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Abstract: Background: Researchers have established that the preterm neonate is born with an
immature gastrointestinal tract. The preterm neonate is thus susceptible to various complications
often seen in the neonatal intensive care unit, e.g., feeding intolerances, necrotizing enterocolitis, and
hospital-acquired bloodstream infections. These complications can be life-threatening, and if survived,
can have an unfavorable effect on the neonate’s growth and development. Aim: The aims of this
narrative review article were to provide an in-depth understanding of the various factors contributing
to the development of the preterm neonatal microbiome. Further, we reviewed gastrointestinal
microbiome dysbiosis and its potential role in the development of feeding intolerances, necrotizing
enterocolitis, and hospital-acquired bloodstream infections. Lastly, we described the potential role
of probiotics in this vulnerable population. Methods: A PubMed database search was conducted
identifying articles that describe the development and function of the neonatal microbiome, the role
of gastrointestinal dysbiosis, and the development of neonatal complications as well as the role of
probiotics in gastrointestinal dysbiosis. Results: Various maternal, neonatal, and environmental
factors play a role in the development of gastrointestinal dysbiosis in the preterm neonate. This can
lead to feeding intolerances, necrotizing enterocolitis, and hospital-acquired bloodstream infections.
Discussion: The pathogenesis of the development of short-term complications in the preterm neonate
can be linked to the immaturity of the host immune system as well as alterations seen in the intestinal
microbiome. There is a growing body of evidence that probiotics can play a role in preventing
dysbiosis and thus complications observed in the preterm neonate. However, the optimal combination
of probiotic strains and dosage still needs to be identified.
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1. Introduction

The development of the intestinal innate immune system starts in the fetus and then
matures in the neonate after birth [1]. Due to an early birth, the preterm neonate is born
with an immature intestinal immune system characterized by a deficiency of intestinal
innate immune cells and a low production of certain cytokines [1]. Premature neonates
further present with an immature gastrointestinal system in terms of motility, digestion and
absorption, circulatory regulation, intestinal epithelial barrier, and immune functions [2].
The preterm gastrointestinal system is thus vulnerable to delayed motility and gastric
emptying, with subsequent stasis of the intestinal luminal content, leading to bacterial
overgrowth [2]. Increased permeability of the immature epithelial mucosal barrier can arise
from low levels of protective intestinal mucus and its peptides, decreased tight junctions
between epithelial cells due to immaturity (probably due to the interactions of occludins
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and claudins), reduced secretory immunoglobulin A (IgA), and the decreased regenerative
capability of the immature gastrointestinal tract (GIT) [2,3]. This can lead to tissue damage,
e.g., intestinal ischemia, hyperosmolar injury, increased permeability, possible translocation
of microbes or their toxins, and subsequent inflammation [2–7]. Furthermore, preterm
neonates experience a lower stomach hydrogen output, which with the use of H2 blockers,
can lead to the proliferation of pathogens [8,9].

The immature GIT is thus susceptible to feeding intolerances, which is frequently
observed as an inability to digest enteral feeds, with increased gastric residuals, abdominal
distension, and emesis. The delay in full enteral feeds is unavoidably associated with
the use of total parenteral nutrition (TPN) and a subsequently higher risk of central line-
associated bloodstream infections (CLABSI) [10]. Gestational age at birth has an inverse
relationship with complications, such as feeding intolerance, the development of necro-
tizing enterocolitis (NEC), and a higher risk of hospital-acquired bloodstream infection
(HA-BSI) (formerly described as late-onset sepsis (LOS)) [11,12].

Probiotics, as defined by the World Health Organization (WHO), are “live microor-
ganisms which when administered in adequate amounts confer a health benefit on the
host” [13]. Probiotics can serve different functions in the host, specifically conservation of
appropriate host–microbe interactions, pathogen exclusion, mucus secretion from goblet
cells, enhancement of the epithelial barrier function, production of antibacterial factors, im-
mune response modulation (e.g., enhanced mucosal IgA responses), increased production
of anti-inflammatory cytokines, changes in intestinal permeability, and the activation of the
host adaptive immune system [14–16].

