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Abstract: The second order Glauber correlation of a simplified gravitational wave is investigated,
using parameters from the first signal detected by LIGO. This simplified model spans the inspiral,
merger, and ringdown phases of a black hole merger and was created to have a continuous amplitude,
so there is no discontinuity between the phases. This allows for a trivial extraction of the intensity,
which is necessary for determining the correlation between detectors. The two LIGO observatories
can be used as detectors in a Hanbury Brown and Twiss interferometer for gravitational waves; these
observatories measure the amplitude of the wave, so these measurements were used as the basis
of the simplified model. The signal detected by the observatories is transient and is not consistent
with chaotic or steady electromagnetic waves and thus the second order Glauber correlation function
was calculated to produce physically meaningful results. To find correlations that are consistent
with applications to electromagnetic waves, weighting functions for both models were studied in
the integral equations for the Glauber correlation functions. The relationship between the transient
and chaotic signals of both waveforms and their respective correlation functions was also examined.
The second order Glauber correlation functions are a measure of intensity interference between
independent detectors and has proven to be useful in both optics and particle physics. It has also
been used in theoretical studies of primordial gravitational waves. The correlations can be used
to define the degrees of coherence of a field, characterize multi-particle processes and assist in
image enhancement.

Keywords: gravity; gravitational waves; Hanburry Brown and Twiss; LIGO; interferometer;
Glauber correlation

1. Introduction

The intention of this research is to develop techniques to find the 2nd order Glauber
correlations of gravitational waves. Using the same methodology and characterizations
used for electromagnetic waves has not been done with the intention of understanding
and describing the fundamental structure of non-primordial gravitational waves. The
analysis of a signal detected by LIGO introduces a problem; the signal received from a
black hole merger is short lived, where meaningful detection is only observed for ∼0.2 s.
This differs from signals analyzed by the quantum optics [1,2] and particle physics [3]
communities, which are typically not transient. A method of calculating the second
order Glauber correlation function utilizing intensity weighting is proposed; the method
normally prescribed averages over a long time period, which does not yield a period-
independent amplitude. Using the novel method, correlations are produced that are similar
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to already analyzed electromagnetic waves, and comparing the two can provide insight
into gravitational waves.

2. Methods

Classically, interferometers are used to study the characteristics of waves by interfering
the wave with itself. The LIGO observatories consist of two separate gravitational wave
interferometers that measure the strain amplitude of the observed gravitational wave.
Each of the two observatories can be thought of as the two detectors of an interferometer,
allowing the intensity of the wave to be extracted and analyzed with the second order
Glauber correlation function.

This function is a function of the time between detections that describes the correlations
of observed intensities [1]. This calculation is defined as,

g2(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉 , (1)

where τ is the time between detections. 〈...〉 signifies a time averaging over a long time
period [4]. Typically, the function is expanded using a standard time average of time T.

g2(τ) =

1
T
∫ T

2
T
2

I(t)I(t + τ)dt

1
T2

∫ T
2

T
2

I(t)dt
∫ T

2
T
2

I(t + τ)dt
. (2)

This does not create any problems with a typical signal being analyzed, but does
introduce a dependence of the initial amplitude on the time being integrated over a
transient signal. To remedy this, a different weighted average was utilized by using the
intensity observed when there is no time lag between the detectors.

g2(τ) =
G(2)(t, t + τ)

G(1)(t)G(1)(t + τ)
,

G(2)(t, t + τ) =

∫ ∞
−∞ I(t)I(t + τ)I(t + 0)dt∫ ∞

−∞ I(t + 0)dt
,

G(1)(t + τ) =

∫ ∞
−∞ I(t + τ)I(t + 0)dt∫ ∞

−∞ I(t + 0)dt
.

(3)

This method has the advantage of having a time-independent starting amplitude and
allows the intensity function to be integrated over all time.

Later, an equation describing the strain amplitude will be described, which cannot
be directly plugged into (1). This equation is used to model the amplitude detected at the
LIGO observatories. The relationship between the strain amplitude and intensity is,

I(t) ∝ h(t)2, (4)

with the exact conversion being [5],

I(t) = Aω2 h(t)2, (5)

A =
c2

16πG
. (6)

Substituting I(t) as described in (5) into Equation (3) will yield a function that allows our
model to be analyzed,
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g2(τ) =
A2ω4 G(2)(t, t + τ)

(Aω2 G(1)(t))(Aω2 G(1)(t + τ))
. (7)

We find that the Aω terms cancel completely, meaning the square of the model may be
used as the intensity for our purposes with no negative repercussions. Simply substituting
h(t)2 for I(t), we get Equation (3) back.

