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Abstract: This research develops and validates new decomposition models for hourly direct Normal
Irradiance (DNI) estimations for Southern African data. Localised models were developed using
data collected from the Southern African Universities Radiometric Network (SAURAN). Clustered
areas within Southern Africa were identified, and the developed cluster decomposition models
highlighted the potential advantages of grouping data based on shared geographical and climatic
attributes. This clustering approach could enhance decomposition model performance, particularly
when local data are limited or when data are available from multiple nearby stations. Further, a
regional Southern African decomposition model, which encompasses a wide spectrum of climatic
regions and geographic locations, exhibited notable improvements over the baseline models despite
occasional overestimation or underestimation. The results demonstrated improved DNI estimation
accuracy compared to the baseline models across all testing and validation datasets. These outcomes
suggest that utilising a localised model can significantly enhance DNI estimations for Southern
Africa and potentially for developing similar models in diverse geographic regions worldwide. The
overall metrics affirm the substantial advancement achieved with the regional model as an accurate
decomposition model representing Southern Africa. Two stations were used as a validation study, as
an application example where no localised model was available, and the cluster and regional models
both outperformed the comparative decomposition models. This study focused on validating the
model for hourly DNI in Southern Africa within a range of Kt-intervals from 0.175 to 0.875, and the
range could be expanded and validated for future studies. Implementing accurate decomposition
models in developing countries can accelerate the adoption of renewable energy sources, diminishing
reliance on coal and fossil fuels.

Keywords: decomposition model; global horizontal irradiance; direct normal irradiance; solar
radiation model

1. Introduction

Photovoltaic (PV) systems require accurate modelling and monitoring to ensure their
profitability. The amount of irradiance at the site, the global plane-of-array irradiance
(GPI), is the foundation of designing, modelling and monitoring PV systems. The GPI
comprises the plane-of-array’s (POA) direct beam, ground and diffuse irradiance com-
ponents. GPI is used to model and monitor PV systems, as this shows the amount of
generated solar power, and, therefore, it is one of the most important contributing factors
to designing a PV system. The global horizontal irradiance (GHI), direct normal irradiance
(DNI), and diffuse horizontal irradiance (DHI) components are required to calculate these
irradiance components.

Irradiance components with a transposition model calculate GPI (GPOA) as

GPOA = GBC + GDC + GRC. (1)
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GBC is the direct beam irradiance, GRC is the ground-reflected irradiance, and GDC
is the diffuse irradiance component in the POA on the collector. The GHI, DNI, and DHI
components are required to calculate GBC, GDC and GRC. The sum of the DNI projected
onto the horizontal surface using the cosine of the solar zenith angle θZ and DHI gives the
GHI, as shown in Figure 1 [1]:

GHI = DNI · cos θZ + DHI. (2)

Figure 1. The irradiance relationships between GHI, DNI, DHI, and θZ.

The units of GHI, DHI, and DNI are W/m2.
Most ground-based stations at least have measurements of GHI. Other measurements

include radiometric data such as DNI, DHI, and ultra-violet and meteorologic data such
as the temperature, pressure, rainfall, relative humidity, wind direction and wind speed.
Pyranometers measure DHI and GHI, and the pyrheliometer measures DNI.

GHI is measured with a hemispherical view and is mounted horizontally. Similar in
setup to other pyranometers, the DHI pyranometer includes the additional feature of being
shaded from direct sunlight. The pyrheliometer has a narrow view that only measures the
beam directly from the Sun and is usually a Sun tracker for increased accuracy [2]. The
irradiance measurements are converted to W/m2 and logged accordingly.

Calibrating the equipment to the ISO 9060:2018 standard [3] is necessary, and it is
advisable to undergo recalibration every two years to ensure the reliability of measurements.
The maintenance required is to clean the domes and regularly check and replace the
desiccant, which keeps the instruments dry internally.

GHI, DNI, and DHI are interdependent; therefore, having only two irradiance measure-
ments is sufficient to estimate the third using the decomposition models (also sometimes
called separation models) [4]. If only the GHI is available, the DNI and DHI also are esti-
mated using the decomposition models. The transposition models calculate GPI using the
irradiance components. Therefore, GHI, DHI and DNI correlations are usually empirically
expressed as a decomposition model [5].

Indices are relationships between different irradiance components. Decomposition
and transposition models utilise these relationships.

The definition of the direct beam transmittance Kn and diffuse transmittance Kd is

Kn =
DNI
G0n

, (3)

Kd =
DHI
GHI

. (4)

Ref. [6] defines the Kt as

Kt =
GHI

G0n cos θZ
. (5)

All K-values (Kt, Kn, and Kd) are unitless.
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The extraterrestrial irradiance on a normal surface G0n depends on the day of the year

G0n = (Solar Constant)
(

1 + 0.033 · cos
(

360 · n
365

))
. (6)

The solar constant is usually 1367 W/m2.
Determining the horizontal extraterrestrial irradiance G0h involves multiplying it by

the cosine of θZ as expressed in Equation (7):

G0h = G0n · cos θZ. (7)

Multipredictor decomposition models can improve accuracy compared to single pre-
dictor models [7]. However, the disadvantage is that multiple measurements must be
available, which is not always the case for developing countries or brand-new sites of
PV installations.

Refs. [8,9] developed a logistical model to estimate solar diffuse radiation [8,9].
Refs. [10–12] have proposed machine-learning-based models to predict solar diffusion
and direct components [10–12]. Ref. [13] proposed a satellite-based decomposition model
as an alternative to ground-based measurements [13,14] proposed statistical models for
estimating diffuse radiation [14].

Decomposition models have been developed by assessing previous models and im-
proving the accuracy of these estimations. As more data and measurements become
available, researchers have the opportunity to develop models for different climates and
temporal resolutions. Most models predominantly use Kt. Some of the variables used in
the decomposition models are the solar altitude angle β and dew point temperature Td.
Using Kt as the main predictor in decomposition models is popular because of its simplicity
and applicability [7].

Ref. [15] developed a relationship between the Kt and Kd [15,16] extended the Kt-Kd
relationship to latitudes from 31 to 42◦ North [16]. Ref. [17] established a GHI and DNI
relationship for a Mediterranean site to estimate Kn using Kt [17].

The Direct Insolation Simulation Code (DISC) was developed by [18]. Refs. [18,19]
developed the Dirint model with the hopes of increasing the performance of the DISC
model [19]. The Dirint model of [19] has shown superior performance when estimating the
DNI [20].

In Korea, ref. [21] developed a model using six Korean locations. The authors of [4,21]
developed a new model using [18]’s DISC model by refitting the coefficients [4]. Ref. [22]
developed a DNI estimation model using the solar elevation angle for Norway based on
hourly GHI and DHI records [22].

Ref. [23] derived Kd for Hong Kong [23]. Ref. [24] determined Kd using two models
with Kt and β [24].

The main limitations of decomposition models are that some have a limited climate
scope, and the dataset’s temporal resolution affects the irradiance estimation accuracy. A
decomposition model in a tropical climate may be unsuitable for a desert climate and vice
versa. Intra-hourly-based models perform differently from daily or monthly models, which
is why many available decomposition models exist.

The accuracy of decomposition models has been evaluated in several regions, such as
Belgium [5], China [25], the USA [20], and North Africa [26].

Ref. [27] provided an extensive study of 140 available decomposition models. The
authors state that the predicted DNI’s accuracy highly depends on the decomposition
model. Validation studies exist but are limited to a few models and test stations, i.e., biased
to a specific location or climate [27]. Research indicates that no decomposition model has
been developed and validated for South Africa.

Ref. [28] state that, in general, decomposition models tend to overestimate DHI and
underestimate DNI, and typically, models tend to underestimate DHI in overcast periods
and overestimate during clear-sky periods [20].
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Higher resolution data include higher Kt values, resulting in extreme overestimations
of DNI. These hourly DNI estimates have higher accuracy than 1-min DNI estimates. Sub-
hourly estimations would be highly beneficial for the real-time monitoring and forecasting
of solar power [27].

Figure 2 visualises the testing and validation countries of common decomposition models
in green for models such as [15–17,24], DISC ([18]), and Dirint ([4,19,21–23]) [4,15–19,21–24].

Figure 2. Validation sites of discussed decomposition models.

The decomposition model in South America was developed in Brazil in [29] and in
Argentina and Brazil in [30]. Northern African models include Nigeria [31], Algeria [32],
and Morocco [33].

Ref. [34] developed a model for Australia and observed that the model only slightly
outperformed the Dirint model [34]. The BRL model developed by [9] included a method
to construct multiple variable logistic models for the diffuse solar fraction, which includes
Mozambique [9]. Figure 2 represents these discussed models [9,29–34] in red.

South African research on decomposition models includes the following: ref. [35]
published the only Southern African-based study on the relationship between radiation
and Kt [35]. However, this relationship is with photosynthetically active radiation related
to agricultural practices, not PV systems. Clear-sky model assessments and validation
studies have been performed by [36,37] for Southern African countries. Clear-sky models
simplify atmospheric attenuation to estimate solar irradiance under clear-sky conditions,
do not represent decomposition models, and do not include these studies as comparison
models, as they are irrelevant to the research.

Ref. [38]’s thesis assessed decomposition and transposition models in South Africa
and showed that the models tend to overestimate the DHI but underestimate the DNI [38].
Furthermore, the DISC and Dirint decomposition models showed the most accurate esti-
mations of the DNI and DHI for South African climatic conditions [39].

