor Networks, and Numerical
Weather Prediction [2,8,9,11].

(a)

(b)

Figure 3. Word web on (a) AI techniques and (b) different data sources for solar energy forecasting.
Additional acronyms are added and can be found in the abbreviations, created by using Vosviewer
(Version 1.6.18) [12].

2.1. Satellite Images

High-altitude geostationary satellites are equipped with a wide range of sensors,
including sensors for visible and infrared light. Images are taken every 15 to 30 min by
these satellites, and they are then combined with physical modeling to determine solar
irradiance [2,11]. The general approach is to first determine the clear-sky irradiance at
a particular point through physical modeling, taking into account various parameters
such as the aerosol content, water vapor, Elevation, and ozone. Then, the cloud pictures
are analyzed to estimate the location and transmittance of the clouds. Finally, these data
are combined to make an estimation of the actual solar irradiance [13]. In order to make
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forecasts of solar irradiance, consecutive images are used to determine Cloud Motion
Vectors. Under the assumption that the cloud structures stay the same, the future position of
the clouds can be determined [9,13]. Forecasting methods based on the mentioned approach
generally have a good forecasting ability for a horizon of up to 6 h, but their performance
tends to be less optimal in situations where clouds rapidly form and disperse [9,13].

In addition to these established methods, recent advancements have been made in
short-term solar irradiance forecasting. For instance, Miller et al. [14] proposed a method
that combines geostationary satellite observations, cloud masking and retrieval algorithms,
wind field data, and radiative transfer calculations to generate accurate short-term forecasts
of solar insolation for solar power generation. This approach considers factors such as cloud
advection, shadow displacement, solar geometry, and terrain height to predict the transient
properties of down-welling solar irradiance. The algorithm outperforms persistence-based
forecasting methods and demonstrates improved accuracy compared to them [14]. Fur-
thermore, Lago et al. [15] developed a generalized model for short-term solar irradiance
forecasting that does not rely on local ground measurements. Instead, the model utilizes
satellite-based measurements and weather forecasts, employing a Deep Neural Network
(DNN) structure that can generalize across locations. The model shows comparable or
better performance compared to local models trained with ground measurements, making
it a cost-effective alternative for solar irradiance forecasting without the need for costly
installation and maintenance of the ground sensors [15].

2.2. All-Sky Imagers

All-Sky Imagers (ASIs) are cameras capable of capturing images with a 180-degree
field of view, enabling them to take pictures of the entire sky from one horizon to the other.
ASIs are used for cloud detection, the determination of Cloud Motion, and the determi-
nation of cloud height [13]. ASIs can also be linked to other equipment as well, such as
ceilometers or pyranometers [9]. Solar irradiance forecasts that are made by using ASIs
generally use the following approach: (1) take sky pictures near or at the forecast site,
(2) use image-processing techniques to detect clouds in the picture, (3) determine Cloud
Motion Vectors through linking clouds in consecutive images, and (4) use Cloud Motion
Vectors to determine future cloud positions and estimate the future irradiance accord-
ingly [2,9]. ASI-based methods are able to provide forecasts with a very high spatial and
temporal resolution, compared to satellite-based methods. Therefore, they are very valuable
for predicting high-frequency fluctuations or ramps in solar irradiance [9,11]. Methods
based on ASIs generally outperform other methods on very short-term forecasts, i.e., up to
30 min [9]. They have proven to be useful for the management of solar thermal energy
plants, the management of microgrids, scheduling storage-integrated PV systems, and the
participation of PV and solar thermal electric (STE) plants in power grid operation [16].

Recent investigations have contributed to the advancement of ASI-based solar fore-
casting techniques. For instance, a study by Zhang et al. proposed a machine learning
approach for Cloud Motion Vector estimation using ASI images, which showed promising
results for improving short-term solar irradiance forecasts [17]. Furthermore, a study by
Li et al. explored the integration of ASI data with deep learning models for accurate solar
power forecasting in complex weather conditions [18].

2.3. Sensor Networks

While Sensor Networks often span over several hundred meters [19] or even kilometers [20],
research on the use of low-cost illuminance meters showed that small networks can also detect
cloud shadow movement when the sampling rate is high enough. Espinosa-Gavira et al. [21]
used a network of 16 lux meters, spanning only 15 m by 15 m, that was able to detect cloud
shadow movement. As a continuation of this research, Espinosa-Gavira et al. [22] also
developed a method for deriving Cloud Motion Vectors from small Sensor Networks with
promising results. While, to the best of the authors’ knowledge, no forecasting techniques
have currently incorporated these methods, the findings underscore the significant utility
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of small-scale networks in supporting solar forecasting efforts. The research conducted by
Elsinga and Van Sark [23] demonstrated how Solar PV systems themselves can be used
as sensors. A total of 202 rooftop PV systems, spread over the province of Utrecht, the
Netherlands, and spanning an area of roughly 1400 km2, were used to create a PV sensor
field. By combining real-time power output measurements with the cross-correlation time
lag between pairs of PV systems, a peer-2-peer forecast method for very short-term forecasts
of up to 30 min was successfully developed.

2.4. Numerical Weather Predictions

The data obtained by Sensor Networks are limited to their location, and the resolution
is limited by their dispersion. Numerical Weather Prediction (NWP) models have been
developed to model conditions over large areas and can be used to generate input data
for solar forecasting and can be used as an alternative to obtaining input data for solar
forecasting. NWP models are based on physical modeling and generally are built on a
set of differential equations describing physical and thermodynamical processes. These
equations are numerically solved and have often been optimized to predict variables
such as temperature, humidity, wind, and the probability of precipitation [2,11,13]. The
input data for NWP models are obtained through direct, atmospheric measurements or
satellite data [8].

NWP models can be divided into two categories: global and local. Global NWP
models describe global weather patterns, whereas local NWP models describe weather
restricted to a certain area, be it a country, a continent, or another bounded area [2,11].
Often, NWP models are combined with Model Output Statistics (MOS), which can help
improve the forecast accuracy by about 10–15% [8,13]. Depending on the model used,
NWP models have a spatial resolution typically ranging from 16 to 50 km and a temporal
resolution of about 15 min [2,11]. NWP models are known to perform better than other
methodologies for a time horizon from 6 h to about two weeks regarding the forecasting
of atmospheric conditions and are therefore a valuable resource for generating input
data [11,13]. However, due to the resolution of NWP models, it is not possible to resolve
the small-scale physical processes that are related to cloud formation. Consequently, the
prediction of cloud formation involves large uncertainties and errors. NWP models can,
at best, give information on the probability of cloud formation through, for example, the
determination of atmospheric saturation. As a result, stand-alone NWP models are often
not sufficient for accurate irradiation prediction, but they provide a valuable resource for
determining atmospheric conditions [11].

One of the recent developments is an emphasis on improving solar irradiation pre-
diction by NWP models [13]. For example, Zhang et al. [24] researched the effect of
postprocessing NWP model outputs for solar forecasting. However, when comparing their
method to time series modeling and extrapolation techniques, they found only marginally
small improvements. Nevertheless, when averaging the postprocessed NWP model output
with the time series techniques, the performance proved to be superior to that of stand-alone
techniques, highlighting the importance of using an ensemble of techniques for forecasting.
Another current example is the work of Sabzehgar et al. [25]. They developed a method
combining NWP models with Neural Networks to improve the forecasting irradiance
and power output. The postprocessing of the NWP model output has also been proven to
improve NWP forecasts significantly. Verbois et al. [26] demonstrated that by applying post-
processing, the RMSE of NWP models can be reduced by up to 30%. Verzijlbergh et al. [27]
were able to obtain similar results by reducing the rRMSE (relative RMSE, see Section 4) by
applying MOS to correct biases in the model.

Another recent development, sparked by the increase in computing power, is an
increased interest in high-resolution atmospheric modeling. More specifically, Large Eddy
Simulations (LES) are considered to be one of the most promising methods to increase the
resolution of atmospheric modeling [28]. High-resolution NWP models based on LES have
already shown promise in the development of large off-shore wind farms [29], and the
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potential of LES for the benefit of solar forecasting is being investigated [30]. A first attempt
of LES for solar forecasting, based on MicroHH (a computational fluid dynamics code for
the simulation of turbulent flows in the atmosphere) [31], has already been tested against
NWP model results that are postprocessed by using a machine learning algorithm, hinting
at the possibilities of LES [32].

2.5. Hybrid Approaches

The above-mentioned approaches are often combined in one way or another and then
can be considered as hybrid approaches. They can be combined to tackle the weaknesses
of one method or to enhance each other to increase accuracy and strength [2]. One recent
example is the work conducted by Paletta et al. [33]. They combined All-Sky Imagery
with satellite observations to investigate how these techniques can complement each other.
They found that by combining these two data sources, clear-sky forecasts and long-term
forecasts can be improved. Si et al. [34] also combined different sources of input. Satellite
Images were used as input for a Deep Convolutional Neural Network. The output of the
Neural Network was then combined with so-called “cloud factors”, which were derived
from meteorological data and NWP data. The combined data were used as input for a
multilayer perceptron to produce a forecast of solar irradiance, with good results.

3. Artificial Intelligence and Solar Forecasting

It would be impossible to discuss solar forecasting methods while not mentioning
Artificial Intelligence. A lot of research is already focusing on the use of AI for solar
forecasting [2,8,13,35] and also for decision-support tools in different domains of the elec-
tricity grid [3]. The wide range of different applications that have been applied successfully
by researchers highlights the versatility of AI techniques. For example, AI has been used to
develop energy bidding tools [36]; perform day-ahead solar forecasting [37], wind speed
forecasting [35], solar radiation estimation [2,8,13,35], the monitoring of fields of PV sys-
tems [38], fault detection, and the diagnosis of wind energy systems [5]; and demand load
predictions [3].

It should be noted that there is no official definition of what AI is [11] and what
techniques and methods are considered Artificial Intelligence. Instead, AI is often used
as an umbrella term to describe a wide variety of techniques, including but not limited
to machine learning, supervised learning, optimization algorithms, pattern recognition
techniques, and regression methods. One of the main strengths of what are generally
considered AI techniques is that they are able to solve complex problems for which it is
impossible to find explicit algorithms or mathematical solutions [7]. Often, this includes
pattern recognition in large datasets in which the underlying principles or dependencies
are very complex or unknown. The recent increase in the usage of AI techniques has been
facilitated by a rapid increase in computational power over the last decades [39].

