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Abstract: The merger of a binary neutron star (BNS) system can lead to different final states de-
pending on the total mass of the binary system and the equation of state (EOS). One of the possible
outcomes of the merger is a long-lived (lifetime > 10 ms), compact and differentially rotating remnant.
The Komatsu, Eriguchi and Hachisu (1989) differential rotation law (KEH) has been used almost
exclusively in the literature to describe such configurations, despite the tension with corresponding
rotational profiles reported from numerical simulations. New rotation laws suggested by Uryu et
al. (2017) aspire to ease this tension and provide more realistic choices to describe the rotational
profiles of BNS merger remnants. We recently started constructing equilibrium models with one of
the new rotation laws proposed and comparing their physical properties to the KEH rotation law
counterpart models. In addition, building on earlier work, the accuracy of the IWM-CFC conformal
flatness approximation with the new differential rotation law was confirmed.

Keywords: general relativity; neutron stars; differential rotation; conformal flatness

1. Introduction

Differential rotation in relativistic stars has drawn a steady research interest because it
is relevant in phenomena such as binary neutron star (BNS) mergers that can provide infor-
mation through gravitational and electromagnetic waves observations for the behaviour of
matter at high densities, i.e., the equation of state (EOS). More specifically, if the total mass
M of the BNS is greater than the maximum mass of a cold, uniformly rotating neutron
star, Mmax,rot, then the compact remnant that is formed during the merger can survive for
several tens of milliseconds (ms) supported by differential rotation and thermal pressure.
Oscillations of the post-merger remnant could lead to tight constraints for the EOS in the
case of detection of one (or more) of three observable frequencies ( fpeak, f2−0, fspiral) [1–4].

While numerical simulations are used primarily to study BNS mergers, their high
computational cost calls for complementary approaches, such as equilibrium modeling
in order to allow for faster and wider parameter space exploration. In the equilibrium
framework, several aspects of the merger remnant are neglected in order to obtain idealized
models of its structure. Enriching these initial idealized models by adding gradually,
selected realistic components of the binary coalescence problem ensures that this method
can still provide useful insights.

Concerning the differential rotation aspect of the BNS merger problem, the simple
solution that was adopted for years in the relevant literature was the rotation law

F(Ω) = A2(Ωc −Ω) (1)

by [5] (hereafter KEH), where A is a positive constant that determines the length scale
over which the angular velocity Ω varies within the star, Ωc is the angular velocity at
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the rotation axis and F = utuφ denotes the gravitationally redshifted angular momentum
per unit rest mass and enthalpy. Limiting cases of the rotation law (1) are the uniform
rotation case for A → ∞ and the j-constant law for A → 0 (where j = huφ is the specific
angular momentum).

More realistic rotation laws have been proposed [6] that better describe a remnant’s
rotational profile as reported from simulations (e.g., see [7] for a recent study). In our recent
work [8], we investigated one of the new rotation laws, compared physical properties of
constructed models with the “classic” KEH law to the new law and verified its suitability
to describe BNS merger remnants.

2. Methods

Within the framework of full general relativity (GR), in [8], we construct stationary
and axisymmetric stellar configurations in equilibrium as described by the line element:

ds2 = −eγ+ρdt2 + eγ−ρr2 sin2 θ(dφ−ωdt)2 + e2µ(dr2 + r2dθ2) , (2)

with γ, ρ, ω, and µ being metric functions that depend only on the coordinates r and θ.
Matter is described as a perfect fluid, assuming a polytropic EOS:

p = Kρ1+ 1
N , (3)

where p is the pressure, ρ is the rest mass density, K is the polytropic constant and N
is the polytropic index (see [9] for details). We chose N = 1 and K = 100, which is a
common choice in the literature for testing numerical codes. We note that a polytropic
model is calculated with K = 1 and then rescaled to K = 100 (or any other choice of K) by
multiplying with appropriate factors [10].

In order to create our equilibrium models, we used an extended version [11,12] of the
public domain rns code [13,14]. The code is based on the KEH scheme [5] and includes
modifications by [10]. We expanded the code in order to implement the four-parameter
rotation law introduced in [6]

Ω = Ωc

1 +
(

F
B2Ωc

)p

1 +
(

F
A2Ωc

)q+p , (4)

(hereafter Uryu+ law). The parameter p controls the growth of the rotation curve near the
rotation axis, and parameter q controls the asymptotic behavior of Ω(r). Setting q = 3
recovers the Keplerian rotation law in the Newtonian limit. In Figure 1, we present an
example of the angular velocity profile in the equatorial plane for the Uryu+ rotation
law (4).