As discussed, decomposition models are empirical relationships between GHI, DHI
and DNI. All three irradiance components are required to estimate GPI. Decomposition
models are useful as they reduce the measurement equipment by decomposing one irradi-
ance component into two others; for example, they use GHI to estimate DHI and DNI.

Most decomposition models are not universally applicable and localised to a specific
climate, and the temporal resolution is not always transferable. There has not been extensive
literature published representing the Southern African region in decomposition models,
which this research article will attempt to address.

2. Model Development

The methodology to develop a novel decomposition model is based on selected data
from the automated quality control (QC) procedure proposed in [40] and addresses three
geographical models:

1. A localised decomposition model, which is site-specific;
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2. A clustered decomposition model, which encapsulates several sites to group an area
based on their geographical location;

3. A regional (Southern African) model, which encapsulates the data from the SAURAN
network for developing a model specific to Southern Africa.

Figure 3 details an overview of the decomposition model development, which is
discussed in this section. The first part is ensuring the data are quality-controlled, followed
by the development of the decomposition model. The accuracy of the models are rigorously
scrutinised to determine if the proposed models outperform the baseline models.

Figure 3. Decomposition model development.

2.1. SAURAN Database

The Southern African Universities Radiometric Network (SAURAN) is a network that
includes multiple stations across Southern Africa, collecting meteorological data such as irradi-
ance and wind, among others [41]. Table 1 summarises the SAURAN stations’ corresponding
geographical information, such as latitude, longitude, and elevation above sea level.

Table 1. SAURAN station summary [40,41].

Name (Location)
Coordinates

Elevation (m)(Lat (◦S),
Long (◦E))

CSIR CSIR Energy Centre (Pretoria, South Africa) 25.747, 28.279 1400
CUT Central University of Technology (Bloemfontein, South Africa) 29.121, 26.216 1397
FRH University of Fort Hare (Alice, South Africa) 32.785, 26.845 540
GRT Graaff-Reinet (Graaff-Reinet, South Africa) 32.485, 24.586 660
HLO Mariendal (Mariendal, South Africa) 33.854, 18.824 178
ILA Ilanga CSP Plant (Upington, South Africa) 28.490, 21.520 884
KZH University of KwaZulu-Natal Howard College (Durban, South Africa) 29.871, 30.977 150
KZW University of KwaZulu-Natal Westville (Durban, South Africa) 29.817, 30.945 200
MIN CRSES Mintek (Johannesburg, South Africa) 26.089, 27.978 1521
NMU Nelson Mandela University (Gqeberha, South Africa) 34.009, 25.665 35
NUST Namibian University of Science and Technology (Windhoek, Namibia) 22.565, 17.075 1683
RVD Richtersveld (Alexander Bay, South Africa) 28.561, 16.761 141
SUN Stellenbosch University (Stellenbosch, South Africa) 33.935, 18.867 119
UBG Gaborone (Gaborone, Botswana) 24.661, 25.934 1014
UFS University of Free State (Bloemfontein, South Africa) 29.111, 26.185 1491
UNV Venda (Vuwani, South Africa) 23.131, 30.424 628
UNZ University of Zululand (KwaDlangezwa, South Africa) 28.853, 31.852 90
UPR University of Pretoria (Pretoria, South Africa) 25.753, 28.229 1410
VAN Vanrhynsdorp (Vanrhynsdorp, South Africa) 31.617, 18.738 130
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Table 2 summarises the SAURAN database and dataset sizes, followed by Table 3
which shows the subsequent data points available for model development. Further, the
data points assessed are Kt between 0.175 and 0.875.

Table 2. SAURAN database and dataset sizes from [41].

Station
Dataset Size

Start Date End Date
Before QC After QC

CSIR 46,434 26,539 11 March 2017 31 October 2022
CUT 28,077 14,619 24 October 2017 31 October 2022
FRH 40,895 22,233 7 February 2017 24 February 2022
GRT 18,541 9774 27 November 2013 24 January 2016
HLO 21,532 11,728 8 October 2015 27 October 2020
ILA 8832 4676 13 October 2021 31 October 2022
KZH 52,323 38,898 7 December 2015 07 August 2022
KZW 20,291 10,756 7 December 2015 12 December 2018
MIN 8185 4423 28 October 2021 31 October 2022
MRB 4201 2462 17 March 2017 22 October 2019
NMU 39,969 23,130 10 December 2015 30 September 2022
NUST 52,004 27,401 26 July 2016 31 October 2022
PMB 9773 5415 13 July 2021 31 October 2022
RVD 63,716 34,457 27 March 2014 28 July 2021
SALT 14,151 9908 21 July 2017 22 December 2020
STA 40,256 21,751 7 December 2015 19 April 2021
SUN 87,720 47,733 24 May 2010 31 October 2022
SUT 1715 902 8 February 2017 20 April 2017
UBG 38,917 20,646 26 November 2014 6 November 2020
UFS 31,665 17,152 16 January 2014 30 August 2017
UNV 59,100 33,144 23 April 2015 31 October 2022
UNZ 56,399 30,373 11 July 2014 31 October 2022
UPR 78,792 42,128 19 September 2013 31 October 2022
VAN 24,701 13,234 26 August 2016 10 July 2019

The data points are hourly measurements of the GHI, DNI, and DHI. The split of the
train–validation–test datasets is 50:25:25, with the exceptions of two datasets, ILA and MIN.
The ILA and MIN have a 0:0:100 data split and are two unknown datasets as part of the
test study.

Table 3 also shows each station’s mean GHI, DNI, and DHI, determined after applying
the QC procedure.

Table 3. Model development stations indicating the mean GHI, DNI, and GHI and sizes of training,
validation, and testing sets.

Station
Mean 1 Dataset 2

Cluster AllocationGHI DNI DHI
Total Train Validation Test[W/m2] [W/m2] [W/m2]

CSIR 575 599 167 14,991 7495 3748 3748 2
CUT 609 639 159 9161 4580 2290 2291 2
FRH 544 583 151 12,224 6112 3056 3056 4
GRT 573 624 151 5788 2894 1447 1447 4
HLO 550 608 138 7061 3530 1765 1766 1
ILA 589 680 131 2709 0 0 2709 1
KZH 533 517 179 8782 4391 2195 2196 3
KZW 531 511 184 5945 2972 1486 1487 3
NMU 556 545 165 10,562 5281 2640 2641 4
NUST 614 670 149 15,901 7950 3975 3976 1
MIN 564 573 161 2761 0 0 2761 2
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Table 3. Cont.

Station
Mean 1 Dataset 2

Cluster AllocationGHI DNI DHI
Total Train Validation Test[W/m2] [W/m2] [W/m2]

RVD 630 729 125 19,624 9812 4906 4906 1
SUN 556 645 133 28,508 14,254 7127 7127 1
UBG 591 602 158 12,137 6068 3034 3035 2
UFS 567 654 137 10,257 5128 2564 2565 2
UNV 579 524 197 15,874 7937 3968 3969 2
UNZ 530 528 176 10,055 5027 2514 2514 3
UPR 568 609 163 28,089 14,044 7022 7023 2
VAN 597 683 126 7860 3930 1965 1965 1

1 Daylight average, 2 Dataset size after quality control as in [40] and 0.175 ≤ Kt ≤ 0.875.

2.2. Comparison Metrics

The comparison metrics are the root mean square error (RMSE), mean absolute error
(MAE), and mean bias error (MBE).

RMSE =

√√√√ N

∑
i=1

(xi − x̂i)2

n
,

MAE =
1
n

n

∑
i=1

|xi − x̂i|,

MBE =
1
n

n

∑
i=1

(xi − x̂i),

(8)

where xi is the measured value and x̂i is the predicted value. A low RMSE and MAE
indicate a good model, whereas an MBE should be closer to zero. RMSE indicates the
concentration of data around the line of best fit. Therefore, a smaller RMSE is indicative of
a more accurate model.

The Pearson correlation coefficient r indicates the correlation between data:

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2

. (9)

In Equation (9), xi and yi represent the individual points with index i, and x̄ and ȳ
represent the mean of the x and y sample set. An r closer to -1 has a negative correlation,
meaning if one variable increases, the other decreases. In contrast, if r is closer to 1, it has a
positive correlation, meaning if one variable increases, the other would also [42].

Statistical indicators used for the comparison metrics are the MBE, RMSE, and MAE,
which are all expressed as a percentage of the mean measured DNI [27] and R2. Further
comparison metrics are two MAE Kt-intervals: Kt < 0.60 and Kt ≥ 0.60.

The MBE indicates whether a model over- or underestimates the DNI, and the RMSE
indicates the deviation of the errors. A significant difference between MAE and RMSE
indicates a larger variance in the data. Lower RMSE and MAE are ideal, whereas an MBE
closer to zero is optimal. The MAE is an unbiased estimator and also evaluates the two
Kt intervals. Lower and higher Kt indicate overcast and clear-sky conditions, respectively.
Therefore, the two Kt intervals assess the models under varying weather conditions.

2.3. Regression and Fitting

The relationship between two variables is quantified using statistical methods like
regression. Regression techniques can be linear, multi-linear and non-linear.
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The definition of a linear relationship is

y = b0 + b1x, (10)

where y is the response, x is the regressor, b0 is the intercept, and b0 is the slope. A regression
analysis quantifies the strength of a relationship between y and x [42].

The least squares method estimates b0 and b1 so that the sum of the squares of the
residuals is at a minimum. The residual sum of squares is denoted as SSE and is the sum of
squares of the errors about the regression line. Thus, the minimisation of

SSE =
n

∑
i=1

(yi − ŷi)
2, (11)

where ŷ denotes the predicted or fitted value.
The coefficient of determination, R2, indicates how good the fit of a model is and is a

number between zero and one.