One of the most frequently used AI techniques in solar forecasting, as seen in Figure 3b,
and many other fields of research, is the Artificial Neural Network (ANN) [2,3,11,13,40].
The strength of ANNs is that they require a very low level of programming to solve a
wide variety of complex problems. Specifically, nonlinear, stochastic, or mathematically
ill-defined problems (e.g., pattern recognition or classification) are very well suited for
ANNs [2,11,40,41]. Other popular techniques include the support vector machine [2,8,13],
k-Nearest Neighbor algorithms [8,11], intelligent optimization algorithms [3], and Markov
Chains [2,8,13]. Fuzzy Logic Control (FLC) has also been widely applied to control Solar PV
systems and smart grids [3]. It makes it easy to use many input variables and to make use of
the expert knowledge of human decision makers without the use of complex mathematical
expressions [3,42].

A recent example of using AI methods for solar forecasting is the work conducted by
Eseye et al. [43]. A data-driven approach was developed that employs a wavelet transform
method, support vector machine, and particle swarm optimization to make predictions on
the PV power output. The results were compared to seven other AI-based methods and
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proved to be competitive. This research also highlights the numerous methods already
developed by using AI methods. Mishra and Palanisamy [44] developed a solar forecasting
method built on Recurrent Neural Networks that was able to predict solar forecasts over
a wide range of time horizons ranging from intrahour, hourly, to day-ahead scales using
real-time inputs. Another example that showcases the possibilities of AI within solar
forecasting is the method developed by Ge et al. [45]. They developed a method that only
uses empirical data and AI, thus excluding the use of any physical model or empirical
relationship while still being able to achieve similar results to more classical methods.
Another method that has been gaining interest for nowcasting is the General Adversarial
Network (GAN) method, which has already proven to be able to forecast precipitation with
high precision [46], improve time series Satellite Image prediction [47], and perform sky
image forecasting [48]. For further reading on AI techniques, refs. [8,11] are recommended.

4. Assessment of Forecasting Methods

Depending on the equipment and input data used, the methods that are applied can
vary to a great extent. For the further development and validation of solar forecasting
techniques, it is important to consider how to assess and compare the performance of these
different methods. Most often, conventional metrics are used since they give a general
overview of the global performance. However, it is very difficult to directly compare
methods based on the results of these metrics alone. These metrics need to be interpreted
in a correct manner since the performance of a forecasting method is dependent on various
factors such as the spatial and temporal resolution of the input data, time of year, percentage
of clear-sky days in the dataset, location, forecast horizon, etc. [2,7]. And at the same time,
the end-user of the forecast also plays an important role in determining the requirements
for a useful forecasting method [9].

4.1. Common Performance Metrics for Solar Forecasting

The predicted values of solar forecasting methods and their accuracy are generally
expressed as either irradiance (W/m2) or solar power output (kW) [2]. The most commonly
used statistical metrics to assess the accuracy of the forecast are described below very
briefly [2,7,9]:

• Root Mean Squared Error (RMSE): This quantifies the average magnitude of the errors
between the predicted values and actual observed values. The RMSE is particularly
useful because it not only considers individual errors but also gives more weight to
larger errors, providing a comprehensive measure of prediction accuracy. A lower
RMSE indicates that the predicted values are closer to the actual observed values,
suggesting better prediction accuracy:

RMSE =

√√√√ 1
N

N

∑
i=1

(IForecast − IMeasurement)2 (1)

• Mean Absolute Error (MAE): This calculates the average difference between the
predicted and observed values. It is an easy-to-understand metric that gives an idea
of the accuracy of predictions. Unlike the RMSE (Root Mean Squared Error), which
amplifies larger errors due to the squaring process, the MAE gives equal importance
to all errors, regardless of their size. As a result, each error has an equal impact on
the MAE:

MAE =
1
N

N

∑
i=1

|IForecast − IMeasurement| (2)

• Mean Bias Error (MBA): This calculates how much the predicted values differ from the
actual values. It tells us if a predictive model tends to overestimate or underestimate
the actual values consistently. Unlike other error metrics that take into account the
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size of the errors, the MBE only looks at the direction of the errors, whether they are
positive (overestimations) or negative (underestimations):

MBE =
1
N

N

∑
i=1

(IForecast − IMeasurement) (3)

• Relative RMSE (rRMSE): This is a normalized version of the RMSE that takes into
account the magnitude of the actual values when assessing the predictive accuracy of
a model. It helps to evaluate a model’s performance in relation to the data’s variability,
which is especially helpful for data with different scales or units:

rRMSE =
RMSE√

1
N ∑N

i=1 I2
Measurement

(4)

Next to these statistical metrics, the Forecast Skill (FS), also known as the Performance
Skill (PS) or Forecast Skill Score (SS), is often used to evaluate the forecast. It allows the user
to compare the developed forecasting method against a reference method [7,9]. Another
metric that is being applied to solar forecasting is the Continuous Ranked Probability Score
(CRPS). The CRPS measures the sharpness and reliability of the forecast and rewards a high
concentration of the forecasted probability around the target value [2,9]. The CRPS is given
by the following equation where F(x) and F̂(x) are defined to be the Cumulative Distribu-
tion Function (CDF) of the probabilistic forecast and the actual measurement, respectively:

CRPS =
1
N

N

∑
i=1

∫ ∞

−∞
(Fi(x)− F̂1(x))2dx (5)

The above-mentioned metrics are only the most commonly used metrics. For further
reading on the different metrics that are used, we refer to [2,7,9].

4.2. Assessment of Ramp Events and Timing Errors

When assessing ramp events and timing errors in solar energy forecasting, the focus is
particularly on the Temporal Distortion Index (TDI) and its extension, the Temporal Distor-
tion Mix (TDM). This approach encompasses using the time derivative of the normalized
global horizontal irradiance (GHI) for ramp event detection and classification.

Depending on the application of the forecast, the most appropriate performance
metrics should be used. The metrics mentioned before are well suited for determining
average errors. However, they are not well suited for measuring the accuracy of predicting
ramp events [7,9,33]. There is no strict definition of a ramp event, as it often depends on
the end-use, whereby the events are critical [49]. Ramp events can be described as sudden
and significant changes in the irradiance or power output. An example of a ramp event
could be a sudden drop in the irradiance due to a passing cloud. However, these events
can be major concerns for certain end-users, such as network operators or large PV plant
operators, and can be of great interest for short-term to medium-term forecasts [7,9]. And
even though the forecasting of ramp events is of great importance for many applications,
there is only relatively little research focused on this area [49].

A couple of methods have already been proposed to measure the ability to forecast
ramp events. The first to discuss would be the swinging door algorithm. Formally, this
algorithm is not a metric, but it can be used to detect ramp events. It was proposed back
in 1990 for data compression [50]. The swinging door algorithm splits a signal up into
segments. The starting point of that segment can be seen as the pivot point of a swinging
door as a threshold is chosen to determine how far the door can swing. If the starting point
of the next segment is within the swinging doors’ range, there is no ramp event. If it is
outside of this range, a ramp event is detected [51]. It has been suggested and applied to
detect energy ramps in historical wind and solar-energy-production data [52], and further
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research has already been performed to optimize the algorithm for the detection of wind
energy ramps [51,53,54].

Another metric that has been introduced to measure timing errors, which are critical
for the detection of ramp events, is the Temporal Distortion Index (TDI), which is based on
Dynamic Time Warping (DTW) [55]. This metric was first introduced by Sakoe and used as
a time-normalization algorithm for spoken word recognition during the 1970s [56,57]. A
straightforward method to explore the time alignment of two signals involves matching
each data point in signal 1 with its corresponding data point in signal 2 and then evaluating
their similarity. However, by warping the time index of signal 2, the data points in signal 2
can be optimally aligned to the data points in signal 1. This concept is visualized in Figure 4.
The TDI gives a measure of the amount of time warping needed to align the two signals,
thus giving a measure of the temporal error of the second signal. A complete description
of this metric is outside the scope of this review. The reader is referred to [55], where a
complete methodology for using the TDI is described.

t

(A)

t

(B)

Figure 4. A visualization of Dynamic Time Warping adapted from [55]. (A) Normal alignment of
two signals where a measurement at t = i in signal 1 corresponds to the measurement of signal 2 at
t = i. (B) Illustration on how the time index of the second signal can be warped to better match the
shape of the first signal, thus matching measurements not only by their timestamp but also taking
into account the signal shape.

Continuing the TDI method introduced by the authors of [55], a method was developed
to split up the TDI into two parts, giving a score of how much the forecasted signal is
advanced (or early) and how much of the signal is late [7]. This metric is called the Temporal
Distortion Mix (TDM), expressed as a percentage ranging from −100% to +100%, which
indicates that the signal is early or late, respectively [7]. This new metric was combined with
a ramp score based on the swinging door algorithm and complemented with a complete
procedure to determine the quality of a forecast [7].

Another method, focusing on the detection of ramp events, was developed by [49].
The time derivative, over a specified time horizon D, of the normalized GHI is used to
determine the Ramp Rate. In this case, ϵ is the maximum, which is the clear-sky GHI at the
top of the atmosphere for the day under consideration:

RampRate(t, D) =
d(nGHI)

dt
=

nGHI(t + D)− nGHI(t)
D

(6)

nGHI =
GHI

ϵ
(7)

Based on measurements from a clear day, a threshold for detecting which events
should be counted as ramp events is derived. This threshold states that on a clear day, 99%
of the derivatives of the measurements should lie below this threshold. The benefit of this
method is its relative simplicity. Current research focuses on the relation between D and
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the threshold limit and the recall and precision of ramp event forecasting [58]. Based on a
confusion matrix, recall and precision are defined as in Table 1.

Table 1. Confusion matrix for further investigating how Ramp Rate is affected by changing D and t.