We choose the values {p, q} = {1, 3}, for which the integral in the hydrostationary
equilibrium expression has an analytic solution. The parameters A and B are determined
by solving for them in each iteration, via fixing the ratios of the maximum angular velocity
over the angular velocity at the center of the configuration, λ1 = Ωmax/Ωc, and of the
angular velocity at the equator over the angular velocity at the center, λ2 = Ωe/Ωc,
to certain selected values [6,15].

As reference values for the ratios {λ1, λ2}, we adopt the choice {2.0, 0.5} as in [6].
However, differences in rotational profiles seen in numerical simulations of post-merger
remnants, when different EOS and total masses are used [7,16], provides motivation to
examine two values for the first parameter λ1 = {2.0, 1.5} and two values for the second
parameter λ2 = {0.5, 1.0}, leading to four distinct pairs of {λ1, λ2}.
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Figure 1. Angular velocity Ω profiles in the equatorial plane for model C6 (axis ratio rp/re = 0.43), constructed with the
Uryu+ rotation law with {λ1, λ2} = {2.0, 0.5} (see Section 3 for details). (Left) plotted versus the gravitationally redshifted
angular momentum per unit rest mass and enthalpy F. (Right) plotted versus the coordinate radius r. Figure from [8].

3. Results

For comparison with previous work [11,17] employing the KEH differential rotation
law, in [8], we constructed three sequences of equilibrium models using the new differential
rotation law (4):

• Sequence A is a constant rest mass sequence with M0 = 1.506.
• Sequence B is a constant central energy density sequence with εc = 1.444× 10−3.
• Sequence C is a constant central energy density sequence with εc = 3.3× 10−3.

Throughout the text, we employ dimensionless units for all physical quantities by
setting c = G = M� = 1 (see also [10]). We note that the maximum mass nonrotating model
for our chosen EOS has a central energy density εc = 4.122× 10−3 with a gravitational
mass of M ' 1.64 and a rest mass of M0 ' 1.8. Figure 2 acts as an illustrated definition of
equilibrium sequences A, B and C.
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Figure 2. Gravitational mass M versus the central energy density εc for the definition of sequences A,
B and C. For reference, the nonrotating (TOV) sequence (solid line), the mass-shedding (Kepler) limit
for uniform rotation (dashed line) and the axisymmetric instability limit for uniform rotation (dotted
line) are shown. Figure from [8].
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We performed a comparison between the new Uryu+ rotation law and the KEH law
and verified a close agreement for the masses of the corresponding configurations. The left
panel of Figure 3 shows a difference at the 1% level for low density and rapidly rotating
models, which became much smaller as the compactness increased for sequences B and
C (right panel). There was a slightly larger influence of the rotation law choice on the
radius, as smaller radii were found for the Uryu+ models. This was attributed to a weaker
centrifugal force in the Uryu+ models, since the angular velocities at the equator Ωe were
also found to be smaller. We note that results shown in Figure 3 were obtained with the
reference values {λ1, λ2} = {2.0, 0.5}.
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Figure 3. Comparison of the gravitational mass M versus the circumferential radius Re for the equilibrium models of
sequences A (Left), B and C (Right), constructed with the Uryu+ and the KEH differential rotation laws. The values
{λ1, λ2} = {2.0, 0.5} were used for the Uryu+ law calculations. Figure from [8].

In order to highlight the distinction between quasi-toroidal and quasi-spheroidal
morphologies, we explore additional values of parameters {λ1, λ2} for a representative
model with rp/re = 0.5 (Figure 4). From the four pairs of {λ1, λ2} values considered,
only the pair {2.0, 0.5} led to a quasi-toroidal configuration. This is consistent with the
corresponding Ω(r) profile having the highest degree of differential rotation (right panel
of Figure 4). Similar results were obtained with corresponding models with rp/re ∼ 0.5
from sequences A and C.
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Figure 4. Effect of the different options for parameters {λ1, λ2} for model B10 (rp/re = 0.5). (Left) energy density profile
ε(r) versus the coordinate radius r in the equatorial plane. (Right) angular velocity profile Ω(r) in the equatorial plane.
Figure from [8].
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We go on to construct full sequence C variations (i.e., of constant central energy density
εc = 3.3× 10−3) with the Uryu+ rotation law but different {λ1, λ2} values. The M(Re)
curves in Figure 5 summarize the four equilibrium variation sequences (extra equilibrium
solutions were calculated for Figure 5, in order to produce smoother curves).
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Figure 5. Gravitational mass M versus the circumferential radius Re for the variations of sequence
C, constructed with the Uryu+ differential rotation law and employing different {λ1, λ2} values.
Equilibrium models with {λ1, λ2} = {2.0, 0.5} and {1.5, 0.5} are type C solutions, while models with
{λ1, λ2} = {2.0, 1.0} and {1.5, 1.0} are type A solutions [18]. Figure from [8].