R2 = 1 − ∑(yi − ŷi)
2

(yi − ȳi)
2 . (12)

A higher R2 value indicates that the model explains the variation in the response
variable around its mean, and the regression model fits the observation better [42].

Polynomial regression is the modelling of a dependent, y, as an nth-degree polynomial
of x

y = bo + b1x + b2x2 + · · ·+ brx2. (13)

Exponential regression is where the best fit of an equation is an exponential
function, like

y = a + bcx, (14)

or
y = a + becx. (15)

Multi-linear regression has multiple variables, which is the outcome of a response variable

y = β0 + b1x1i + b2x2i + · · ·+ bkxki. (16)

2.4. Software Development Tools

The model development utilises a combination of data science applications and mod-
elling. The primary tool is the open-source language Python with the anaconda inter-
face [43], and various available libraries [44–46].

2.5. Baseline Models

Three comparative models are used as a baseline to compare the new models. Based on
the literature, the DISC and Dirint models performed well for Southern African climates [39,47].

The Dirint [19] and Lee [4] models are also used for comparison because their founda-
tion is similar to the DISC model [18].

Ref. [18]’s DISC quasi-physical approach has three assumptions [4]:

1. The relative air mass (AM) is the dominant parameter affecting the relationship
between Kn and Kt;

2. The physical model used to calculate Kn will provide a physically based reference
from which the changes in Kn can be calculated (see Equation (20) below);

3. Seasonal, annual and climate variations in the relationship between Kn and Kt are
fully accounted for by parametric functions in Kt that relate ∆Kn to AM, cloud cover,
and PW vapour.
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AM is defined as [48]:

AM =
[
cos θZ + 0.5057 · (96.080 − θZ)

−1.634
]−1

. (17)

The absolute AM (AMa) is the pressurised normalisation of AM, expressed as

AMa = AM
(

P
Po

)
, (18)

where P refers to the atmospheric pressure at the test site and Po is the atmospheric pressure
at sea level.

The modelled DNI is determined using Equation (3):

DNI = G0n · Kn, (19)

where
Kn = Knc − ∆Kn, (20)

and
∆Kn = aDISC + bDISCecDISC·AM. (21)

The clear-sky limit Knc is a polynomial in AM:

Knc = 0.866 − 0.122AM + 0.0121AM2 − 0.00653AM3 + 0.000014AM4. (22)

Two Kt intervals determine the coefficients aDISC, bDISC and cDISC: Kt ≤ 0.60 and Kt > 0.60.
For Kt ≤ 0.60

aDISC = 0.512 − 1.56Kt + 2.286K2
t − 2.222K3

t ,

bDISC = 0.370 + 0.962K3
t ,

cDISC = −0.280 + 0.932Kt − 2.048K2
t .

(23)

For Kt > 0.60

aDISC = −5.743 + 21.77Kt − 27.49K2
t + 11.56K3

t ,

bDISC = 41.4 − 118.5Kt + 66.05K2
t + 31.90K3

t ,

cDISC = −47.01 + 184.2Kt − 222.0K2
t + 73.81K3

t .

(24)

Ref. [18]’s model possesses a different functional form because the quasi-physical
approach is applied; therefore, it partially reflects the physics involved in the atmospheric
transmission of solar radiation [4]. The aDISC, bDISC and cDISC parameters were fitted based
on solar radiation data from Atlanta, Georgia, USA, 1981 [18]. Ref. [18] adopted the Bird
clear-sky model for Knc (see Equation (22)). The parameters aDISC, bDISC and cDISC, as described
in Equations (23) and (24), were then fitted based on the dataset.

The DISC model, termed ‘quasi-physical’, combines a clear-sky model with exper-
imental fits for other sky conditions. The model is a clear-sky irradiance attenuated by
a function of Kt. The authors of [18] derived the empirical regressions from 12 years of
recorded radiation data at 70 stations [5,18].

The Dirint model is based on the DISC model and was developed by [19]. The goal
was to improve the accuracy of the DISC model by [18].

The Dirint model uses a clearness index variation parameter K′
t:

K′
t =

Kt

1.031e−1.4/(0.9+9.4/AM) + 0.1
. (25)
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Furthermore, a stability index parameter ∆K′
t,

∆K′
t = 0.5

(
|K′

t(i) − K′
t(i+1)|+ |K′

t(i) − K′
t(i−1)|

)
, (26)

considers the previous (i − 1), current (i) and next hourly (i + 1) record. When the preceding
or hourly record is missing, ∆K′

t is

∆K′
t = |Kt(i) − Kt(i±1)|. (27)

A low ∆K′
t is a stable condition, whereas a high ∆K′

t characterises unstable conditions,
which allows the distinction between hazy and partly cloudy conditions. The Td is an
adequate atmospheric PW estimator [19]. The Dirint model’s atmospheric PW (W) is
estimated using

W = exp(0.07 · Td − 0.075). (28)

The Dirint is a four-dimension conditional model, with the θZ, Kt, ∆K′
t and W. Based

on the four-dimensional model, the calculation of hourly DNI is

DNI =
I0n · k′be−1.4/(0.9+9.4/AM)

0.87291
. (29)

where
k′b = 0 for K′

t < 0.2,

k′b = aDirintK′
t + bDirint.

(30)

Coefficients aDirint and bDirint are from a complex lookup table.
Ref. [4] created a new model for Korea with the same format as [18]’s DISC model.

aLee = 0.342 − 0.3782Kt,

bLee = 0.5329 + 0.2676Kt − 0.0216k2
t + 0.1584K3

t .
(31)

For Kt ≤ 0.5

cLee = −0.2117 − 0.0513Kt + 1.2976K2
t − 3.3222K3

t (32)

or Kt > 0.5

cLee = 0.7221 − 10.2801Kt + 30.3285K2
t − 27.9766K3

t . (33)

The evaluation consists of comparing the localised, clustered and regional models
against the three baseline models: DISC, Dirint and Lee. The DISC and Dirint models were
selected based on their performance in estimating DNI for Southern African climates. The
Lee and Dirint models have foundational similarities to the DISC model. These models
consider whether the newly developed decomposition model improves the accuracy of
hourly DNI estimations for Southern Africa. The accuracy evaluation uses the comparison
metrics discussed in the next section.

2.6. Decomposition Model Development Methodology

The methodology builds on the DISC model. The DISC model stands out as one of the
better-performing models for estimating DNI for South Africa [39]. Its simplicity is evident
in its lack of a need for a complex four-dimensional lookup table, unlike the Dirint model.

The original DISC model uses Equation (21), an exponential function. However, the
regression model for an exponential function, as discussed in Section 2.3, showed difficulty
in finding optimal a, b and c coefficients in all cases. Instead, a second-order polynomial
function of AM

∆Kn = a + b · AM + c · AM2 (34)
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is a suitable substitute with similar regression results.
The training set then fits a, b and c for intervals Kt ≤ 0.60 and Kt > 0.60:

a = a0 + a1Kt + a2K2
t + a3K3

t ,

b = b0 + b1Kt + b2K2
t + b3K3

t ,

c = c0 + c1Kt + c2K2
t + c3K3

t ,

(35)

and the validation and testing sets evaluate the model’s accuracy.
Figure 3 summarises the development for each decomposition model in this study,

where each model undergoes the following initial processing steps:

1. Empirical formulae estimate θZ, AM, pressure, I0n, Kt, and Kn. From this, the assess-
ment of available models aids in developing a new model.

2. Data are split into intervals of 0.05 Kt, starting from 0.175 to 0.875.
3. ∆Kn is then modelled as Equation (34);
4. The interval or intervals are then fitted against the function to determine Equation (34)

to determine the a, b and c coefficients using a least squares regression analysis.
5. From the Kt-interval function, the a0-a3, b0-b3 and c0-c3 coefficients are fitted to a

polynomial of Equation (35) with regards to Kt.
6. These equations can be used to determine ∆Kn and Kn, which, in turn, calculate the

DNI (see Equations (19) and (20)).

For each SAURAN station, a localised decomposition model is developed. A clustered
decomposition model describes an area with similar irradiance patterns using the clustered
areas discussed in [40]. Ref. [49] first presented a two-cluster correlation map using the
SAURAN database [49], and, by using this approach, this study formulated four clusters
instead of two in Southern Africa, as shown in Figure 4a.

(a) (b)

Figure 4. Clusters within the Southern African context. (a) SAURAN [41]; (b) GHI across South
Africa [50].

Figure 4a shows the clusters’ geographical location, and Figure 4b shows the pene-
tration levels of GHI. Table 4 shows the different clusters’ training sets’ mean GHI, DNI,
and DHI.

Cluster 1 receives the most GHI and DNI, and Cluster 3 receives the least, as evident
from Figure 4b. The different climates are also evident in these clusters: Cluster 3 is more
humid and receives, on average, more DHI than Cluster 1.

Figure 5 shows how the cluster data are combined. Each cluster and the regional
(Southern African) model are combined with even distributions of datasets to avoid intro-
ducing a bias, as some stations are over-represented in the original dataset. Some stations,
such as the SUN, UPR and RVD stations, have considerably more data available as they are
either older stations or have not been closed down.
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Table 4. Mean cluster irradiances.

Mean 4

GHI DNI DHI
[W/m2] [W/m2] [W/m2]

Cluster 1 592 669 135
Cluster 2 583 604 165
Cluster 3 534 523 178
Cluster 4 557 579 158

4 Mean values of training set.

Figure 5. Distribution of data within clusters.