Detection Using Ramp Rate

Manual Detection Ramp event Nonramp event

Ramp event True Positive False Negative

Nonramp event False Positive True Negative

Recall =
TruePositive

TruePositive + FalseNegative
(8)

Precision =
TruePositive

TruePositive + FalsePositive
(9)

4.3. Confidence Intervals and Ranges in Solar Forecasting Studies

Based on the compiled information from various solar forecasting studies presented
in Table 2 (see Section 4), we can draw some overall conclusions regarding the confidence
intervals and ranges of different error metrics. It is important to note that these conclusions
are based on the provided information and should be interpreted with caution as the actual
confidence intervals may vary across individual studies.

The RMSE values vary depending on the forecast horizon, ranging from 115.6 W/m2

for a 10 min horizon to ranges between 8.64 and 49.1 for longer forecast horizons. The exact
ranges are not specified for certain forecast horizons. Additionally, specific values are given
for selected time intervals. The RMSE for a 1 h ahead forecast ranges from 79 to 100 W/m2.

The MAE ranges between 6% and 7.5%, indicating the average magnitude of errors.
For specific forecast horizons, the MAE is reported as 70 W/m2 for a 5 min ahead forecast.
The MAPE for the NN irradiance forecast is 0.95%, while the MAPE for the NN power
production forecast is 45.3%.

The relative RMSE ranges from 6.7 to 39.8%, providing a measure of error relative to
the predicted value. Clear days with a clear sky as Class 1 exhibit lower rRMSE values,
with partially cloudy days reaching as low as 4.7% and 7.6%, while cloudy days (Class 3)
show higher rRMSE values in the range of 30–50%.

The FS varies across studies, with reported values ranging from 2% to as high as 66%.
The CRPSS improvement is above 2.7% in some cases, indicating the enhanced performance
of forecasting models. Furthermore, an optimized model shows a skill score improvement
of 21% compared to the previous Cloud Motion Vector (CMV) model [59].

These conclusions provide valuable insights into the wide array of error metrics uti-
lized in solar forecasting studies, allowing researchers and practitioners to gain a compre-
hensive understanding of the accuracy and performance of forecasting models. By delving
into these studies, stakeholders can deepen their knowledge of the advancements made in
solar forecasting, leading to enhanced reliability in predicting solar energy outcomes.
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Table 2. AI-techniques-based common error metrics.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[60]

Development of a predictive model for
solar irradiance involving Data
Transformation, Distribution Estimation,
and Confidence Interval Analysis, with a
focus on appropriate Data Window
selection

GHI, temperature, humidity,
and cloudiness (from JMA’s
GPV-MSM System),
extraterrestrial

SVR-based hourly
irradiance prediction at
42 locations in Japan

GHI
(W/m2) ≤9 h 1 h Confidence level α N.A.

[61]

Forecasting PV power output for 24 h
and 48 h horizons, leveraging
comprehensive weather data across
Germany

PV power data (from
aggregated German data)
and NWP data (NOAA’s
GFS)

Convolutional Neural
Network and Long
Short-Term Memory
Network for PV power
prediction

PV power
output
(MW)

≥1 day 3 h RMSE, MAE RMSE = 1949 MW, nRMSE = 4.73%

[62]

Developing a short-term forecasting
system for DSSI by using Cloud Motion
Vectors and radiative transfer models,
covering a large area with high
resolution

Cloud Optical Thickness
Data (from SEVIRI on MSG
Satellite) and Cloud Motion
Vectors

Optical Flow Estimation and
fast radiative transfer
models for forecasting DSSI

Downwelling
surface
solar
irradiation
(DSSI)

≥3 h 15 min RMSE, forecast
variability

0.9 ≤ correlation ≤ 0.5, DSSI
uncertainty:
18% ≤ uncertainty ≤ 34%, overall
uncertainty:
30% ≤ uncertainty ≤ 43%

[63]

Enhancing CSI forecasting with a focus
on postprocessing by using Neural
Network Models and evaluating the
performance against benchmark
methods

Ground-based data,
SURFRAD, satellite-derived
data, NSRDB

Focal and spatial
postprocessing of CSI
forecasts using Neural
Networks

CSI, GHI ≥30
min

1 min,
aggre-
gated to
30 min

SS, CRPS CRPSS as high as 66%

[64]

Comparing STVAR and CMV models for
short-term forecasting of GHI by using
satellite data, particularly in the varied
microclimates of the Caribbean Islands

Satellite-derived irradiance
data from SUNY model

STVAR model with input
variable selection, CMV
model, and blending
forecasts

GHI
(W/m2)

≥1 h
(20 ×
20 km2)

1 h, 0.1◦

for
latitude
and lon-
gitude

rRMSE, rMAE, SS
Clear days: low variability; high
orography: rRMSE ≤ 30%; cloudy
days: 30% ≤ rRMSE ≤ 50%

[65]
Combining deep LSTM network with
satellite-derived GHI data for short-term
forecasting in Morocco

Ground measured data,
satellite-derived dataset

Deep LSTM network, Grid
Search, Xgboost, RF, SVR

GHI
(W/m2) ≥1 h 1 h RMSE, MAE, R2

0.848 ≤ R2 ≤ 0.916; highest
R2 = 0.916, RMSE = 0.28,
MAE = 0.17

[66]

Detecting real-time Cloud Obstruction
and forecasting Clearness Sky Index in
short intervals by using satellite data
and machine learning techniques

Meteorological satellite data
(from MSG’s SEVIRI), Cloud
Classification (from
SAFGEO)

Machine learning models
for short-term forecasting of
GHI, including SHLNN,
DHLNN, RF

GHI
(W/m2) ≥15 min 7–8 min Cumulative Error,

Performance Accuracy
Highest Accuracy = 84.2%, Lowest
Accuracy = 72.5%
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Table 2. Cont.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[67]
Developing a hybrid forecasting tool by
using satellite remote sensing data and
time series models

Geostationary satellite data,
Daily Mean SIS

ARMA, NAR-NN, DES,
Kriging Interpolation

Solar power
output
(W/m2)

≥3 days 1 day R, RMSE, MAPE DES method: RMSE = 13.4,
SD = 3.83, R = 0.88

[68]

Developing a minute-level solar
irradiance forecasting model by
establishing a relationship between
Cloud Pixels and irradiance, aimed at
improving PV power output forecasting

Sky images, irradiance data
from ESRL NOAA’s Wasco
Power Station

BPNN and SVM training
models for irradiance
forecasting, ARIMA for
comparison

Irradiance
(W/m2) ≥10 min 1 min MAPE, RMSE, MBE

Blocky Clouds: MAPE ≈ 22.66%,
Thin Clouds: MAPE ≈ 20.44%,
Thick Clouds: MAPE ≈ 18.82%

[9]
Technoleconomical analysis of
12 different methods operating in
agreement with market conditions

NWP (ECMWF), PV
production from a fleet of
152 PV systems

Supervised learning model,
support vector regression,
deep learning,
physical-based techniques

PV power
output

Day
ahead 1 day MAE, RMSE, MBE, ER

6% < MEA < 7.5% Random Forest
Regression performs best with a
score of 6.13%. The PV model has
the highest ER

[19]

A spatiotemporal PV power nowcasting
method with Predictor Preselection for
Grid Control considering different
scenarios with Interpolated Cloud
Information. The feasibility is evaluated
by using a Real Sensor Network

ISC from Reference Solar
Cells

The most fitting correlations
for tracking shadow
movements and forecasting
are through Elastic Net
Regularization, a
regression-based method

PV power
output ≥5 min 1 s nRMSE, nMPAE, SS nRMSE = 2.30, nMPAE = 3.95,

SS = 0.02

[26]

Enhancing day-ahead hourly irradiance
forecasting in Singapore, integrating the
Weather Research and Forecasting (WRF)
model with Statistical Learning
Techniques compared with the Global
Forecasting System (GFS)

GHI (from SERIS), WRF
model in three
configurations

Combination of three NWP
forecasts with a
postprocessing procedure
involving PCA and stepwise
variable selection

GHI
(W/m2) ≥1 day 1 h RMSE, MAE, MBE,

nRMSE, nMAE, nMBE 169 < RMSE < 182
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5. Current Research—An Overview

The focus of this review is on research publications of the last five years; thus, this
review focuses on research published from 2018 to the time of writing (2023). The search
engine “Google Scholar” was used to find the research papers. Different search terms were
used separately from each other to obtain an indicative view of trends in solar forecasting
publications. These search terms were based on the methods that are generally used to
obtain input data. An extra search term, based on the presence of AI within the research
field, was used as well to include these techniques too. The search terms used were (1) “So-
lar Forecasting”, (2) “Solar Forecasting All Sky Camera”, (3) “Solar Forecasting Satellite”,
(4) “Solar Forecasting Numerical Weather Prediction”, (5) “Solar Forecasting Sensor Net-
works”, and (6) “Solar Forecasting Artificial Intelligence”. For each search term, the first
50 results were considered in addition to those in Table 2, the relative frequency of different
data resources Table 3, then various application of AI techniques is presented in Tables 4–7.
In addition to these publications, some additional publications that were considered to be
valuable based on expert knowledge were added too.

To illustrate some of the research trends that are happening in the field of solar
forecasting, Figures 5 and 6 show the number of publications associated with each search
term for the period 2012 to 2022. The year 2023 was excluded since this year was ongoing
at the time of writing. The approach used was to insert one of the search terms into Google
Scholar, filter on one specific year, and then iterate over the period of ten years. The
amount per year was summed to determine the total amount of publications for that period.
Interestingly, when inserting one of the search terms with a filter set to the period of ten
years to determine the total amount of publications in one go, the returned amount of
publications differed significantly from the amount obtained by summing the separate
years together. This indicates that Google Scholar probably uses a certain kind of algorithm
to present the most relevant results depending on the filters and search terms applied. This
serves as an extra reminder that the trends found are only indicative.