Now that both techniques have been established, a known correlation was analyzed
to validate this new technique. An oscillatory signal from Fox [1] was analyzed with both
forms of the second order Glauber correlation function. The oscillatory intensity function
has the form,

I(t) = I0(1 + A0 sin(ωt)). (8)

The typical correlation form, Equation (2), gives a function that agrees with the amplitude
provided by Fox at τ = 0. The closed form solution obtained is:

g2(τ) =
1
2
(2 + A2

0 cos(ωτ)), (9)

the correlation at τ = 0:

g2(0) = 1 +
A2

0
2

, (10)

which agrees with Fox [1]. Using the non intensity weighted correlation from Equation (3),
we obtained the following closed form solution,

g2(τ) =
4(1 +

1
2

A4
0 cos(ωτ))

(2 + A2
0)(2 + A2

0 cos(ωτ))
, (11)

and the correlation at τ = 0

g2(0) = 1 +
4(1 +

3
2

A2
0)

(2 + A2
0)

2
. (12)

Clearly, Figures 1 and 2 exhibit similar characteristics, with the former having a larger
amplitude, though it must be said that both methods when applied to steady periodic
functions produce correlations not dependent on time period.

Figure 1. Glauber correlation function of (8) generated by (11).
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Figure 2. Glauber correlation of (8) generated by (3).

3. Results

A simplified model of gravitational waves detected at LIGO was approximated using
a sine-Gaussian. The correlations of this transient model were observed with both methods.
This model was fit by eye to describe the strain amplitude observed at LIGO using three
parameters, ω, b, tm,

h(t) = hmaxe−(
t+tm

b )
2

cos(2πωt), (13)

where tm is the time of the black hole merger, b is a dampening parameter used to fit the
function, and ω is the frequency of the wave, which is assumed to be constant for this
simplified model (see Figure 3). The relationship between the strain amplitude (13) and
the intensity is shown in (5). Substituting (13) into (11), we obtain a more complicated
correlation function than before. The standard time average yields the following closed
form solution,

g2(τ) =
2e−

τ2

b2 T(erf ( T−2tm−τ
b ) + erf ( T+2tm+τ

b ))

b
√

π((erf ( T−2tm√
2b

) + erf ( T+2tm√
2b

))(erf ( T−2(tm+τ)√
2b

) + erf ( T+2(tm+τ)√
2b

)))
, (14)

and the correlation at τ = 0

g2(0) =
2T(erf ( T−2tm

b ) + erf ( T+2tm
b ))

b
√

π(erf ( T−2tm√
2b

) + erf ( T+2tm√
2b

))2
. (15)

Figure 3. Model gravitational wave waveform from Equation (13).
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As stated previously, there is evidently a dependence on the time period being av-
eraged over T when looking at the correlation at τ = 0, which was not evident for the
oscillatory intensity. Using the intensity weighting yields a correlation with no dependence
on the period being averaged over. Substituting (13) into (3) yields a more concise correlation,

g2(τ) =
2√
3

e
−

τ2

3b2 , (16)

with τ = 0 being

g2(0) =
2
√

3
. (17)

Both Figures 4 and 5 appear to exhibit a similar characteristic, as τ → ∞ both g2(τ)s
do indeed go to 0. They also have similar behavior around τ = 0, with the major difference
being the steepness of the correlation.

Figure 4. Glauber correlation of (13) generated by (11).

Figure 5. Glauber correlation of (13) generated by (3).

There are certain properties that electromagnetic waves exhibit when looking at their
second order Glauber correlation, and we will compare some of these to our correlation
for gravitational waves. The signal in our model is a coherent field undergoing amplitude
modulations, although if you look only at the 2nd order Glauber correlations, the functions
produced are ambiguous. A chaotic field or a coherent field with amplitude modulations
would have been able to produce Glauber correlation functions with similar character-
istics to the functions we generated. Some properties are listed below to highlight this
ambiguity [1,6,7];
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• Coherent light of a single frequency is defined as g2(τ) = 1;
• For a laser g2(τ = 0) = 2 for chaotic light;
• g2(τ = 0) > 1 does not necessarily mean the signal is chaotic;
• For chaotic light limτ→∞ g2(τ) = 0.

4. Conclusions

A technique for generating 2nd order Glauber correlations using an intensity weight-
ing was discussed, which produced comparable results to the time-averaging technique
for both an oscillatory intensity and a transient signal. A sine-Gaussian was introduced to
be used as a simplified model of the first signal detected by LIGO. This model was then
analyzed with both methods for calculating the correlation, and produced functions that
exhibit both chaotic and coherent amplitude modulated signal correlation functions.
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