The different stations have varying climates, and therefore, a larger representation of
one station will result in a biased model towards that station. The advantage of the even
distribution is that every station is sufficiently represented and will not cause a model bias,
but this reduces the amount of available data.

Cluster 2’s stations have higher elevation and summer humidity due to its warm,
rainy summers and dry, cold winters. The expected annual irradiance levels are lower, as
seen in Figure 4b. The stations have higher humidity because of their location and higher
DHI levels.

The two stations in Cluster 2, UPR and CSIR, are expected to have more diffuse
particles due to the higher air pollution levels and, therefore, higher DHI levels. Cluster 2
has a large bias of the data from Pretoria, South Africa, from the CSIR and UPR datasets.

Cluster 4 has lower annual irradiance levels, as seen in Figure 4b, and FRH and NMU
are closer to the coastline, whereas GRT is inland.

3. Development of New Decomposition Models

This section discusses the newly developed a, b and c coefficients of Equation (34).
The section consists of three subsections:

1. The localised decomposition models, developed using the training dataset of the
SAURAN station;

2. The clustered decomposition models, which are modelled on the training data of all
the stations within the cluster, as discussed in Figure 5;

3. The regional model is modelled on all the stations’ training data (Table 3).

3.1. Localised Decomposition Models

The localised decomposition model equations for the a, b and c coefficients are pre-
sented in Appendix A.

3.2. Cluster Decomposition Models

Figures 6–9 show the different corresponding clusters’ model coefficients.
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(a)

(b)

(c)

Figure 6. Cluster 1 coefficients in ∆Kn = a + b · AM + c · AM2. (a) a coefficient; (b) b coefficient;
(c) c coefficient.

(a)

Figure 7. Cont.
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(b)

(c)

Figure 7. Cluster 2 coefficients in ∆Kn = a + b · AM + c · AM2. (a) a coefficient; (b) b coefficient;
(c) c coefficient.

(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. Cluster 3 coefficients in ∆Kn = a + b · AM + c · AM2. (a) a coefficient; (b) b coefficient;
(c) c coefficient.

(a)

(b)

(c)

Figure 9. Cluster 4 coefficients in ∆Kn = a + b · AM + c · AM2. (a) a coefficient; (b) b coefficient;
(c) c coefficient.
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3.2.1. Cluster 1

Cluster 1 comprises the HLO, NUST, RVD, SUN and VAN datasets, as shown in
Figures 4a and 5.

Figure 6 shows the Cluster 1 and five stations’ a, b and c coefficients. The discussion of
the different stations is in Appendix A under Appendices A.5 (HLO), A.11 (NUST), A.12
(RVD), A.13 (SUN) and A.19 (VAN).

The RVD model is the only model showing difficulty fitting the coefficients with Kt.
Table 3 indicates that the RVD station has the highest mean DNI and GHI, with the lowest
DHI measurements, compared to the rest of Cluster 1’s stations.

The coefficients for Cluster 1 are

a =

{
2.4134 − 15.428Kt + 50.7433K2

t − 50.3864K3
t for Kt < 0.60,

18.4363 − 61.7241Kt + 67.5365K2
t − 23.9963K3

t for Kt ≥ 0.60

b =

{
−1.4538 + 13.4628Kt − 43.4278K2

t + 40.7081K3
t for Kt < 0.60,

−7.7071 + 23.0993Kt − 20.5561K2
t + 4.7883K3

t for Kt ≥ 0.60

c =

{
0.2232 − 2.1593Kt + 6.6964K2

t − 6.0805K3
t for Kt < 0.60,

0.7064 − 1.9679Kt + 1.5214K2
t − 0.2153K3

t for Kt ≥ 0.60

(36)

3.2.2. Cluster 2

Cluster 2 consists of the CSIR, CUT, UBG, UFS, UPR, and UNV datasets. Figure 7
shows the Cluster 2 and six stations’ a, b and c coefficients.

The discussion of the different stations are in Appendix A under Appendices A.1
(CSIR), A.2 (CUT), A.14 (UBG), A.15 (UFS), A.18 (UPR) and A.16 (UNV). The UFS have the
greatest deviation from the Cluster 2 fit.

The coefficients for Cluster 2 are

a =

{
1.4234 − 6.6647Kt + 25.5673K2

t − 27.8939K3
t for Kt < 0.60,

10.5939 − 28.4856Kt + 21.7611K2
t − 3.348K3

t for Kt ≥ 0.60.

b =

{
−0.8033 + 7.723Kt − 26.9074K2

t + 25.9995K3
t for Kt < 0.60,

−6.1286 + 15.6674Kt − 9.4832K2
t − 0.4949K3

t for Kt ≥ 0.60.

c =

{
0.1604 − 1.5968Kt + 5.0219K2

t − 4.537K3
t for Kt < 0.60,

0.8966 − 2.6121Kt + 2.2392K2
t − 0.4802K3

t for Kt ≥ 0.60.

(37)

3.2.3. Cluster 3

Cluster 3 consists of the KZH, KZW and UNZ datasets. Figure 8 shows the Cluster 3
and three stations’ a, b and c coefficients.

The discussion of the different stations is in Appendix A under Appendices A.7 (KZH),
A.8 (KZW) and A.17 (UNZ). The three models fit quite well and are similar to Cluster 3.

The coefficients for Cluster 3 are

a =

{
1.7678 − 9.8995Kt + 34.9076K2

t − 36.2495K3
t for Kt < 0.60,

41.1735 − 157.5062Kt + 201.1335K2
t − 85.5391K3

t for Kt ≥ 0.60.

b =

{
−1.0914 + 10.2302Kt − 33.9924K2

t + 32.4023K3
t for Kt < 0.60,

−31.151 + 121.964Kt − 158.1413K2
t + 67.9737K3

t for Kt ≥ 0.60.

c =

{
0.2256 − 2.1961Kt + 6.8092K2

t − 6.1997K3
t for Kt < 0.60,

3.4215 − 13.4513Kt + 17.5277K2
t − 7.5726K3

t for Kt ≥ 0.60.

(38)
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3.2.4. Cluster 4

Cluster 4 consists of the NMU, FRH and GRT datasets. Figure 9 shows the Cluster 4
and three stations’ a, b and c coefficients.

The discussion of the different stations is in Appendix A under Appendices A.10
(NMU), A.3 (FRH) and A.4 (GRT). The GRT station’s c-coefficient does show difficulty in a
fit determination.

The coefficients for Cluster 4 are

a =

{
0.7671 − 0.9387Kt + 9.7073K2

t − 14.2827K3
t for Kt < 0.60,

20.0495 − 67.0086Kt + 73.6919K2
t − 26.4669K3

t for Kt ≥ 0.60.

b =

{
−0.2382 + 2.3908Kt − 11.3676K2

t + 12.3585K3
t for Kt < 0.60,

−12.5095 + 42.6536Kt − 47.1486K2
t + 16.8022K3

t for Kt ≥ 0.60.

c =

{
0.0451 − 0.5012Kt + 1.8485K2

t − 1.7706K3
t for Kt < 0.60,

1.4976 − 5.1597Kt + 5.8075K2
t − 2.1264K3

t for Kt ≥ 0.60.

(39)

3.3. Regional Decomposition Model

The regional (Southern African) decomposition model data are an even distribution of
the SAURAN stations regarding the number of data points used per station. Multiple cli-
mates, different elevations, and various pollution levels are represented within the dataset,
leading to a better decomposition model for Southern Africa and a regional application.

Figure 10 shows the coefficients a, b and c of the regional model and the four clusters.

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. Regional model coefficients in ∆Kn = a + b · AM + c · AM2. (a) a coefficient; (b) b
coefficient; (c) c coefficient.

The coefficients for the regional model are

a =

{
1.2893 − 5.2531Kt + 21.5081K2

t − 24.5156K3
t for Kt < 0.60,

19.0295 − 63.9357Kt + 70.7485K2
t − 25.6524K3

t for Kt ≥ 0.60.

b =

{
−0.6327 + 5.891Kt − 21.4431K2

t + 21.2593K3
t for Kt < 0.60,

−11.7813 + 39.923Kt − 43.6596K2
t + 15.3252K3

t for Kt ≥ 0.60.

c =

{
0.1118 − 1.1105Kt + 3.6089K2

t − 3.3222K3
t for Kt < 0.60,

1.49 − 5.2009Kt + 5.9381K2
t − 2.2137K3

t for Kt ≥ 0.60.

(40)

4. Results

Each station is discussed individually by assessing the dataset’s comparison metrics:
the R2-value, MBE, RMSE, MAE and MAE of two Kt-intervals. The results compare the
localised, clustered and regional (Southern African) models to the three baseline models,
DISC, Dirint and Lee. The tables visualise the results for each station using red and green,
with green denoting lower error and red denoting higher error.

Table 3 discusses the validation data. In the previous section, the localised, clustered,
and regional models were empirically determined. Appendix A expands on the equations
for the localised models.

Sections 3.2 and 3.3 discussed the clustered and regional models. The test data also
introduce two unknown datasets, the ILA and MIN datasets. These datasets assess the
models with new data for the developed models. ILA and MIN have no localised model,
but geographically, they fall within a cluster: ILA falls under Cluster 1 and MIN under
Cluster 2.

4.1. Testing and Validation Results
4.1.1. CSIR

Appendix A.1 shows the decomposition model equations for the CSIR station. Table 5
shows the results of the CSIR station. The results show that the localised, Cluster 2
and regional models outperform the baseline models in all metrics. The localised model
significantly improves for lower Kt, reducing the MAE from around 60% to 36%.