The overarching search term (1) “Solar Forecasting” returns 270,100 results when all
the years are summed. Naturally, the other “better specified” search terms return fewer
results. The distribution of publications, based on the search term, can be found in Figure 5.
Here, we can see that search term (4) “Solar Forecasting Numerical Weather Prediction”
returns significantly more results than the other, better-specified search terms. While All
Sky Cameras receive specific attention from the IEA-PVPS through their Task 16 project
(subtask 3) [69], showcasing their importance for solar forecasting, there are relatively
few publications compared to the other methods. Figure 6 shows a graph illustrating
the number of publications per year per search term. For all search terms, we can see an
increase in the amount of publications. More specifically, there was a strong increase in
publications found by using the search term (6) “Solar Forecasting Artificial Intelligence”
over the last few years, indicating the importance of Artificial Intelligence techniques for
the field of solar forecasting. Figure 7 shows the number of publications returned for search
terms (2)–(6), normalized to the amount of returned results from the overarching search
term (1) “Solar Forecasting”. By showing the relative amount of publications to the total
amount of publications, it becomes possible to see how the interest in specific subjects is
distributed within the field of research. Figure 7 shows how research on solar forecasting
predominantly used Numerical Weather Prediction at the start of the considered period in
2012. Over time, the reliance on Numerical Weather Prediction seems to decrease, whereas
the use of Artificial Intelligence seems to increase.
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Figure 5. The graph illustrates the number of returns given by Google Scholar per search term for
solar energy forecasting, including “Solar Forecasting”, “Satellite”, “Sensor Networks”, “All Sky
Camera”, “Numerical Weather Prediction”, and “Artificial Intelligence”.

Figure 6. The graph illustrates the number of publications that are returned per year per search term
for solar energy forecasting, including “Solar Forecasting”, “Satellite”, “Sensor Networks”, “All Sky
Camera”, “Numerical Weather Prediction”, and “Artificial Intelligence”.

Figure 7. The graph illustrates the relative amount of publications per search term, compared to the
total amount of publications per year found by using the search term “Solar Forecasting”. This should
give an indicative view of the distribution of methods used within the field of solar forecasting.
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The above-mentioned search method resulted in a comprehensive set of publications
revolving around the development of solar forecasting techniques. To summarize the
ongoing research, Tables 2–7 were created. These tables summarize, per publication, the
most important methods that were used to create the forecasts and the relative frequency
of the data sources. The table also includes, where applicable, details on the forecasting
accuracy and error of the developed method.

5.1. Analysis of Current Research

Based on Tables 2 and 4–7, the current trends and practices in the field of solar
forecasting were identified and will be discussed below. This discussion will include an
analysis of data resources, an analysis based on the time horizon, the prevalence and usage
of AI techniques, the effect of weather conditions based on forecasting location, and a
discussion on which error metrics are used to assess solar forecasting techniques.

5.2. Data Resources

Data resources delve into the diverse data sources and methods employed in solar
forecasting, ranging from Satellite Imagery and Numerical Weather Predictions (NWPs) to
ground-based measurements and open-access data, as presented in Table 5. These varied
inputs are crucial to accurately capture meteorological parameters and solar irradiance,
thereby enhancing the precision of solar forecasting models.

To gather the cloud cover information, sky conditions, and other meteorological
parameters, Satellite Images from various satellites, including EUMETSAT’s Meteosat,
FengYun-4A, and MSG SEVIRI, are utilized [16,33,37]. NWPs from organizations such
as ECMWF and NOAA play a significant role by providing data on atmospheric condi-
tions, including cloud cover and temperature [33,37,44]. Ground-based measurements
using pyranometers, pyrheliometers, and irradiance sensors directly measure the solar
irradiance or power output, serving as crucial reference data for model validation and
evaluation [44]. Some studies validate and verify solar forecasting models by utilizing
data from PV systems or solar power plants, which provide actual power generation val-
ues based on solar irradiance [16]. Additionally, sky cameras and ceilometers capture the
localized cloud cover, cloud base height, and sky conditions, offering valuable supple-
mentary data for solar forecasting models [33]. The relative frequency of the data sources
that are used is summarized in Table 3. Certain studies employ numerical models like
the Weather Research and Forecasting model (WRF) to simulate atmospheric conditions
and integrate them with other data sources to generate solar irradiance predictions [19].
Several articles highlight the use of open-access data sources, such as open-source datasets,
publicly available Satellite Images, and meteorological data from organizations like NREL
and NSRDB [19,70]. It is important to note that the analysis presented is based on the
provided information, and the actual techniques used in each study may vary. Furthermore,
some articles may employ a combination of techniques or integrate multiple data sources
to achieve more accurate solar forecasting.

Table 3. The relative frequency data sources used for solar forecasting.

Source of Data Ground-Based Data Satellite Images ASI Images

Frequency 9, e.g., [63,71] 9, e.g., [72–74] 14, e.g., [16,33,75]
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Table 4. AI-techniques-based solar nowcasting techniques.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[33] Integrating ASI and Satellite Imagery for
Cloud Analysis

Solar irradiance, ASI images,
Satellite Images

Deep learning architecture
based on ECLIPSE GHI ≥60 min 10/30 min FS (%), CRPS, RMSE

(W/m2)
115.6 < RMSE < 134.9 and 19.9 < FS
< 23.3

[44]
A unified architecture for
multi-time-horizon predictions for short-
and long-term solar forecasting

NWP (NOAA’s SURFRAD),
GDSI, GHI

Recurrent Neural Networks;
bird model is used to
calculate clear-sky GHI

GDSI ≥4 h 1 h RMSE

8.64 < RMSE < 41.7 for 1 h and 10.7
< RMSE < 49.1 for 4 h for specified
time horizons. For multitime
horizons, 6.7 < RMSE < 39.8

[70] Solar Radiance Prediction Model Based
on Long Short-Term Memory

Solar irradiation from the
US National Solar Radiation
Data Base (NSRDB)

Long Short-Term Memory
(Neural Network),
Empirical Mode
Decomposition (Signal
Processing)

Hourly
solar
irradiation

1, 2, 6,
and
12 h,
and
1 day

60 min RMSE (Wh/m2), MAPE

For 1 h ahead, 35 < RMSE < 60; for
1 day ahead for LTSM-Truncated
model: RMSE ≈ 90; and for
EMD-LTSM-Truncated model:
RMSE ≈ 80

[19]

A spatiotemporal PV power nowcasting
method with Predictor Preselection for
Grid Control considering different
scenarios with Interpolated Cloud
Information. The feasibility is evaluated
by using a Real Sensor Network

ISC from Reference Solar
Cells

The most fitting correlations
for tracking shadow
movements and forecasting
are through Elastic Net
Regularization, a
regression-based method

PV power
output ≥5 min 1 s nRMSE, nMPAE, SS nRMSE = 2.30, nMPAE = 3.95,

SS = 0.02

[20] Learned Forecasting Irradiance Model
adaptive to Local Cloud Conditions

Solar irradiance (from a
network of 25 sensors)

A local vector
autoregressive model
(LVAR)

GHI ≥5 min 1 min RSME, MAE, FS RMSE = 110 W/m2, MAE = 70
W/m2, FS = 0.16

[76]

Developing a Localized GHI Forecasting
Model based on sky images,
incorporating Cloud Motion, Thickness,
and Elevation for improved accuracy
and mitigating Solar PV variability

Sky images for CBH
Estimation and irradiance
values for onsite

Blue sky area separation
method, filtering, and
correlation analysis for GHI
prediction

GHI
(W/m2)

≥1, 5,
and
15 min

1 min RMSE, MAE, SF
81% accuracy for 1 min interval,
RMSE: 101 W/m2, MAE: 64 W/m2,
SF: 0.26 for 15 min

[63]

Enhancing CSI forecasting with a focus
on postprocessing by using Neural
Network Models and evaluating the
performance against benchmark
methods

Ground-based data,
SURFRAD, satellite-derived
data, NSRDB

Focal and spatial
postprocessing of CSI
forecasts by using Neural
Networks

CSI, GHI ≥30 min

1 min,
aggre-
gated to
30 min

SS, CRPS CRPSS as high as 66%

[68]

Developing a minute-level solar
irradiance forecasting model by
establishing a relationship between
Cloud Pixels and irradiance, aimed at
improving PV power output forecasting

Sky images, irradiance Data
from ESRL NOAA’s Wasco
Power Station

BPNN and SVM training
models for irradiance
forecasting, ARIMA for
comparison

Irradiance
(W/m2) ≥ 10 min 1 min MAPE, RMSE, MBE

Blocky Clouds: MAPE ≈ 22.66%,
Thin Clouds: MAPE ≈ 20.44%,
Thick Clouds: MAPE ≈ 18.82%
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Table 5. AI-techniques-based data resources.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[33] Integrating ASI and Satellite Imagery for
Cloud Analysis

Solar irradiance, ASI images,
Satellite Images

Deep learning architecture
based on ECLIPSE GHI ≥60 min 10/30 min FS (%), CRPS, RMSE

(W/m2)
115.6 < RMSE < 134.9 and 19.9 < FS
< 23.3

[16] Extending the nowcasting horizon of
ASI-based solar radiation predictions

ASI images, cloud base
height, GHI, DNI, MSG
SEVIRI (EUMETSAT), HRV
images

Thresholding algorithm for
cloud detection in images,
Deep Flow algorithm for
Cloud Motion Vectors, Atlas
(ESRA) clear-sky irradiation
model

GHI, DNI,
PV power
output

≥90 min 1 min MAE, RMSE, FS
200 < RSMEGHI < 300,
250 < RSMEDNI < 400 for both ASI
and satellite. RSMECF ≈ 2.1%

[9]
Technoleconomical analysis of 12
different methods operating in
agreement with market conditions

NWP (ECMWF), PV
production from a fleet of
152 PV systems

Supervised learning model,
support vector regression,
deep learning,
physical-based techniques

PV power
output

Day
ahead 1 day MAE, RMSE, MBE, ER

6% < MEA < 7.5% Random Forest
Regression performs best with a
score of 6.13%. The PV model has
the highest ER

[44]
A unified architecture for
multi-time-horizon predictions for short-
and long-term solar forecasting

NWP (NOAA’s SURFRAD),
GDSI, GHI

Recurrent Neural Networks;
bird model is used to
calculate clear-sky GHI

GDSI ≥4 h 1 h RMSE

8.64 < RMSE < 41.7 for 1 h and 10.7
< RMSE < 49.1 for 4 h for specified
time horizons. For multitime
horizons, 6.7 < RMSE < 39.8

[70] Solar Radiance Prediction Model based
on Long Short-Term Memory

Solar irradiation from the
US National Solar Radiation
Data Base (NSRDB)

Long Short-Term Memory
(Neural Network),
Empirical Mode
Decomposition (Signal
Processing)