A mass-shedding limit was found for the cases {λ1, λ2} = {2.0, 1.0} and {1.5, 1.0} at
axis ratio values of 0.38602 and 0.46693, respectively. This classifies these sequences as type
A solutions according to [18]. For the cases {λ1, λ2} = {2.0, 0.5} and {1.5, 0.5}, no mass-
shedding limit was found. For the terminal models of the latter sequences, i.e., the highest
mass models of the corresponding curves in Figure 5, the maximum density was located
off-center, and a quasi-toroidal morphology was established. The above characteristics
classify these sequences as type C solutions according to [18].

As a worst case scenario, in [8], we also performed a comparison between full GR and
the IWM-CFC conformal flatness approximation [19,20] for a representative model of our
most compact sequence C with rp/re = 0.5 for the highest degree of differential rotation
considered here, i.e., {λ1, λ2} = {2.0, 0.5}. Figure 6 shows the energy density and angular
velocity profiles of the specific model for the GR and IWM-CFC case.
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Figure 6. Comparison between full GR and the IWM-CFC approximation for model C5 (rp/re = 0.5) calculated for the
Uryu+ rotation law with {λ1, λ2} = {2.0, 0.5}. (Left) energy density profile in the equatorial lane ε(r) versus the coordinate
radius r. (Right) angular velocity profile in the equatorial plane Ω(r) versus the coordinate radius r. Figure from [8].
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We found that the IWM-CFC approximation remained acceptably accurate for models
with an axis ratio rp/re = 0.5, which can be considered as merger-mimicking candidates.
The relative errors for local quantities (such as the radius and the angular velocity) were
up to ∼2.5% and ∼1% for the masses and the ratio T/|W| of the rotational kinetic energy
over the absolute value of the gravitational binding energy. This is consistent with the
corresponding errors reported in [17] for the same sequence calculated with the KEH
rotation law with Â = 1 (Figure 7).
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Figure 7. Absolute values of the relative difference between full GR and IWM-CFC approximation for
the gravitational mass M, the ratio of rotational to gravitational binding energy T/|W|, the equatorial
circumferential radius Re and the angular velocity at the center of the configuration Ωc for sequence C
calculated with the KEH rotation law. Values at T/|W| ∼ 0.16 correspond to an axis ratio rp/re = 0.5.
Figure from [17].

4. Discussion

In [8], we found that the versatility of the new Uryu+ rotation law allowed for the
construction of equilibrium solutions with a rotational profile much closer to the one
observed for merger remnants in numerical simulations, while at the same time dwelling in
the realm of type A solutions [18] (i.e., quasi-spherical). This is an important development
toward constructing more realistic equilibrium models that can mimic the properties of
merger remnants. Having more realistic models available will allow further insights
about stellar stability and the threshold for prompt collapse to emerge in future studies.
A necessary first step to that direction is to expand this study for realistic and hot EOS.

Recently, new multivariate empirical relations were reported (Figure 8) for the post-
merger frequencies fpeak (the dominant oscillation frequency stemming from excitation of
the fundamental quadrupolar l = m = 2 mode), fspiral (stemming from a spiral deforma-
tion, the pattern of which rotates slower with respect to the double-core structure in the
center of the remnant) and f2−0 (stemming from a non-linear coupling of the m = 2 mode
to the fundamental quasi-radial m = 0 mode) [21]. Another interesting follow-up would
be to study these oscillations and empirical relations using configurations constructed with
the new Uryu+ law via time evolution or perturbation methods.
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Figure 8. Surfaces corresponding to empirical relations for the three different post-merger frequencies
fpeak, fspiral and f2−0, as a function of the chirp mass Mchirp and the equatorial circumferential radius
R1.6 of a nonrotating model with gravitational mass M = 1.6M�. Figure from [21].
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15. Zhou, E.; Tsokaros, A.; Uryū, K.; Xu, R.; Shibata, M. Differentially rotating strange star in general relativity. Phys. Rev. D 2019,

100, 043015. [CrossRef]
16. Hanauske, M.; Takami, K.; Bovard, L.; Rezzolla, L.; Font, J.A.; Galeazzi, F.; Stöcker, H. Rotational properties of hypermassive

neutron stars from binary mergers. Phys. Rev. D 2017, 96, 043004. [CrossRef]
17. Iosif, P.; Stergioulas, N. On the accuracy of the IWM–CFC approximation in differentially rotating relativistic stars. Gen. Relativ.

Gravit. 2014, 46, 1800. [CrossRef]
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