Research has established that using probiotics has beneficial health outcomes in
preterm neonates [17]. It has been confirmed that some probiotics can change the com-
position of the gastrointestinal microbiome [18], thereby altering disease vulnerability.
Bifidobacterium infantis, for example, can protect the intestinal surface against pathogen
penetration by activating B cells to mature into secretory IgA-producing plasma cells, which
can coat the surface of the intestine [18].

This review aims to provide a better understanding of the various factors contributing
to the development of the neonatal microbiome and the potential role of probiotics in the
neonatal intensive care unit (NICU). We will review several aspects regarding dysbiosis in
the preterm neonate.

2. Methods

A PubMed database search was conducted between 2019 to August 2023 to collect the
literature. The search included randomized placebo-controlled trials, controlled clinical
trials, double-blind, randomized controlled studies, meta-analyses, systematic reviews,
and review articles. The following combinations of keywords were used: “neonatal mi-
crobiome” OR “premature infant microbiome” OR “dysbiosis” AND “premature infant”
OR “NEC” AND “premature infant” OR “sepsis” AND “premature infant” OR “feed-
ing intolerance” AND “premature infant” OR “probiotics” AND “premature infant” OR
“probiotics” AND “NEC” OR “probiotics” AND “feeding intolerance “AND “premature
infant” or “probiotics” AND “sepsis“ AND “premature infant”. Papers that were not
randomized placebo-controlled trials, controlled clinical trials, double-blind, randomized
controlled studies, meta-analyses, systematic reviews, or review articles were excluded.
Articles not containing any of the specified keyword combinations mentioned above were
also excluded.

3. The Microbiome

The human microbiome is a collection of microorganisms (bacteria, protozoa, fungi,
viruses, and bacteriophages) and resides on the surface of and inside the body [19]. The
microbiome comprises approximately 100 trillion cells, which is ten times more than the
number of human cells [20]. The largest quantity of human adult microbiota resides in the
GIT [2,21].
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4. Development of the Microbiome in Preterm Neonates

Figure 1 provides a visual overview of various factors that play a role in the develop-
ment of the microbiome in the preterm neonate. The various factors will be described in
the section below, from birth and onwards.

Dietetics 2023, 2, FOR PEER REVIEW 3 
 

 

microbiome comprises approximately 100 trillion cells, which is ten times more than the 
number of human cells [20]. The largest quantity of human adult microbiota resides in the 
GIT [2,21]. 

4. Development of the Microbiome in Preterm Neonates 

Figure 1 provides a visual overview of various factors that play a role in the 
development of the microbiome in the preterm neonate. The various factors will be 
described in the section below, from birth and onwards. 

 
Figure 1. Maternal, neonatal, and environmental factors affecting the development of the GIT 
microbiome in preterm neonates. 

4.1. Microbiome Development in Utero 
Colonization of the developing GIT starts in utero as early as 10 weeks post-

conception when amniotic fluid is swallowed [22–26]. Commensal bacteria are present in 
the amniotic fluid [27–29]. Microbes are also found in the placenta [22,27,30], fetal 
membranes, and umbilical cord blood [31]. Microbes have been detected in the meconium 
of neonates shortly after birth, even before the initiation of any feeds [27,28,32–38]. 

An in vitro model has described amniotic fluid as promoting fetal intestinal growth 
since amniotic fluid contains multiple trophic factors, e.g., growth factors, epidermal 

Figure 1. Maternal, neonatal, and environmental factors affecting the development of the GIT
microbiome in preterm neonates.

4.1. Microbiome Development in Utero

Colonization of the developing GIT starts in utero as early as 10 weeks post-conception
when amniotic fluid is swallowed [22–26]. Commensal bacteria are present in the amniotic
fluid [27–29]. Microbes are also found in the placenta [22,27,30], fetal membranes, and
umbilical cord blood [31]. Microbes have been detected in the meconium of neonates
shortly after birth, even before the initiation of any feeds [27,28,32–38].