Hourly
solar
irradiation

1, 2, 6,
and 12
h and
1 day

60 min RMSE (Wh/m2), MAPE

For 1 h ahead, 35 < RMSE < 60; for
1 day ahead for LTSM-Truncated
model: RMSE ≈ 90; and for
EMD-LTSM-Truncated model:
RMSE ≈ 80

[19]

A spatiotemporal PV power nowcasting
method with Predictor Preselection for
Grid Control considering different
scenarios with Interpolated Cloud
Information. The feasibility is evaluated
by using a Real Sensor Network

ISC from Reference Solar
Cells

The most fitting correlations
for tracking shadow
movements and forecasting
are through Elastic Net
Regularization, a
regression-based method

PV power
output ≥5 min 1 s nRMSE, nMPAE, SS nRMSE = 2.30, nMPAE = 3.95,

SS = 0.02

Table 6. AI-techniques-based solar radiation components.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[16] Extending the nowcasting horizon of
ASI-based solar radiation predictions

ASI images, cloud base
height, GHI, DNI, MSG
SEVIRI (EUMETSAT), HRV
images

Thresholding algorithm for
cloud detection in images,
Deep Flow algorithm for
Cloud Motion Vectors, Atlas
(ESRA) clear-sky irradiation
model

GHI, DNI,
PV power
output

≥90 min 1 min MAE, RMSE, FS
200 < RSMEGHI < 300,
250 < RSMEDNI < 400 for both ASI
and satellite. RSMECF ≈ 2.1%
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Table 6. Cont.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[76]

Developing a Localized GHI Forecasting
Model based on sky images,
incorporating Cloud Motion, Thickness,
and Elevation for improved accuracy
and mitigating Solar PV variability

Sky images for CBH
Estimation and irradiance
values for onsite

Blue sky area separation
method, filtering, and
correlation analysis for GHI
prediction

GHI
(W/m2)

≥1, 5,
and
15 min

1 min RMSE, MAE, SF
81% accuracy for 1 min interval,
RMSE: 101 W/m2, MAE: 64 W/m2,
SF: 0.26 for 15 min

[20] Learned Forecasting Irradiance Model
adaptive to Local Cloud Conditions

Solar irradiance (from a
network of 25 sensors)

A local vector
autoregressive model
(LVAR)

GHI ≥5 min 1 min RSME, MAE, FS RMSE = 110 W/m2,
MAE = 70 W/m2, FS = 0.16

[63]

Enhancing CSI forecasting with a focus
on postprocessing by using Neural
Network Models and evaluating the
performance against benchmark
methods

Ground-based data,
SURFRAD, satellite-derived
data, NSRDB

Focal and spatial
postprocessing of CSI
forecasts by using Neural
Networks

CSI, GHI ≥30 min

1 min,
aggre-
gated to
30 min

SS, CRPS CRPSS as high as 66%

[77] Improving solar-energy-forecasting
accuracy by using LSTM

NOAA’s GEFS, NSRDB,
CAMS, AMS competition
data

LSTM, FFNN, GBR Forecast
Errors, GHI ≥1 month 3 h RSME, MAE, FS Significant RMSE improvement over

other models by 60%

[78]

Creating SolarNet, a Deep CNN Model,
for 1-Hour-Ahead GHI forecasting by
using sky images, focusing on learning
Latent Patterns for very short-term solar
forecasting

Numerical meteorological
features, calendar features,
CGHI, TSI images

SolarNet-based CNN for
GHI prediction

GHI
(W/m2) ≥1 h 10 min nRMSE, FS 8.85% nRMSE, 25.14% FS

[79]
Developing a method for short-term
forecasting of cloudiness in Greece by
using Satellite Images

Satellite-derived Cloud
Clearness Index (CCI)
values

ANN CCI, GHI 15 to
240 min

15 min,
0.05

◦ MSE, MAE
Maximum average MSE after
240 min: ≈ 0.013 (summer), ≈ 0.04
(winter)

[80]
Adopting deep-learning-based
clustering for improved GHI forecasting
by identifying irregular patterns

Datasets from Itupiranga
and Ocala

Deep Time Series clustering,
GRU, FADF

GHI
(W/m2) ≥1 h 1 h

RMSE, rRSME, MAE,
R2, ErrorMax, ErrorMin,
FS

RMSE = 112.60 ± 0.57 (Ocala),
117.71 ± 0.47 (Itupiranga)

[81]

Developing models for intraday
probabilistic solar forecasts with lead
times up to 3 h by using a nonparametric
approach based on Linear Quantile
Regression

Ground-based data, satellite
data (from NOAA)

Linear Quantile Regression
method and regression
models

GHI
(W/m2) ≥3 h 10 min

Reliability property,
sharpness, CRPS,
CRPSS (FS)

RP: 60% ≤ RP ≤ 80%, SP: 80%
Coverage, CRPSS Gain: Min > 2.7%
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Table 6. Cont.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[82]

Developing a Satellite Irradiance Model
with short-term prediction capabilities
by using Cloud Motion Vectors for
real-time solar irradiance forecasting in
Australia

Satellite data CMVs, HELIOSAT
technique, SIFM model

GHI, PV
power 5 min 10 min,

2 km
MBE, MAE, RMSE,
nRMSE

24 < nRMSE< 43%, outperforms
persistence for most sites

[15]

Developing a general model for
short-term solar irradiance forecasting
by using satellite-based measurements
and weather forecasts, independent of
local ground measurements

Historical ground data,
satellite-based irradiance
values, ECMWF forecasts,
deterministic clear-sky
irradiance

DNN GHI ≥4 h 1 h rRMSE Model rRMSE ≈ 31.31%,
outperforms local models

[60]

Development of a predictive model for
solar irradiance involving Data
Transformation, Distribution Estimation,
and Confidence Interval Analysis, with a
focus on appropriate Data Window
selection

GHI, temperature, humidity,
and cloudiness (from JMA’s
GPV-MSM System),
extraterrestrial

SVR-based hourly
irradiance prediction at
42 locations in Japan

GHI
(W/m2) ≤9 h 1 h Confidence level α N.A.

[25]

Development of a predictive model by
using Neural-Network-based NWP
model for forecasting power generation
in a San Diego residential microgrid,
incorporating comprehensive weather
parameters

Power demand and
generation, price data from
SDG&E, and weather
parameters (from NREL)

Neural-Network-based
NWP compared with
Multivariable Regression
and SVM

GHI
(W/m2),
power
generation
(W/h)

≥1 day 1 h MAPE, MSE MAPE of NN irradiance = 0.95%,
NN power production = 45.3%

[33] Integrating ASI and Satellite Imagery for
Cloud Analysis

Solar irradiance, ASI images,
Satellite Images

Deep learning architecture
based on ECLIPSE GHI ≥60 min 10/30 min FS (%), CRPS, RMSE

(W/m2)
115.6 < RMSE < 134.9 and 19.9 < FS
< 23.3

[66]

Detecting real-time Cloud Obstruction
and Forecasting Clearness Sky Index in
short intervals by using satellite data
and machine learning techniques

Meteorological satellite data
(from MSG’s SEVIRI), Cloud
Classification (from
SAFGEO)

Machine learning models
for short-term forecasting of
GHI, including SHLNN,
DHLNN, RF

GHI
(W/m2) ≥15 min 7–8 min Cumulative Error,

Performance Accuracy
Highest Accuracy = 84.2%, Lowest
Accuracy = 72.5%

[14]

Utilizing geostationary satellite
observations and radiative transfer
calculations to generate short-term
forecasts of solar insolation for solar
power generation

Satellite Images, NWP,
radiative transfer model

The CIRACast model, the
CLAVR-x algorithm GHI ≤3 h 5 min MAE 8.5 < MAE < 17.2%, outperforms

persistence-based forecasting
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Table 7. AI-techniques-based Solar PV power forecasting.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[9]
Technoleconomical analysis of
12 different methods operating in
agreement with market conditions

NWP (ECMWF), PV
production from a fleet of
152 PV systems

Supervised learning model,
support vector regression,
deep learning,
physical-based techniques

PV power
output

Day
ahead 1 day MAE, RMSE, MBE, ER

6% < MEA < 7.5% Random Forest
Regression performs best with a
score of 6.13%. The PV model has
the highest ER

[61]

Forecasting PV power output for 24-h
and 48-h horizons, leveraging
comprehensive weather data across
Germany

PV power data (from
aggregated German data)
and NWP data (NOAA’s
GFS)

Convolutional Neural
Network and Long
Short-Term Memory
Network for PV power
prediction

PV power
output
(MW)

≥1 day 3 h RMSE, MAE RMSE = 1949 MW, nRMSE = 4.73%

[74]

Proposing an End-to-End PV power
generation Prediction Model using
Satellite Images and deep learning to
improve solar forecasts

Satellite Images, PV power
generation dataset

Optical Flow Calculation,
Encoder Stage with CNN,
clear-sky PV power
estimation, Augmentation
Stage with AM Models,
Decoder Stage with LSTM

PV power
forecasting ≥3 h 5 km,

10 min nRMSE, MASE, nMAE
6.264 < NRMSE< 7.721%, 2.362<
NMAE< 2.982%, 0.644 < MASE<
0.815

[82]

Developing a Satellite Irradiance Model
with short-term prediction capabilities
by using Cloud Motion Vectors for
real-time solar irradiance forecasting in
Australia

Satellite data CMVs, HELIOSAT
technique, SIFM model

GHI, PV
power 5 min 10 min,

2 km
MBE, MAE, RMSE,
nRMSE

24 < nRMSE< 43%, outperforms
persistence for most sites

[83]

Addressing challenges of
Satellite-Image-based photovoltaic
power forecasting by proposing a
nonlinear cloud movement model, active
cloud region selection, and sequential
algorithm, combined with XGBoost

PV power, satellite data

Conv-LSTM for cloud
movement prediction,
XGBoost for PV power
forecasting

PV power
15 min,
30 min,
60 min

15 min NMAE, NRMSE,
Correlation Coefficient

NMAE and NRMSE of proposed
method are 8% lower than M1;
1 − CORR is 10% lower than M1;
NMAE of M1 is 13% higher for
15 min and 30 min, 14% higher for
60 min; NRMSE of
M1 ≈ 10%, 17%, 14% higher for
15 min, 30 min, and 60 min,
respectively

[44]
A unified architecture for
multi-time-horizon predictions for short-
and long-term solar forecasting

NWP (NOAA’s SURFRAD),
GDSI, GHI

Recurrent Neural Networks;
bird model is used to
calculate clear-sky GHI

GDSI ≥4 h 1 h RMSE

8.64 < RMSE < 41.7 for 1 h and 10.7
< RMSE < 49.1 for 4 h for specified
time horizons. For multitime
horizons, 6.7 < RMSE < 39.8
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Table 7. Cont.