The test results of the CSIR dataset are presented in Figure A1. As seen in the figure, the
localised, cluster, and regional models outperform the baseline models, which is consistent
with the validation results of the previous section in Table 5.
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Table 5. Hourly validation results of a decomposition model development for CSIR.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.52 −10.6 39.7 32.5 60.7 25.2
Dirint 0.59 −20.2 37.8 30.3 61.6 22.3

Lee 0.62 6.49 31.0 25.3 56.9 17.2
CSIR 0.72 1.19 25.8 19.5 36.2 15.3

Cluster 2 0.72 1.59 25.9 19.4 35.7 15.3
Regional 0.72 4.32 26.3 19.6 36.2 15.4

4.1.2. CUT

Appendix A.2 shows the decomposition model equations for the CUT station. Table 6
shows the CUT station results. The localised Cluster 2 and regional model significantly
improve the comparison metrics over the three baseline models. The Lee model has a
similar MBE to the regional model (±0.7) and has a higher Kt-metric similar to Cluster 2.
However, the Lee RMSE and MAE still do not outperform the new models.

Table 6. Hourly validation results of decomposition model development for CUT.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.55 −15.7 38.0 31.2 61.0 23.9
Dirint 0.6 −23.4 38.6 31.8 62.3 24.4

Lee 0.6 0.7 30.9 24.9 56.5 17.2
CUT 0.71 −1.8 26.0 20.1 33.7 16.8

Cluster 2 0.7 −1.6 26.2 20.5 34.6 17.1
Regional 0.7 0.66 26.3 20.3 34.7 16.7

Figure A2 presents the test results of the CUT dataset, where the localised, cluster and
regional models outperform the baseline models. The test results are consistent with the
validation results presented in Table 6.

4.1.3. FRH

Appendix A.3 shows the decomposition model equations for the FRH station. Table 7
shows the results of the FRH station. The localised model outperforms the baseline models
by improving R2 and MBE and reducing MAE and RSME. The Lee model shows the
lowest MAE for higher Kt-values; however, it does show an overestimation for DNI with a
higher MBE. For most metrics, the localised, Cluster 4 and regional model outperforms the
baseline models.

Table 7. Hourly validation results of decomposition model development for FRH.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.51 −5.49 41.8 31.8 60.9 24.0
Dirint 0.52 −15.9 42.0 33.5 63.2 25.6

Lee 0.51 6.71 39.7 29.7 64.1 20.6
FRH 0.58 −0.44 36.0 26.8 44.6 22.1

Cluster 4 0.58 −0.28 36.0 26.4 45.5 21.4
Regional 0.57 2.63 36.2 26.1 44.5 21.2

Figure A3 presents the test results of the FRH dataset. The localised Cluster 2 and
regional models outperform the baselines, but no significant difference exists between the
three new models. The test results presented in Figure A3 correspond with the validation
results in Table 7.
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4.1.4. GRT

Appendix A.4 shows the decomposition model equations for the GRT station. Table 8
shows the GRT station results. The localised model does show improvement over the
DISC and Dirint model but does not significantly outperform the Lee model. The Lee
model has a higher R2 and lower MBE and RMSE, whereas the localised model has a lower
MAE for the entire dataset and the two Kt intervals. The Cluster 4 and regional models
perform better than the DISC and Dirint models but do not significantly outperform all the
baseline models.

Table 8. Hourly validation results of decomposition model development for GRT.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.62 −13.9 36.1 28.3 59.1 20.0
Dirint 0.67 −22.8 37.5 30.4 60.4 22.3

Lee 0.67 −0.89 29.4 24.2 59.2 14.8
GRT 0.65 −1.99 32.3 21.0 47.1 13.9

Cluster 4 0.73 −7.43 27.6 21.5 42.9 15.7
Regional 0.71 −4.75 28.0 20.9 42.2 15.2

Figure A4 shows the test results of the GRT dataset. The results correspond with the
validation results in Table 8. The localised, Cluster 4 and regional model does outperform
the DISC and Dirint model but only marginally outperforms the Lee model.

4.1.5. HLO

Appendix A.5 shows the decomposition model equations for the HLO station. Table 9
shows the HLO station results. The localised model performs better than the baseline
models and improves all comparison metrics.

Table 9. Hourly validation results of decomposition model development for HLO.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.63 −7.95 34.6 27.1 58.7 18.7
Dirint 0.67 −18.4 34.7 27.0 60.5 18.2

Lee 0.67 2.31 29.1 23.3 59.2 13.9
HLO 0.75 −1.16 25.2 18.9 41.3 13.0

Cluster 1 0.75 2.44 25.3 18.8 40.8 13.0
Regional 0.75 −3.69 25.3 19.7 42.3 13.7

Figure A5 shows the test results of the HLO dataset. The validation results in Table 9
and the test results correspond well, indicating that the localised Cluster 1 and regional
models outperform the baseline models.

4.1.6. ILA

Figure A6 presents the test results of the ILA dataset. The ILA dataset has no localised
decomposition model; therefore, the testing only assesses the Cluster 1 and regional models.
The results show that the Cluster 1 and regional models outperform the baseline models.
The results highlight the substitution of using a Cluster model when no localised model is
available, subject to the geographical location within the Cluster area.

4.1.7. KZH

Appendix A.7 shows the decomposition model equations for the KZH station. Table 10
shows the results of the KZH station. The localised, Cluster 3 and regional models all show
significant improvements in reducing the error over the baseline models. The DISC has a
lower MBE than the regional model.
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Table 10. Hourly validation results of the decomposition model development for KZH.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.63 −2.15 38.1 30.4 59.3 21.9
Dirint 0.67 −12.7 35.3 28.1 61.0 18.5

Lee 0.67 13.4 35.5 28.6 67.2 17.3
KZH 0.75 −0.29 28.5 21.7 44.5 15.0

Cluster 3 0.75 1.3 28.5 21.7 44.5 15.0
Regional 0.75 4.95 29.0 21.7 45.0 14.9

Figure A7 shows the test results of the KZH dataset. The localised, Cluster 3 and re-
gional models all outperform the baseline models. The regional model does not significantly
outperform Cluster 3 or the localised model.

4.1.8. KZW

Appendix A.8 shows the decomposition model equations for the KZW station. Table 11
shows the results of the KZW station. The localised, clustered, and regional models show
improvement over the baseline models with metrics that assess the entire dataset.

Table 11. Hourly validation results of decomposition model development for KZW.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.63 −4.26 39.7 31.5 57.1 23.5
Dirint 0.68 −14.8 37.0 28.8 58.5 19.6

Lee 0.67 13.6 36.5 29.9 67.6 18.2
KZW 0.76 1.47 28.9 22.2 43.0 15.7

Cluster 3 0.76 0.58 28.9 22.3 43.2 15.8
Regional 0.75 3.83 29.8 22.5 43.8 15.8

Figure A8 shows the test results of the KZW dataset. The validation and testing results
from Table 11 correspond.

4.1.9. MIN

The test results of the MIN dataset are presented in Figure A9. MIN has no localised
decomposition model and falls geographically under Cluster 2. The cluster model and lo-
calised model show improvement over the baseline models. Much like the ILA dataset, the
MIN dataset demonstrates how the clustered and regional models can serve as alternatives
to enhance DNI estimations in Southern Africa.

Appendix A.10 shows the decomposition model equations for the NMU station.
Table 12 shows the NMU station results. The localised, Cluster 4 and regional models show
significant improvement in reducing the errors from the baseline models. Based on the
higher MBE, the Cluster 4 and regional models overestimate the DNI more than the DISC
and Dirint models.

Table 12. Hourly validation results of decomposition model development for NMU.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.59 8.72 40.0 29.6 57.7 24.1
Dirint 0.61 −4.49 35.8 26.7 59.9 20.3

Lee 0.61 18.3 39.7 29.3 72.1 21.0
NMU 0.67 0.78 32.5 23.6 49.6 18.5

Cluster 4 0.67 6.98 33.2 22.9 49.7 17.7
Regional 0.66 9.8 34.0 23.2 51.5 17.7
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The test results of the NMU dataset are presented in Figure A10. Localised and cluster
models outperform baseline models, which is consistent with the results in Table 12.

4.1.10. NUST

Appendix A.11 shows the decomposition model equations for the NUST station.
Table 13 shows the results of the NUST station. The localised model shows superior
performance over the baseline models, as well as the clustered and regional models. The
metrics of the clustered model compared to the baselines indicate that the regional model
slightly overestimates the DNI compared to the lowest baseline model (Lee), which slightly
underestimates the DNI.

Table 13. Hourly validation results of decomposition model development for NUST.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.54 −20.9 39.2 32.6 64.2 24.9
Dirint 0.6 −28.0 40.4 34.0 65.0 26.5

Lee 0.61 −3.36 28.7 23.7 54.3 16.3
NUST 0.74 −0.42 23.0 17.7 29.1 14.9

Cluster 1 0.73 3.11 23.9 17.7 28.2 15.1
Regional 0.72 −2.68 23.8 19.0 31.7 15.9

The test results of the NUST dataset are presented in Figure A11. Localised, clus-
tered and regional models outperform the baseline models, which is consistent with the
validation results presented in Table 13. The regional model shows marginal underperfor-
mance compared to the localised and Cluster 1 model, but not significant enough to make
it unusable.

4.1.11. RVD

Appendix A.12 shows the decomposition model equations for the RVD station.
Table 14 shows the RVD station results. The localised, clustered and regional models
outperform the baseline models. The Lee model performs better than the regional model
but does not outperform the localised and cluster models. The RVD station receives more
irradiance on average than other stations in the SAURAN database.