An in vitro model has described amniotic fluid as promoting fetal intestinal growth
since amniotic fluid contains multiple trophic factors, e.g., growth factors, epidermal
growth factor, and insulin-like growth factors (IGF)-1 and IGF-2 [39]. By the end of the last
trimester, the fetus swallows an average of 450 mL of amniotic fluid per day [2], a crucial
period that preterm neonates miss out on.

It is hypothesized that maternal intestinal antigen-presenting cells such as dendritic
cells can sample and phagocytize maternal intestinal flora, carrying live commensal bacteria
to the bloodstream and maternal organs. These cells can then be found in the maternal
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organs such as the placenta and mammary gland. In this manner, maternal intestinal flora
components may be able to cross over the placenta and be ingested by the fetus and, later,
excreted in the breastmilk and ingested by the neonate [40].

The maternal microbiome affects the health of the neonate, since the maternal micro-
biome, linked with perinatal factors, determines the neonatal microbiome [41]. Various
maternal factors may play a role in fetal microbiome development, e.g., stress, infection,
illness, smoking, maternal diet, and obesity [42,43]. With respect to infection, the human
immunodeficiency virus (HIV) leads to microbiome changes in the HIV-exposed but un-
infected neonate, compared to the HIV-unexposed, uninfected neonate [44]. In terms of
maternal diet, a high fat intake during pregnancy can lead to a reduced relative abundance
of Bacteroides; a Western diet high in refined carbohydrates, fat, and animal protein leads
to increased Clostridium innocuum, Eubacterium dolichum, Catenibacterium mitsuokai, and
Enterococcus spp., and a reduced abundance of Bifidobacteria and Bacteroidetes [41,45,46].
Further, the presence of gestational diabetes can lead to a reduced relative abundance
of Prevotella and Lactobacillus [45,46]. Some medications used during pregnancy, such as
maternal biologics (e.g., tumor necrosis factor-α inhibitors), can cross the placental barrier,
especially in the late second and third trimesters. Owing to the neonate’s immature reticu-
loendothelial system at birth, the drug can take up to 12 months to clear. The use of these
immunosuppressants can thus lead to changes in the neonate’s immune system [47,48].

4.2. Microbiome Development from Birth Onwards

At birth, a neonate’s gestational age has the largest influence on their microbiome
diversity [36]. The presence of Enterobacter, Enterococcus, Lactobacillus, Photorhabdus, and Tan-
nerella in the meconium of neonates born <33 weeks’ gestation is negatively correlated with
the neonate’s gestational age and has been reported to provoke inflammatory responses,
signifying a causative role in premature births [36].

Furthermore, lower gestational ages have been associated with a lower abundance of
Bifidobacterium, Bacteroides, and Streptococcus [6]. One study found that the colonization of
Bifidobacteria in very low birth weight neonates is delayed, and they only appear at a mean
age of 10.6 days (versus as early as 4 days in full-term neonates). Bifidobacteria only became
predominant at a mean age of 19.8 days in their group of preterm neonates [49].

Birth mode and associated complications also play a role. Neonates born follow-
ing the premature rupture of membranes or intra-amniotic infection (chorioamnionitis)
experienced microbe exposure in utero, since bacteria colonize the amniotic membrane,
fetal skin, and mucosa [50]. Further, caesarean sections are associated with pathobionts,
e.g., Staphylococcus, Corynebacterium and Propionibacterium species, compared to vaginal
deliveries, which are characterized by Lactobacillus, Bacteroides, and Bifidobacteria [51].

After delivery, rapid changes occur in the preterm intestinal microbiome in comparison
with healthy, full-term neonates. As illustrated in Figure 1, environmental factors contribute
to observed changes and include the NICU, with increased exposure to HA-BSI and reduced
exposure to parental bacteria, owing to delayed skin-to-skin contact in comparison with
healthy full-term neonates [19]. Hospitalized neonates have higher C. Difficile colonization
rates. Brookes et al. showed that organisms present in the early phase of colonization of
the GIT have reservoirs in the NICU [52].