Ref Description Input Methodology Output Horizon Res. Metrics Accuracy

[72]

Developing an ultra-short-term PV
power forecasting method leveraging
Satellite Image data for spatial–temporal
analysis

Solar PV power data,
Satellite Images from
Fengyun-4A

Forecasting method, SVM,
GBDT

PV power
(W)

15 min
to 4 h 1 day RSME, MAE

MAE: ≈ 4.12% and 3.70%,
RMSE: ≈ 9.48% and 8.54% for
two plants

[67]
Developing a hybrid forecasting tool by
using satellite remote sensing data and
time series models

Geostationary satellite data,
Daily Mean SIS

ARMA, NAR-NN, DES,
Kriging Interpolation

Solar power
output
(W/m2)

≥3 days 1 day R, RMSE, MAPE DES method: RMSE = 13.4,
SD = 3.83, R = 0.88

[25]

Development of a predictive model by
using Neural-Network-based NWP
model for forecasting power generation
in a San Diego residential microgrid,
incorporating comprehensive weather
parameters

Power demand and
generation, price data from
SDG&E, and weather
parameters (from NREL)

Neural-Network-based
NWP compared with
Multivariable Regression
and SVM

GHI
(W/m2),
power
generation
(W/h)

≥1 day 1 h MAPE, MSE MAPE of NN irradiance = 0.95%,
NN power production = 45.3%
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5.3. Time Horizon of Solar Forecasting

The reviewed studies encompass a broad range. A summary of the Artificial Intel-
ligence techniques employed for different time horizons is presented in the following
Table 8. The longest time horizons employed in the studies span from 24 to 21 h. For
example, Doorga et al. [84] focused on forecasting the mesoscale distribution of surface
solar irradiation within a 24 h time horizon. Kosmopoulos et al. [62] aimed to forecast the
impact of large-scale clouds on downwelling surface solar irradiation with a time horizon
of up to 21 h. Wang et al. [68] developed a method for minutely forecasting solar irradiance
based on real-time sky image–irradiance mapping within a 1 h time horizon. The utilization
of these diverse time horizons in solar-energy-forecasting research enables predictions at
various temporal scales, facilitating decision making and resource optimization in the
renewable energy sector.

Table 8. Resolution and the AI technique for solar forecasting.

Resolution Processing Techniques

1 s Recurrent Neural Networks (RNN) [44]

1 min Supervised learning, thresholding algorithm for cloud detection [37]

5 min k-NN algorithm [82]

10 min Resolution not explicitly mentioned [68]

15 min Regression Model, CNN, CMF calculation, STVAR model [33,62,64]

30 min Deep Flow algorithm [85], SVR [60]

1 h ECLIPSE-based DL architecture [33], SVR, DL, ESRA clear-sky model,
LSTM [45], Heliosat-2 [73], PIV, ARIMA, ETS, SHLNN, DHLNN, RF, SVM,
ANN, GBM, SolarNet [78] CNN, Cloud Radiative Effects Analysis [62], CSI
forecasts, BPNN, SVM training, ARIMA irradiance forecasting, conventional
prediction, STVAR model, SAFGEO software by EUMETSAT

3 h EMD, NN-based weather prediction, Multivariable Regression, SVM, CNN with
optimization, PSO [43] optimization of SVM parameters, ARMA, NAR-NN [67],
DES, Neural Network model for ensemble CSI forecasts

4 h Cloud Radiative Effects Analysis

6 h Clear-sky library

Month Fast radiative transfer models (FRTM)

15–240 min LSTM network for PV power output prediction, CSI forecasts, Neural Network
model for ensemble CSI forecasts, RF, SVM, ANN, GBM [86]

1 h ahead/20 × 20 km SolarNet CNN [78]

On the other end of the spectrum, the shortest-term forecasting is conducted within
a time horizon of 1 min to about 1 h. Various techniques have been employed for such
short-term forecasting, showcasing the diverse approaches in the field. These techniques
include localized forecasting using sky images and Cloud Motion tracking [76], nowcasting
techniques utilizing analog methods and geostationary Satellite Images [71], probabilistic
forecasts encompassing intraday variability and satellite information [81], direct learning
from Satellite Images with regions of interest [74], spatiotemporal optimization based on
Satellite Imagery [87], and minutely forecasting through real-time sky image–irradiance
mapping [68]. Additionally, other methods such as predictions based on near-real-time
satellite data [82], ensemble forecasting with dropout Neural Networks and neighbor-
ing satellite information [63], and generalized models using satellite data without local
telemetry [88] have also been explored. Furthermore, deep learning models have shown
promise, including a model for intraday forecasting using satellite-based estimations [89], a
proposed model combining deep learning and machine learning for hourly solar irradiation
forecasting [65], and a spatiotemporal deep learning model for satellite-derived short-term
forecasting [90]. Additionally, studies have focused on cloudiness forecasting for solar
energy purposes [79], comparative studies of LSTM Neural Networks in day-ahead global
horizontal irradiance forecasting [77], ultra-short-term PV power forecasting considering
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neighboring plant data [72], and hybrid approaches combining satellite remote sensing and
time series models for mesoscale surface solar irradiation distribution [67]. Furthermore, a
hybrid forecasting method utilizing satellite visible images and modified Convolutional
Neural Networks (CNNs) has been proposed [34].

5.4. Prevalence of Artificial Intelligence

Based on a comprehensive review of the literature provided in Tables 4, 6 and 7, it
is evident that a wide range of AI techniques have been extensively employed for solar
energy forecasting. These techniques include diverse methodologies and data sources.
Table 5 highlights the multifaceted nature of the problem. Notably, deep learning architec-
tures based on ECLIPSE (Envisioning Cloud-Induced Perturbations in Solar Energy) have
been investigated [33], showcasing the potential of advanced Neural Network structures.
Additionally, supervised learning models have been explored to forecast solar energy
production [36], leveraging historical data and relevant features. Furthermore, regres-
sion, support vector regression, ensemble learning, deep learning, and physical-based
techniques have been investigated to model solar energy patterns [44]. Recurrent Neural
Networks have been proposed for solar radiation nowcasting, enabling short-term forecast-
ing [16]. Cloud Motion Vectors have been incorporated by using the Deep Flow algorithm
to enhance the accuracy of solar radiation predictions [70]. Moreover, the European Solar
Radiation Atlas (ESRA) clear-sky irradiation model has been utilized in combination with
other algorithms to improve solar power nowcasting [19]. The Atlas (ESRA) clear-sky
irradiation model has also been employed for PV power forecasts [20]. Satellite-based ap-
proaches, such as the FengYun-4 geostationary satellite data, have been utilized to develop
solar radiation nowcasting systems [73]. Additionally, Numerical Weather Prediction has
been employed to enhance the solar power forecasting accuracy by considering weather
conditions [24]. Machine learning algorithms like the Long Short-Term Memory (LSTM)
Neural Network have been utilized for short-term solar power forecasting [91]. Moreover,
the application of Empirical Mode Decomposition (EMD) has been explored for day-ahead
solar power forecasts [25]. Techniques such as Elastic Net Regularization have been inves-
tigated to improve the precision of solar power forecasts [26]. Furthermore, local vector
autoregressive ridge modeling has been employed to predict solar power generation [20].
Lastly, the combination of the European Solar Radiation Atlas (ESRA) with Heliosat-2 has
been proposed as a hybrid satellite-based solar forecasting approach [92].

Clearly, the field of solar energy forecasting encompasses a wide range of AI tech-
niques, reflecting the multifaceted nature of the problem. But, even though these techniques
are a substantial part of the ongoing research, the process of selecting and applying these
techniques sometimes seems to be based on trial and error. This also applies to the selection
of variables that are used as inputs for AI models. In a sense, this is inherent to the black
box that is introduced by a number of AI techniques. One cannot look inside a Neural
Network and see why certain patterns are detected. In the end, you can only see that it
is able to detect these patterns by analyzing the outcome. Thus, only by trying different
techniques can one be able to see which technique is best at detecting the right patterns.
But then, when trying to improve the technique for forecasting, it can become hard to do so
since the inner workings are not well known. This is more of a general issue in using AI,
prompting new developments such as explainable AI (XAI) [93].

5.5. Local Weather Conditions

The precision of solar energy forecasting exhibits variability among different nations
and is subject to the influence of diverse models, methodologies, and prevailing weather
patterns unique to each country, as illustrated in Figure 8.
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Figure 8. Geographical distribution of solar forecasting investigations utilizing AI techniques.

This variability can be attributed to the unique weather characteristics experienced
in specific regions. In the United Kingdom (UK), known for its cloud-dominant weather,
a 10 min solar energy forecast achieves an accuracy with an RMSE of 115.6 W/m2 [33].
The Netherlands, characterized by its cloudy weather, demonstrates a forecasting skill
of 19.9% with an average of 160 sunny days throughout the year [36]. The United States
of America (USA) provides a solar energy forecast at 30 min intervals. Spain, known for
its abundant sunshine, has an RMSE of 126.7 W/m2 and a forecasting skill of 23.3% [44].
On the other hand, China, with its diverse weather patterns, has forecasting intervals of
60 min and an RMSE of 134.9 W/m2 [16]. Greece achieves the highest Economic Revenue
for PV models, and Japan shows varying RMSE values for different forecast horizons [70].
Singapore, France, Germany, Uruguay, Australia, Denmark, Morocco, Mauritius Island,
and Korea also have their own specific accuracy metrics, influenced by their respective
dominant weather patterns [19,20,24–26,91,92].