Table 14. Hourly validation results of decomposition model development for RVD.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.61 −12.2 29.8 23.1 59.7 16.2
Dirint 0.65 −21.5 32.1 26.4 62.6 19.5

Lee 0.65 −5.21 23.8 18.5 53.3 11.9
RVD 0.76 −0.58 19.0 13.1 30.5 9.7

Cluster 1 0.77 −3.15 18.7 14.3 32.7 10.8
Regional 0.76 −8.64 20.8 17.0 36.4 13.4

Figure A12 shows the test results of the RVD dataset. The results indicate that the
localised, cluster and regional models outperform the baseline models, which is consistent
with the validation results of the previous section in Table 14. The localised model’s RMSE
is higher than the Lee model; however, the localised model performs best in reducing the
error for the other metrics. Though the regional model outperforms the baseline models, it
does show the worst performance of the three newly developed models for RVD.

4.1.12. SUN

Appendix A.13 shows the decomposition model equations for the SUN station.
Table 15 shows the SUN station results. The localised model outperforms the baseline mod-
els by improving R2 and reducing the MBE, RMSE and MAE. The Cluster 1 and regional
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models show a slightly worse MBE than the Lee baseline model but otherwise outperform
the baseline models. The Lee model also predicts higher Kt points with a lower MAE than
the regional model; however, the other metrics indicate that the regional model shows
better results overall.

Table 15. Hourly validation results of decomposition model development for SUN.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.59 −11.1 34.9 27.2 59.8 19.3
Dirint 0.65 −21.5 35.9 28.9 61.2 21.0

Lee 0.65 −2.16 28.2 22.4 55.4 14.4
SUN 0.75 −0.71 23.9 17.8 38.8 12.7

Cluster 1 0.75 −1.9 24.0 18.0 38.1 13.1
Regional 0.75 −7.81 25.3 20.2 40.5 15.3

Figure A13 shows the test results of the SUN dataset. The results indicate that the
localised, cluster and regional models outperform the baseline models, which is consis-
tent with the testing results of the previous section in Table 15. As with the validation
results, the regional model is the worst-performing new model, but it still outperforms the
baseline models.

4.1.13. UBG

Appendix A.14 shows the decomposition model equations for the UBG station.
Table 16 shows the UBG station results. The localised, clustered and regional models
all outperform the baseline models. The Lee model has a lower MBE than the Cluster 1
and regional models. The Lee model also has a lower MAE for Kt ≥ 0.60; however, the
other metrics indicate that the model does not improve the R2, RMSE, overall MAE or
Kt < 0.60 MAE.

Table 16. Hourly validation results of decomposition model development for UBG.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.36 −11.7 47.2 37.4 66.5 30.4
Dirint 0.41 −20.4 45.9 36.9 66.8 29.6

Lee 0.44 5.4 39.8 28.5 58.9 21.2
UBG 0.46 −0.53 38.7 25.0 40.5 21.3

Cluster 2 0.51 0.4 36.1 24.5 40.8 20.5
Regional 0.51 3.07 36.4 24.1 41.3 19.9

Figure A14 shows the test results of the UBG dataset. The test results show that the
localised, Cluster 1 and regional models outperform the baseline models. The Lee model
has a lower MBE than the regional model, which is consistent with the validation results in
Table 16.

4.1.14. UFS

Appendix A.15 shows the decomposition model equations for the UFS station. Table 17
shows the UFS station results. The localised, Cluster 2 and regional models outperform
the baseline models. The Lee model underestimates the DNI slightly better than the
Cluster 2 model.
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Table 17. Hourly validation results of decomposition model development for UFS.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.53 −18.0 38.7 31.7 61.8 23.4
Dirint 0.58 −26.4 40.0 33.0 63.6 24.6

Lee 0.6 −2.68 29.3 24.0 54.7 15.5
UFS 0.72 0.27 24.2 18.2 32.0 14.4

Cluster 2 0.73 −4.03 24.1 19.5 33.2 15.7
Regional 0.72 −1.79 23.9 19.0 33.4 15.1

Figure A15 shows the test results of the UFS dataset. All three new decomposition
models significantly improve the errors compared to the baseline models, which is consis-
tent with the validation results in Table 17.

4.1.15. UNV

Appendix A.16 shows the decomposition model equations for the UNV station.
Table 18 shows the UNV station results. The localised, Cluster 2 and regional models
significantly improved over the baseline models. The Cluster 2 and regional model overes-
timates the DNI more than the DISC model, based on the MBE.

Table 18. Hourly validation results of decomposition model development for UNV.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.5 1.72 45.9 34.9 59.3 29.1
Dirint 0.56 −9.42 40.7 31.3 60.4 24.3

Lee 0.56 19.0 43.5 33.5 71.0 24.4
UNV 0.62 0.19 36.0 26.5 47.2 21.6

Cluster 2 0.61 7.05 37.3 25.9 47.1 20.8
Regional 0.62 10.1 37.8 26.1 47.0 21.1

Figure A16 shows the test results of the UNV dataset. The test results correspond
with the validation results in Table 18, where the localised, Cluster 2 and regional models
outperform the baseline models. The only exception is the MBE, where the Cluster 2 and
regional models perform worse than the DISC model. Considering all the metrics, the new
models outperform the baselines in reducing the overall error of DNI estimations.

4.1.16. UNZ

Appendix A.17 shows the decomposition model equations for the UNZ station.
Table 19 shows the results of the UNZ station. The localised, clustered and regional
models all show improvement over the baselines. The Dirint model has a lower MBE than
the regional model.

Table 19. Hourly validation results of the decomposition model development for UNZ.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.56 −0.21 41.6 32.0 58.7 24.4
Dirint 0.6 −11.9 38.2 29.5 59.9 20.9

Lee 0.6 13.5 38.2 30.2 64.7 20.3
UNZ 0.66 0.42 32.8 24.0 45.5 17.9

Cluster 3 0.66 0.13 33.0 24.1 45.9 17.9
Regional 0.68 3.56 32.3 23.8 44.7 17.9

Figure A17 shows the test results of the UNZ dataset, which correspond with the
validation results in Table 19.
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4.1.17. UPR

Appendix A.18 shows the decomposition model equations for the UPR station.
Table 20 shows the UPR station results. The localised, cluster and regional models outper-
form the baseline models.

Table 20. Hourly validation results of decomposition model development for UPR.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.5 −15.2 40.6 33.3 61.0 25.5
Dirint 0.58 −24.0 39.7 32.1 61.3 23.9

Lee 0.61 2.48 29.9 24.7 55.2 16.1
UPR 0.71 −0.17 25.5 19.3 36.3 14.5

Cluster 2 0.71 −2.49 25.7 19.6 36.6 14.8
Regional 0.72 0.13 25.3 19.4 36.8 14.4

Figure A18 shows the test results of the UPR dataset. The comparison metrics of
the entire dataset indicate that the localised, cluster and regional models outperform the
baseline models, which is consistent with the results of the validation dataset in Table 20.

4.1.18. VAN

Appendix A.19 shows the decomposition model equations for the VAN station.
Table 21 shows the results of the VAN station. The localised model outperforms the
baseline models by improving R2 and reducing the MBE, RMSE and MAE. The new models
significantly reduce the MAE in the higher Kt compared to the baseline models. Even
when outperforming the baseline models, the regional model performs worse than the new
model. The VAN station receives a very high average DNI and DHI and lower DHI than
the rest of the database’s stations. These results are similar to the RVD station, which has
significantly higher irradiance levels than the other stations.

Table 21. Hourly validation results of decomposition model development for VAN.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60
R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.58 −11.3 32.2 25.3 60.6 17.9
Dirint 0.63 −21.0 33.6 27.5 62.7 20.1

Lee 0.64 −3.04 25.8 20.5 55.9 13.0
VAN 0.76 −1.17 20.9 15.7 35.2 11.6

Cluster 1 0.76 −1.57 20.9 15.9 36.3 11.7
Regional 0.75 −7.41 22.3 18.2 38.9 13.8

Figure A19 shows the test results of the VAN dataset. The new models all outperform
the baseline models. The regional model shows the worst performance of the new models,
even when outperforming the baseline models, similar to the RVD station that receives
more irradiance on average compared to the other stations. These results are consistent
with the validation results in Table 21.

4.2. Discussion

Table 22 summarises the performance of the localised, clustered and regional models
for both the test and validation sets.
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Table 22. Summary of test and validation sets of stations outperforming baseline models.

Dataset

Localised Model Cluster Model Regional Model
Outperforms Outperforms Outperforms

Baseline Models Baseline Models Baseline Models

Test Validation Test Validation Test Validation

CSIR ✓ ✓ ✓ ✓ ✓ ✓

CUT ✓ ✓ ✓ ✓ ✓ ✓

FRH ✓ ✓ ✓ ✓ ✓ ✓

GRT ✓ ✓ ✓ ✓ ✓ ✓

HLO ✓ ✓ ✓ ✓ ✓ ✓

ILA - ✓ - ✓ - ✓

KZH ✓ ✓ ✓ ✓ ✓ ✓

KZW ✓ ✓ ✓ ✓ ✓ ✓

MIN - ✓ - ✓ - ✓

NMU ✓ ✓ ✓ ✓ ✓ ✓

NUST ✓ ✓ ✓ ✓ ✓ ✓

RVD ✓ ✓ ✓ ✓ ✓ ✓

SUN ✓ ✓ ✓ ✓ ✓ ✓

UBG ✓ ✓ ✓ ✓ ✓ ✓

UFS ✓ ✓ ✓ ✓ ✓ ✓

UNV ✓ ✓ ✓ ✓ ✓ ✓

UNZ ✓ ✓ ✓ ✓ ✓ ✓

UPR ✓ ✓ ✓ ✓ ✓ ✓

VAN ✓ ✓ ✓ ✓ ✓ ✓

As expected, the localised models outperformed the baseline models for all station
datasets because of the site-specific climatic training data. As discussed in the previous
section, the cluster model combines multiple stations in a similar geographical area.