The feeding journey of the preterm neonate is a challenge owing to factors such
as a low gastric capacity, slow initiation of enteral feeds, and low maternal breastmilk
availability at birth. For these reasons, many neonates receive TPN, leading to a loss of
biodiversity and an altered gut microbial colonization [2,5,32].

The type of enteral feed also influences microbiome development. When comparing
breastmilk, pasteurized donor breastmilk, and infant formula, the microbial content is
distinctly different [53]. Breastmilk contains a high concentration of complex human milk
oligosaccharides (HMOs). After lactose and lipids, HMOs are the third most abundant
component of breastmilk. HMOs exert a powerful prebiotic effect: they are resistant to
the gastric pH and can reach the neonate’s large intestine intact, where they modulate



Dietetics 2023, 2 312

the composition of the gastrointestinal microbiome and act as a carbon source for the GIT
microbiota [54,55]. HMOs have anti-inflammatory properties by regulating the production
of interleukin, activating lymphocytes, and blocking the adhesion of microbial pathogens
to the large intestine’s epithelial surface [54,56]. Breastmilk has its own core microbiome
(Streptococci, Lactic acid bacteria, and Bifidobacteria) [18]. Apart from HMOs, breastmilk
also contains lysosomes, lactoferrin, antibodies, and cytokines that stimulate the increase
of Bacteroides, Bifidobacterium, and Lactobacillus spp. [18,26,53–55]. Moreover, breastmilk
contains the peptide hormone insulin, leading to an increase in intestinal maturation [57].
Neonates who receive breastmilk have a lower microbiome diversity, but almost double
the abundance of beneficial bacterial cells compared with neonates who receive infant
formula [42]. Formula-fed neonates have a more diverse microbiome (Coliforms, Bacteroides,
Clostridium difficile, and Lactobacilli) [58–60].

Almost all premature neonates receive antibiotics, either before, during, or after birth.
Worldwide, an estimated 40% of pregnant mothers and neonates receive antibiotics for
the prevention and control of infections [61]. Intrapartum antibiotic prophylaxis leads to
decreased Bifidobacterial numbers directly after birth [18]. Empirical antibiotic therapy is
often initiated in preterm neonates [61–63]. Antibiotic use early in life is detrimental to
microbiome progression. It affects the timing of the progression of the microbiome, as well
as the organisms present [6,44,64]. Administering antibiotics at an early age, when the
immune system is still maturing, increases the risk of developing HA-BSI and NEC [65–67].

While it was previously believed that genetics influence the microbiome, new studies
in twins refute this, indicating the importance (or influence) of environmental factors [18].

5. Functions of the Microbiome

The gut microbiome plays a role in almost all day-to-day human functions, including
nutritional, physiological, immunological, and protective functions. The normal interaction
between gut microbes and their host is a symbiotic relationship [68]. The host immune
system has an intimate relationship with the gut microbiota, which affected it through
various pathways, e.g., microbial components and their metabolites [69]. The innate
immune system has evolved to provide mutual benefit to the host and microbiota by
recognizing microbial components via specialized receptors, e.g., toll-like receptors that lead
to “controlled or physiological inflammation”, with the formation of tissue repair factors,
antimicrobial proteins, and IgA. The toll-like receptors can recognize microbial ligands
and distinguish between commensal and pathogenic bacteria. This process maintains
the intestinal mucosal barrier, without which bacterial translocation and the uncontrolled
absorption of complex proteins can occur [70–73].

Short-chain fatty acids produced by the gut microbes have a trophic effect on the
intestinal epithelium by stimulating epithelial cell proliferation and differentiation [74–77].
The intestinal mucosa is the main crossing point between the external environment and
the immune system. The gut mucosa is in constant contact with enteric microbes. On the
one hand, it must provide protection against pathogenic microbes but on the other, tolerate
commensal flora [78]. The intestinal epithelium cells, therefore, need to avoid the uptake of
pathogenic microorganisms, antigens, and detrimental components, while also collecting
antigens [79].