5.6. Widely Employed Performance Metrics

Concerning performance metrics, Table 2 provides an overview of the frequently
utilized metrics in solar-energy-forecasting research, which include RMSE, MAE, FS, MBE,
nRMSE, MAPE, rRMSE, and CRPS, as illustrated in Figure 9. Notably, among these metrics,
RMSE stands out as the most prevalent, with over 110 studies utilizing it to assess and
verify the performance of various forecasting methods. The distribution of these metrics is
further elaborated in Table 9. In addition, many other metrics are used as well, such as the
Prediction Interval Normalized Averaged Width (PINAW) [81], Brier Skill Score (BSS) [71],
Correlation Coefficient (R) [94], Normalized Peak Mean Absolute Error (nPMAE) [19], and
Economic Revenue (ER) [37].
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Figure 9. Commonly used performance metrics.

Table 9. The relative frequency of the most common performance metrics used in solar forecasting.

Performance Metrics Frequency

Root Mean Squared Error (RMSE) 14, e.g., [16,20,33]

Mean Absolute Error (MAE) 12 [20,26,73]

Forecast Skill (FS) 8, e.g., [71,86,95]

Mean Bias Error (MBE) 6, e.g., [19,96]

Normalized Root Mean Square Error (nRMSE) 5, e.g., [63,86]

Mean Absolute Percentage Error (MAPE) 5, e.g., [43,67,73]

Continuous Ranked Probability Score (CRPS) 4, e.g., [33,63,71,81]

5.7. Comparison to Naive Forecasters

A common approach to assess forecasting methods is to compare the results to a
naive forecaster, such as the persistence approach, by using the Forecast Skill and other
metrics, e.g., the RMSE [16,33,71,86,95]. Then, if there is an improvement compared to
the naive approach, naturally, it is claimed that the method in question shows promise
as there is a quantitative improvement. However, when everybody is compared to the
worst performer in class, everybody can claim to obtain good results. Following this
analogy raises the question of how promising the results that are obtained actually are. This
reflects the need for identifying state-of-the-art methods that can be used as high-standard
reference methods.

6. Future Research—Recommendations

Reviewing the current state of the art and analyzing the most current research revealed
some of the current shortcomings within the field of solar forecasting. Based on these short-
comings, recommendations for future research will be discussed in the following sections.

6.1. Creation of a Benchmarking Framework

As mentioned in the previous section, it is hard to accurately compare different
forecasting methods since they are dependent on many different variables. This reflects the
need for a more standardized approach to developing and assessing forecasting methods.
This could be performed through the development of a benchmark for solar forecasting.
The International Energy Agency (IEA) has already included the creation of a benchmarking
framework for solar forecasting in their PVPS task 16 project as part of subtask 1 [69], which
highlights the importance of this subject. Benchmarking is known to stimulate innovation,
technical development, and the building of a stronger research community. Often, it has
a strong, positive effect on maturing a scientific discipline. This can be attributed to the
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fact that the development of a benchmark requires a thorough evaluation of the field
of research to identify key problems, which in turn requires good communication and
collaboration [97,98]. Through the development of evaluation methods and procedures, it
helps to increase the reproducibility of research [99]. The development of a benchmark also
helps to identify state-of-the-art methods. These state-of-the-art methods can then be used
as high-standard references, instead of naive approaches, to better identify what methods
are really pushing solar forecasting forward.

A good benchmark should provide a basic framework for action. It needs to be clear
and straightforward, and it should describe the steps needed to perform a benchmark [97].
According to [98], a benchmark should have three components: (1) a motivating comparison,
(2) a Task Sample, and (3) a performance measure. The motivating comparison reflects
the purpose of a benchmark as it allows for a comparison of methods to identify the best
practices. At the same time, it should also describe the motivation for pushing the field of
research forward, in this case, to allow for the better integration of solar energy. Thus, the
motivating comparison illustrates the context in which the benchmark is operating. The
Task Sample should showcase an example of the task that is at hand, i.e., use input data
on atmospheric conditions to determine future solar irradiance for the better integration of
solar energy. The performance measure used for a successful benchmark should not only
be seen as a way to describe the characteristics of the method that is benchmarked, but it
should also reflect the fitness of the method for the task at hand. Thus, to choose a good
performance measure, the end-user should also be considered.

6.2. Creation of Publicly Available, Standardized Datasets

As mentioned before, one of the difficulties in comparing methods results from the
fact that the performances are affected by many variables, and thus different input datasets
can yield different performances. A starting point for assessing and benchmarking dif-
ferent methods would be through standardized datasets [100]. However, ref. [100] also
pointed out that there are only a few standardized datasets available, hindering researchers
that do not have the resources available to make their own meteorological measure-
ments. To demonstrate the possibilities of solar forecasting, the use of a suitable dataset is
essential [10]. Luckily, some scholarly journals actively promote the publication of code
and datasets alongside papers to enhance the reproducibility of the research [99]. The
development of high-quality datasets for solar forecasting is also part of IEA-PVPS Task 16,
subtask 1, indicating the importance of the matter.

A complete, standardized dataset should contain the following elements: (1) quality-
controlled weather and irradiance data with, preferably, a 1 min time interval; (2) high-
resolution sky images for the same location and time period; (3) Satellite Images for the
same location and time period, with the same time interval; and (4) Numerical Weather
Prediction data for the same location and time period [100]. Prompted by the above recom-
mendations, Pedro et al. [100] released a standardized dataset of three years containing
quality-controlled data with a 1 min resolution of GHI and DNI ground measurements in
California, USA. These measurements are complemented by sky images, Satellite Imagery,
and NWP forecasts for the same location. Another effort to create a standardized dataset,
to accelerate solar forecasting research, was made by Nie et al. [101]. This dataset, however,
was specifically aimed at short-term solar forecasting using ASI cameras. The dataset
contains three years (2017–2019) of quality-controlled, down-sampled sky images and PV
power generation data, which are prepared for deep learning methods. In addition, the
high-resolution images are added too if needed together with sky video footage and a code
base containing scripts for data processing and baseline modeling.

Since these complete datasets are, in general, not readily available, data for solar re-
search are often collected from multiple sources. However, many solar forecasting methods
rely on data science and machine learning techniques and thus require large datasets. As
a result, collecting and aligning datasets are often time-consuming processes [10]. When
looking to put one’s own dataset together, the first place to look would be for datasets
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that are published alongside papers. These datasets typically have already been quality-
controlled and matched, thus saving a lot of work. High-quality weather and irradiance
data are obtained from in situ measurements performed by weather stations, buoys, and
radiosondes. These data are often freely available for research purposes. Some well-known
examples are the Baseline Surface Radiation Network (BSRN) and the Surface Radiation
Budget Network (SURFRAD). However, these measurements are limited to the location of
measurement equipment. Ground data for other locations are often derived by using inter-
polation and Numerical Weather Prediction, thus losing some accuracy. To complement
ground measurements, remotely sensed data from geostationary satellites could be used.
While they are, in general, of lower accuracy than ground-based data, satellite data are
often freely available. Some well-known sources for satellite data are EUMETSAT, NOAA,
and NSMC. Stand-alone NWP models can also be a valuable source for data on atmospheric
conditions [99]. Well-known examples of available NWP data sources are ECMWF and
NOAA. There are also more locally focused weather predictions available, such as the Royal
Netherlands Meteorological Institute (KNMI) for the Netherlands. And when looking for
ASI images, an extensive list of 72 open-source, sky image datasets was put together by
Nie et al. [102]. This list also details whether or not the images are complemented with
additional data, such as solar irradiance or the PV power output, and whether they are
selected to be suitable for AI-driven methods.

6.3. Classification of Forecasting Sites

Part of creating a benchmark or a solution to be able to better compare different
forecasting methods could be to work with a classification scheme that aims at classifying
different forecasting sites. This classification scheme should be based on the different
factors that affect solar irradiance. The starting factor for differentiating forecasting sites is
the local climate, which can be differentiated by using the Kóppen–Geiger System. This
system is already over 100 years old but is still widely used in a wide range of research
disciplines that require climate classification [103]. Seasons should also be taken into
account as they strongly affect weather patterns. The choice of seasons should be linked
to the Kóppen–Geiger System, because some climate regions experience winter, spring,
summer, and fall, while other regions only experience a dry and wet season.

A classification scheme, as mentioned above, could also be the starting point for the
development of a top-down approach for developing solar forecasting solutions, as this is
currently lacking [3]. A classification scheme can help to highlight which techniques work
best for which class of forecasting sites. This creates an opportunity to start with a focus
on the most suited techniques for the forecasting site that is considered since it is known
that no system of forecasting (e.g., deep learning or physical modeling) performs best in all
situations [104].

6.4. Value of Expert Variables, Artificial Intelligence, Preprocessing, and Postprocessing

In solar forecasting, using expert variables, AI techniques, preprocessing, and post-
processing approaches has proven to be significant for enhancing forecast reliability and
accuracy. Expert variables produced from area knowledge and expertise can give sig-
nificant insights and improve the modeling and forecasting processes. These variables
may include atmospheric conditions, cloud properties, solar geometry, and historical data
patterns [105,106].

AI approaches, such as machine learning and deep learning, have shown considerable
promise in identifying complex correlations and patterns in input data, resulting in more
accurate predictions. These approaches may be used at several phases of the forecasting
process, such as data preprocessing, feature extraction, model training, and prediction.
Forecast models can adapt to changing conditions and improve their effectiveness over
time through the use of AI algorithms [107,108].

Preprocessing is crucial for cleaning, filtering, and transforming raw data from various
sources, including Sensor Networks, satellite imaging, NWP models, and sky cameras.
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Preprocessing procedures such as data fusion, quality control, and outlier detection ensure
that the input data are correct, dependable, and appropriate for forecasting. This stage aids
in minimizing noise, correcting biases, and dealing with missing data, ultimately enhancing
forecast quality [109,110].

Postprocessing methods are employed to refine and improve the forecast outputs.
These techniques can include statistical analysis, error correction, bias adjustment, and
ensemble modeling. Postprocessing helps in calibrating the forecasts, reducing systematic
errors, and providing more reliable and consistent predictions. By combining different
forecasting models or utilizing ensemble techniques, the uncertainty in the forecasts can be
quantified, and better decision making can be facilitated [10,111].