The clustered model will have significantly more data from which to train a model.
A clustered model is ideal if a site has no data for localised model development using the
discussed methodology. The regional (Southern African) model also shows improvement
over the baseline models, indicating that this model may be appropriate for adoption as a
new model for Southern Africa. The two models with no localised models (ILA and MIN)
showed improvement using the clustered and regional models in the validation study.

5. Conclusions

This article presents the development of a new decomposition model of hourly DNI
estimations for Southern Africa using the SAURAN database. The new models improved
the DISC model in developing new decomposition models localised for Southern African
climates. The new decomposition models significantly improved the DNI estimation errors
over the baselines for all the SAURAN stations’ validation and test data sets. The proposed
methodology can be helpful for the development of local decomposition models for other
areas worldwide.

The results indicate that a localised model will improve the estimations of DNI. Clus-
tered models also indicate that grouping data based on similar geographical and climatic
properties can also improve the performance of decomposition models. This phenomenon
could be helpful when using a clustered decomposition model if no local model or limited
data are available but are available from two or more geographically close stations.

The overall model, the regional decomposition model, is encapsulated by different
climatic regions and geographical locations. There are also some exceptions where the
model over- or underestimates the DNI; however, the overall metrics indicate that the
Southern African model significantly improves over the baseline models.

The validation study conducted at two stations further substantiates the superiority of
the developed hourly decomposition models over comparative models, emphasising their
robustness and applicability in realistic scenarios where the localised models are usually
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not unavailable. The study validates hourly irradiance data for Kt intervals between 0.175
and 0.875. Recommendations for future work include developing models for higher and
lower Kt values and models for higher temporal resolutions with increased accuracy, which
is ideal for the real-time monitoring and short-term forecasting of PV power.

Developing countries with an accurate decomposition model can open the path to
expanding the use of renewable energy sources and reducing their dependence on coal
and fossil fuels. Good-quality data are needed to ensure the progress of research and
development related ot solar energy, and this paper addresses the shortcomings of the
Southern African region’s lack of accurate solar resource representation in existing models.
The next step is assessing the decomposition models with well-known transposition models
to determine improved accuracy for PR estimations.
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Appendix A. Localised Decomposition Models

Appendix A.1. CSIR

The a, b and c coefficients for Equation (34) for the CSIR station are

a =

{
0.6472 − 1.0883Kt + 12.3429K2

t − 17.7027K3
t for Kt < 0.60,

6.1444 − 9.484Kt − 5.138K2
t + 9.2371K3

t for Kt ≥ 0.60.

b =

{
−0.5032 + 5.67Kt − 22.0707K2

t + 22.2654K3
t for Kt < 0.60,

2.8669 − 22.2584Kt + 43.4833K2
t − 24.9682K3

t for Kt ≥ 0.60.

c =

{
0.1418 − 1.4904Kt + 4.7805K2

t − 4.3489K3
t for Kt < 0.60,

−1.1287 + 5.8459Kt − 9.4568K2
t + 4.8729K3

t for Kt ≥ 0.60.

(A1)

The test results of the CSIR dataset are in Figure A1.

Figure A1. Hourly test results of decomposition model development for CSIR.
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Appendix A.2. CUT

The a, b and c coefficients for Equation (34) for the CUT station are

a =

{
2.4122 − 15.382Kt + 48.3773K2

t − 45.8766K3
t for Kt < 0.60,

−15.7689 + 86.1878Kt − 141.6902K2
t + 73.2142K3

t for Kt ≥ 0.60.

b =

{
−1.6214 + 14.8897Kt − 45.5364K2

t + 40.6731K3
t for Kt < 0.60,

17.2881 − 85.5492Kt + 134.0146K2
t − 67.4052K3

t for Kt ≥ 0.60.

c =

{
0.2864 − 2.6906Kt + 7.8329K2

t − 6.7318K3
t for Kt < 0.60,

−1.9147 + 9.6635Kt − 15.3053K2
t + 7.7563K3

t for Kt ≥ 0.60.

(A2)

The validation results of the CUT dataset are in Figure A2.

Figure A2. Hourly test results of decomposition model development for CUT.

Appendix A.3. FRH

The a, b and c coefficients for Equation (34) for the FRH station are

a =

{
1.3199 − 6.0578Kt + 24.6953K2

t − 27.3825K3
t for Kt < 0.60,

33.3782 − 124.5221Kt + 155.5513K2
t − 64.7203K3

t for Kt ≥ 0.60.

b =

{
−0.5658 + 5.6247Kt − 21.3334K2

t + 21.2952K3
t for Kt < 0.60,

−26.2959 + 102.0318Kt − 131.6271K2
t + 56.3592K3

t for Kt ≥ 0.60.

c =

{
0.0963 − 1.024Kt + 3.5042K2

t − 3.2887K3
t for Kt < 0.60,

3.9117 − 15.5175Kt + 20.4822K2
t − 8.9754K3

t for Kt ≥ 0.60.

(A3)

The test results of the FRH dataset are in Figure A3.

Figure A3. Hourly test results of decomposition model development for FRH.
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Appendix A.4. GRT

The a, b and c coefficients for Equation (34) for the GRT station are

a =

{
2.9602 − 19.6392Kt + 58.9738K2

t − 55.4505K3
t for Kt < 0.60,

−29.0697 + 138.0498Kt − 209.2486K2
t + 102.455K3

t for Kt ≥ 0.60.

b =

{
−2.2843 + 20.1509Kt − 58.384K2

t + 51.362K3
t for Kt < 0.60,

34.8693 − 155.9554Kt + 227.6821K2
t − 108.7518K3

t for Kt ≥ 0.60.

c =

{
0.4656 − 4.1668Kt + 11.5129K2

t − 9.7101K3
t for Kt < 0.60,

−8.4664 + 36.6029Kt − 51.9382K2
t + 24.2327K3

t for Kt ≥ 0.60.

(A4)

Figure A4 shows the test results of the GRT dataset.

Figure A4. Hourly test results of decomposition model development for GRT.

Appendix A.5. HLO

The a, b and c coefficients for Equation (34) for the HLO station are

a =

{
3.1156 − 21.0151Kt + 62.5312K2

t − 57.2369K3
t for Kt < 0.60,

50.8058 − 194.5525Kt + 248.2624K2
t − 105.3977K3

t for Kt ≥ 0.60.

b =

{
−2.0533 + 18.2104Kt − 53.4859K2

t + 46.7754K3
t for Kt < 0.60,

−33.1822 + 128.4612Kt − 164.8983K2
t + 70.2185K3

t for Kt ≥ 0.60.

c =

{
0.3508 − 3.2108Kt + 9.1319K2

t − 7.7849K3
t for Kt < 0.60,

3.7247 − 14.4408Kt + 18.5853K2
t − 7.9382K3

t for Kt ≥ 0.60.

(A5)

Figure A5 shows the test results of the HLO dataset.

Figure A5. Hourly test results of decomposition model development for HLO.

Appendix A.6. ILA

There is no decomposition model developed for the ILA station.
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The test results of the ILA dataset are in Figure A6.

Figure A6. Hourly test results of decomposition model development for ILA.

Appendix A.7. KZH

The a, b and c coefficients for Equation (34) for the KZH station are

a =

{
1.3444 − 6.1333Kt + 23.7139K2

t − 25.5604K3
t for Kt < 0.60,

56.4073 − 216.3047Kt + 276.4264K2
t − 117.5281K3

t for Kt ≥ 0.60.

b =

{
−0.7156 + 6.8854Kt − 24.0569K2

t + 22.9604K3
t for Kt < 0.60,

−45.6353 + 178.5713Kt − 231.593K2
t + 99.6179K3

t for Kt ≥ 0.60.

c =

{
0.1646 − 1.6569Kt + 5.2451K2

t − 4.7368K3
t for Kt < 0.60,

6.2156 − 24.5162Kt + 32.0741K2
t − 13.9205K3

t for Kt ≥ 0.60.

(A6)

The test results of the KZH dataset are in Figure A7.

Figure A7. Hourly test results of decomposition model development for KZH.

Appendix A.8. KZW

The a, b and c coefficients for Equation (34) for the KZW station are

a =

{
2.2627 − 14.4806Kt + 47.1629K2

t − 46.2386K3
t for Kt < 0.60,

35.0603 − 132.558Kt + 167.2728K2
t − 70.2359K3

t for Kt ≥ 0.60.

b =

{
−1.4332 + 13.4317Kt − 42.4822K2

t + 39.1838K3
t for Kt < 0.60,

−28.1708 + 109.9004Kt − 141.9142K2
t + 60.6943K3

t for Kt ≥ 0.60.

c =

{
0.2678 − 2.6116Kt + 7.9363K2

t − 7.1072K3
t for Kt < 0.60,

3.1759 − 12.4602Kt + 16.1949K2
t − 6.9726K3

t for Kt ≥ 0.60.

(A7)

Figure A8 shows the test results of the KZW dataset.
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Figure A8. Hourly test results of decomposition model development for KZW.

Appendix A.9. MIN

There is no decomposition model developed for the MIN station.
The test results of the MIN dataset are in Figure A9.