Open-source data and benchmarking are crucial in the field of short-term solar fore-
casting. Open datasets provide a standardized platform for comparing different forecasting
methods and evaluating their performance. Applying benchmarking exercises allows
researchers and practitioners to assess the strengths and weaknesses of different tech-
niques, identify best practices, and drive innovation in the field [10,112]. It is important,
however, to exercise caution and not blindly trust AI models. While AI techniques can
significantly enhance forecasting capabilities, they should be used as tools that assist human
experts rather than replacing them entirely. Human expertise and judgment remain critical
in interpreting results, validating forecasts, and making informed decisions in complex
situations [10,112].

Explainable AI (XAI) techniques play a vital role in ensuring the transparency and
interpretability of AI models in solar forecasting. XAI techniques aim to provide insights
into the inner workings of AI models and explain the reasons behind their predictions.
By making the decision-making process of AI algorithms more transparent, XAI enables
users to understand how and why a certain forecast or outcome was produced. This
fosters trust, facilitates model validation, and helps identify potential biases or limita-
tions in the AI system. Incorporating XAI techniques into solar forecasting models can
enable stakeholders to have a better understanding of the underlying factors influenc-
ing solar energy predictions and make more informed decisions based on the forecasted
results [113,114].

Looking to the future, advancements in Sensor Networks, Satellite Imagery, NWP
models, and sky cameras, coupled with ongoing research in AI and data-driven approaches,
hold promising prospects for short-term solar forecasting. Continued improvements in
data quality, model algorithms, and integration techniques are expected to further enhance
the accuracy, reliability, and usability of solar energy forecasts, ultimately contributing to
the more efficient and effective utilization of solar resources [95,115].

6.5. Extreme Weather, Outliers, and AI

The latest IPCC report [116] states that human-induced climate change has influenced
extreme weather events such as heat waves, heavy precipitation, droughts, and tropical
storms and has also increased the change in compound events, including consecutive
heatwaves and droughts. Renewable energy sources are directly affected by the availability
of sufficient water, wind, or solar radiation. This makes the renewable energy supply sus-
ceptible to extreme weather events. Recent events such as long-lasting high temperatures,
droughts, and low wind speeds have already proven to be able to impact energy prices and
the security of energy services [117]. And the increasing likelihood of these weather events
only stresses the need to consider extreme weather events in future energy-forecasting
research, although it is hard to predict how these events will affect energy forecasting and
solar forecasting in particular.

While AI techniques have shown promise in improving solar forecasting, they may not
always be suitable for predicting extreme weather conditions such as lightning. Extreme
weather events introduce outlier events that are challenging for AI methods to detect as
they deviate from normal trends. Lightning occurrences, for instance, are highly dynamic
and unpredictable, making them difficult to capture accurately by using traditional AI ap-



Solar 2024, 4 128

proaches. The complex nature of lightning and its relationship with solar energy production
requires a deep understanding of atmospheric physics and the intricate interplay between
various meteorological variables. Research studies have highlighted the limitations of AI
techniques in capturing and predicting lightning events for solar forecasting. For example,
a recent study by [118] demonstrated that while AI models showed promising results in the
overall solar forecasting accuracy, they struggled to predict lightning-related disruptions
in solar power generation accurately. Similarly, ref. [119] found that AI models trained
on historical weather data had limited capability in capturing the spatiotemporal patterns
associated with lightning occurrences. These findings indicate that specialized models and
techniques, such as physics-based models or data-assimilation methods, may be required to
incorporate lightning-related information into solar forecasting systems effectively. There-
fore, while AI techniques have demonstrated advancements in solar forecasting, they may
face limitations in accurately predicting and accounting for extreme weather conditions
like lightning, highlighting the need for further research and development in this area.

7. Conclusions

Solar energy has become an essential element in the global shift toward renewable
energy sources. Accurate solar forecasting is crucial to effectively integrate solar power into
the energy grid, optimizing energy management and reducing operational costs. However,
understanding the various techniques employed in this field remains challenging due to
the diversity of input data sources and limited explicit mentions in the available literature.

In this comprehensive review, we conducted an in-depth analysis of commonly used
techniques and data sources in solar forecasting. Through an extensive examination of
relevant studies, we identified key methodologies for predicting solar irradiance and the
PV power output. We explored various aspects, including time horizons, time resolution,
methodologies, data sources, and evaluation metrics employed in this field of research,
emphasizing their significance in decision making and resource optimization within the
renewable energy sector.

Our findings revealed that solar-energy-forecasting research utilizes a wide range of
techniques and metrics to assess the accuracy and performance of models. AI techniques,
including deep learning architectures, supervised learning models, regression models,
support vector regression, ensemble learning, and physical-based techniques, have been
extensively employed in this field [33,44,70]. These approaches have been implemented in
numerous countries, such as the United Kingdom, the Netherlands, the United States of
America, Spain, China, and others [16,19,36].

Specifically, deep learning architectures like Recurrent Neural Networks and Long
Short-Term Memory (LSTM) Neural Networks have shown promising results in short-term
solar energy forecasting [33]. The incorporation of satellite data, sky-camera imagery,
and Numerical Weather Prediction has been explored to enhance the accuracy of solar
radiation predictions [16,20]. Clear-sky irradiation models, such as the European Solar
Radiation Atlas (ESRA), have been combined with other algorithms to improve solar power
nowcasting [26]. Additionally, hybrid approaches that combine satellite data with Artificial
Intelligence methods or time series models have been proposed to achieve more accurate
solar power forecasts [24,67].

However, it is important to note that the accuracy of solar energy forecasting varies
across different countries due to the influence of models, methods, and dominant weather
patterns specific to each region. The unique weather characteristics of each country result
in varying accuracy for different forecast horizons [36]. For example, in the UK, with its
cloud-dominant weather, a 10 min solar energy forecast achieves an accuracy with an RMSE
of 115.6 W/m2 [33]. The Netherlands, characterized by its cloudy weather, demonstrates
a forecasting skill of 19.9% with an average of 160 sunny days throughout the year [36].
Spain, known for its abundant sunshine, has an RMSE of 126.7 W/m2 and a forecasting skill
of 23.3% [44]. On the other hand, China, with its diverse weather patterns, has forecasting
intervals of 60 min and an RMSE of 134.9 W/m2 [16]. These variations underscore the
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need for continuous research and development efforts to improve the forecasting accuracy
further and tailor approaches to specific regional conditions.

Furthermore, the reviewed studies on solar energy forecasting encompass a wide
range of time horizons. The longest time horizons range from 24 to 21 h, enabling pre-
dictions of mesoscale surface solar irradiation distribution and the impact of large-scale
clouds [62,84]. Short-term forecasting, on the other hand, occurs within a time horizon of
1 min to about 1 h, utilizing diverse techniques such as localized forecasting, nowcasting
techniques, and probabilistic forecasts [71,76,81]. Other methods, including prediction
based on near-real-time satellite data, ensemble forecasting, and deep learning models,
have also been explored [65,82,88,89]. Additionally, studies have focused on cloudiness
forecasting, comparative studies of LSTM Neural Networks, ultra-short-term PV power
forecasting, and hybrid approaches [67,72,79].

Through the identification of current research trends within the field of solar forecast-
ing, a number of shortcomings and problems were also identified. The main problem that
was identified is the difficulty in comparing different methods due to the huge variety of
techniques and data that are used for solar forecasting. Therefore, the development of a
benchmarking framework or top-down approach is recommended. There is also a lack
of standardized datasets. They are often not readily available, hindering research. There
is, however, a multitude of data sources available that can be used, but they need to be
combined and aligned, which is often a time-consuming process. For a better compari-
son of methods, but also to better specify datasets and a benchmarking framework, solar
forecasting sites should be classified based on local climate and weather patterns.

And while AI, especially combined with preprocessing and postprocessing, has proven
to significantly improve forecasting, it is important to not blindly trust AI. The use of
Explainable AI can shine a light on the inner workings of these techniques, allowing us
to better identify biases and limitations, such as the handling of outlier weather events.
AI should be used as a tool that assists experts, not replace them. Human expertise
remains vital in interpreting results and for the creation of expert variables that can be used
for forecasting.

In conclusion, this review provides valuable insights into the landscape of solar
forecasting research, shedding light on the diverse techniques and data sources applied
in this dynamic field. By understanding both the strengths and limitations of existing
methodologies, researchers and practitioners are empowered to make informed decisions
related to solar energy integration, management, and cost optimization. These decisions
play a pivotal role in driving the successful transition toward a renewable energy future.

However, in light of the presented findings, a crucial question emerges: how can
we further refine the accuracy and reliability of solar energy forecasting to align with the
evolving requirements of renewable energy integration and management? This inquiry
encourages exploration and dialogue on potential pathways for enhancing forecasting
techniques. This includes the incorporation of emerging data sources, the refinement of
evaluation metrics, and the tailored addressing of challenges unique to various regions and
weather conditions.

Effectively addressing this question calls for sustained efforts in research and develop-
ment, the establishment of benchmarks that set high standards for comparison, and the
availability of comprehensive datasets. This concerted approach is essential for unlocking
the full potential of solar energy forecasting [16,33,86].
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MAPE Mean Absolute Percentage Error
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GHI Global horizontal irradiance
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STE Solar thermal electric
NWP Numerical Weather Prediction
MOS Model Output Statistics
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ANN Artificial Neural Network
FLC Fuzzy Logic Control
GAN General Adversarial Network
CDF Cumulative Distribution Function
TDI Temporal Distortion Index
DTW Dynamic Time Warping
TDM Temporal Distortion Mix
CMV Cloud Motion Vector
ECMWF European Centre for Medium-Range Weather Forecasts
NOAA National Oceanic and Atmospheric Administration
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WRF Weather Research and Forecasting model
LSTM Long Short-Term Memory
CNN Convolutional Neural Networks
XAI Explainable AI
ER Economic Revenue
IEA International Energy Agency
BSRN Baseline Surface Radiation Network
SURFRAD Surface Radiation Budget Network
KNMI Royal Netherlands Meteorological Institute
RVO Netherlands Enterprise Agency
BD Big data
TL Transfer learning
OP Optimization
AI Artificial Intelligence
DM Data models
SM Solid Modeling
SVM Support vector machine
FE Feature extraction
AML Adversarial Machine learning
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