Figure A9. Hourly test results of decomposition model development for MIN.

Appendix A.10. NMU

The a, b and c coefficients for Equation (34) for the NMU station are

a =

{
0.0688 + 5.2168Kt − 7.122K2

t + 0.2163K3
t for Kt < 0.60,

15.7683 − 48.8606Kt + 48.5956K2
t − 15.0438K3

t for Kt ≥ 0.60.

b =

{
0.3483 − 2.9436Kt + 3.2778K2

t − 0.0145K3
t for Kt < 0.60,

−11.0783 + 37.046Kt − 39.8763K2
t + 13.6687K3

t for Kt ≥ 0.60.

c =

{
−0.0758 + 0.598Kt − 1.1265K2

t + 0.7025K3
t for Kt < 0.60,

1.9782 − 7.2272Kt + 8.7285K2
t − 3.4834K3

t for Kt ≥ 0.60.

(A8)

The test results of the NMU dataset are in Figure A10.

Figure A10. Hourly test results of decomposition model development for NMU.
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Appendix A.11. NUST

The a, b and c coefficients for Equation (34) for the NUST station are

a =

{
2.0021 − 11.1478Kt + 36.3216K2

t − 35.8544K3
t for Kt < 0.60,

−17.9917 + 91.7087Kt − 144.5222K2
t + 72.3519K3

t for Kt ≥ 0.60.

b =

{
−1.2658 + 11.3567Kt − 35.6964K2

t + 32.4545K3
t for Kt < 0.60,

24.1237 − 111.1616Kt + 165.4905K2
t − 79.997K3

t for Kt ≥ 0.60,

c =

{
0.2056 − 1.9277Kt + 5.7745K2

t − 5.0518K3
t for Kt < 0.60,

−2.59 + 11.8847Kt − 17.6199K2
t + 8.4894K3

t for Kt ≥ 0.60.

(A9)

The test results of the NUST dataset are in Figure A11.

Figure A11. Hourly test results of decomposition model development for NUST.

Appendix A.12. RVD

The a, b and c coefficients for Equation (34) for the RVD station are

a =

{
4.0191 − 28.309Kt + 83.0024K2

t − 74.0684K3
t for Kt < 0.60,

84.2546 − 327.2114Kt + 422.3587K2
t − 181.2345K3

t for Kt ≥ 0.60.

b =

{
−2.8895 + 25.4823Kt − 74.043K2

t + 63.2378K3
t for Kt < 0.60,

−65.5943 + 256.2577Kt − 331.9301K2
t + 142.7166K3

t for Kt ≥ 0.60.

c =

{
0.5456 − 4.9199Kt + 13.8139K2

t − 11.415K3
t for Kt < 0.60,

10.4557 − 41.161Kt + 53.7847K2
t − 23.3378K3

t for Kt ≥ 0.60.

(A10)

The test results of the RVD dataset are in Figure A12.

Figure A12. Hourly test results of decomposition model development for RVD.
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Appendix A.13. SUN

The a, b and c coefficients for Equation (34) for the SUN station are

a =

{
1.4996 − 7.646Kt + 30.0235K2

t − 33.6216K3
t for Kt < 0.60,

32.6225 − 122.3879Kt + 152.4023K2
t − 62.9667K3

t for Kt ≥ 0.60.

b =

{
−0.835 + 7.9823Kt − 28.5353K2

t + 28.4965K3
t for Kt < 0.60,

−19.4403 + 73.2046Kt − 90.6277K2
t + 36.9662K3

t for Kt ≥ 0.60.

c =

{
0.1285 − 1.3014Kt + 4.3214K2

t − 4.0834K3
t for Kt < 0.60,

2.0866 − 7.7979Kt + 9.595K2
t − 3.8902K3

t for Kt ≥ 0.60.

(A11)

The test results of the SUN dataset are in Figure A13.

Figure A13. Hourly test results of decomposition model development for SUN.

Appendix A.14. UBG

The a, b and c coefficients for Equation (34) for the UBG station are

a =

{
0.5601 + 1.4348Kt + 1.9992K2

t − 6.4178K3
t for Kt < 0.60,

42.1623 − 152.8269Kt + 183.6564K2
t − 73.01K3

t for Kt ≥ 0.60.

b =

{
−0.0378 + 0.6077Kt − 6.2716K2

t + 7.0084K3
t for Kt < 0.60,

−44.4913 + 167.9403Kt − 209.5344K2
t + 86.5114K3

t for Kt ≥ 0.60.

c =

{
0.0159 − 0.2605Kt + 1.1245K2

t − 0.8877K3
t for Kt < 0.60,

9.2841 − 35.956Kt + 46.1639K2
t − 19.6586K3

t for Kt ≥ 0.60.

(A12)

The test results of the SUN dataset are in Figure A14.

Figure A14. Hourly test results of decomposition model development for UBG.
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Appendix A.15. UFS

The a, b and c coefficients for Equation (34) for the UFS station are

a =

{
1.1152 − 5.4355Kt + 27.3687K2

t − 32.6276K3
t for Kt < 0.60,

18.8962 − 58.0528Kt + 56.4791K2
t − 16.8735K3

t for Kt ≥ 0.60.

b =

{
−0.5439 + 6.5875Kt − 27.7113K2

t + 28.8812K3
t for Kt < 0.60,

−19.1711 + 65.1123Kt − 71.8324K2
t + 25.6916K3

t for Kt ≥ 0.60.

c =

{
0.1395 − 1.6147Kt + 5.7356K2

t − 5.4904K3
t for Kt < 0.60,

5.238 − 19.7369Kt + 24.6715K2
t − 10.2415K3

t for Kt ≥ 0.60.

(A13)

The test results of the SUN dataset are in Figure A15.

Figure A15. Hourly test results of decomposition model development for UFS.

Appendix A.16. UNV

The a, b and c coefficients for Equation (34) for the UNV station are

a =

{
1.6679 − 8.8496Kt + 30.8258K2

t − 31.7801K3
t for Kt < 0.60,

17.0947 − 58.7362Kt + 67.3532K2
t − 25.6036K3

t for Kt ≥ 0.60.

b =

{
−0.9329 + 8.8795Kt − 29.6546K2

t + 28.1554K3
t for Kt < 0.60,

−11.0559 + 39.0859Kt − 45.1859K2
t + 17.0921K3

t for Kt ≥ 0.60.

c =

{
0.1744 − 1.744Kt + 5.4271K2

t − 4.9023K3
t for Kt < 0.60,

0.7738 − 2.5106Kt + 2.5888K2
t − 0.8303K3

t for Kt ≥ 0.60.

(A14)

The test results of the UNV dataset are in Figure A16.

Figure A16. Hourly test results of decomposition model development for UNV.
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Appendix A.17. UNZ

The a, b and c coefficients for Equation (34) for the UNZ station are

a =

{
1.1129 − 5.2859Kt + 25.5284K2

t − 30.5998K3
t for Kt < 0.60,

33.4179 − 127.1391Kt + 161.8637K2
t − 68.7679K3

t for Kt ≥ 0.60.

b =

{
−0.6222 + 7.0597Kt − 28.1112K2

t + 29.4187K3
t for Kt < 0.60,

−24.1838 + 94.1721Kt − 121.4204K2
t + 51.9098K3

t for Kt ≥ 0.60.

c =

{
0.1398 − 1.5931Kt + 5.5902K2

t − 5.4749K3
t for Kt < 0.60,

2.3838 − 9.2877Kt + 11.9991K2
t − 5.1432K3

t for Kt ≥ 0.60.

(A15)

The test results of the UNZ dataset are in Figure A17.

Figure A17. Hourly test results of decomposition model development for UNZ.

Appendix A.18. UPR

The a, b and c coefficients for Equation (34) for the UPR station are

a =

{
1.3766 − 6.4439Kt + 25.7243K2

t − 28.9372K3
t for Kt < 0.60,

−2.5908 + 24.5466Kt − 49.3217K2
t + 28.3294K3

t for Kt ≥ 0.60.

b =

{
−0.8308 + 8.2061Kt − 29.0534K2

t + 28.667K3
t for Kt < 0.60,

9.0641 − 45.9866Kt + 73.7132K2
t − 37.7903K3

t for Kt ≥ 0.60.

c =

{
0.1626 − 1.6496Kt + 5.2698K2

t − 4.8501K3
t for Kt < 0.60,

−1.7989 + 8.4045Kt − 12.7021K2
t + 6.2414K3

t for Kt ≥ 0.60.

(A16)

The test results of the UPR dataset are in Figure A18.

Figure A18. Hourly test results of decomposition model development for UPR.
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Appendix A.19. VAN

The a, b and c coefficients for Equation (34) for the VAN station are

a =

{
1.8649 − 12.2743Kt + 47.2823K2

t − 50.5904K3
t for Kt < 0.60,

7.6031 − 11.9134Kt − 6.9687K2
t + 12.3734K3

t for Kt ≥ 0.60.

b =

{
−1.1265 + 12.1632Kt − 44.5245K2

t + 44.4602K3
t for Kt < 0.60,

3.6296 − 27.7921Kt + 54.161K2
t − 31.162K3

t for Kt ≥ 0.60.

c =

{
0.2277 − 2.5008Kt + 8.4732K2

t − 8.0774K3
t for Kt < 0.60,

−1.3247 + 7.0528Kt − 11.5818K2
t + 6.025K3

t for Kt ≥ 0.60.

(A17)

Figure A19 shows the test results of the VAN dataset.

Figure A19. Hourly test results of decomposition model development for VAN.
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