Moreover, the gut microbiome is involved in the correct development of gut-associated
lymphoid tissue, [80] which is the largest immune organ of the body, as approximately 80%
of all immunoglobulin-producing cells are found in the small bowel [79]. The microbiome
contributes to the homeostasis of the intestinal immune system through pathogen displace-
ment (competing for nutrients and cell adhesion), activation of the local immune response,
and the control of local and systemic inflammation [72,74–77].

6. Dysbiosis

Dysbiosis is characterized by a change in gut microbiota, which leads to the over-
growth of potentially pathogenic bacteria and a reduction in the number of beneficial
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bacteria [77,78]. Dysbiosis is associated with an inappropriate response of the innate im-
mune system and leads to inflammation. One suggested mechanism is that the disruption
of the normal neonatal intestinal bacterial flora leads to a pro-inflammatory state, allowing
the translocation of pathogens across the intestinal epithelial cells [81]. This inflammation
can lead to organ dysfunction, infections, and sepsis [72].

The immature immune system of a premature neonate is unable to control the over-
growth of pathogenic bacteria. Therefore, preterm neonates with dysbiosis are at a higher
risk of short-term complications, e.g., feeding intolerance, NEC, and HA-BSI, as well as
long-term complications such as neurodevelopmental impairment [82].

Probiotics can serve different functions in the host, i.e., conservation of appropriate
host–microbe interactions, pathogen exclusion, mucus secretion from goblet cells, en-
hancement of the epithelial barrier function, production of antibacterial factors, immune
response modulation (e.g., enhanced mucosal IgA responses), increased production of
anti-inflammatory cytokines, changes in intestinal permeability, and the activation of a host-
adaptive immune system [14–16]. Given their widespread availability, it was postulated
that administering probiotics to premature neonates can aid in populating the intestine
with normal, beneficial flora that will inhibit the growth of pathogenic flora [16].

7. Drug-Resistant Gram-Negative Bacteria (DR-GNB)

The large intestine is an important reservoir for many nosocomial pathogens, e.g.,
Enterococcus species, Enterobacteriaceae, Clostridium difficile, and Candida species. Premature
neonates often present with an overgrowth of these pathogens if the normal gut barrier
is disturbed [83,84]. During the NICU stay, the preterm is also exposed to the following
factors: poor hand hygiene, overcrowding, inadequate spacing between neonate incubators,
environmental colonization, inadequate cleaning of equipment in the ward, low nurse-to-
patient ratios, imprudent use and prolonged courses (intrapartum and postnatal) of broad-
spectrum antibiotics, and lastly, the delayed introduction of maternal breastmilk [85,86].
These microorganisms can colonize the neonatal GIT, influencing the microbiome.

Colonization of the GIT precedes invasive infection in premature neonates [84]. For ex-
ample, the production of extended-spectrum beta-lactamase enzymes (ESBL-e) poses a high
risk of clinical infection and morbidity in neonatal populations. ESBL-e is frequently impli-
cated in bloodstream infections (BSI) and is a major mechanism for antimicrobial resistance.
Klebsiella pneumonia and Escherichia coli are the most frequently isolated species [87].

The WHO recognizes antimicrobial resistance as a health threat of global concern
owing to its associated morbidity and mortality, as well as increased healthcare costs [88].
Probiotics can colonize the GIT of humans effectively, competing with other bacteria for
both nutrients and space. Probiotics promote mucosal barrier function, inhibit mucosal
pathogen adherence, and interact with the innate and adaptive immune system. Further,
probiotics also produce antimicrobial substances, receptor hydrolysis, and nitric oxide. In
this way, probiotics can help decolonize the GIT of DR-GNB [89].

A study conducted in Cambodia showed that gastrointestinal colonization with DR-
GNB occurred early during hospitalization, and that the use of a probiotic, e.g., Lactobacillus
acidophilus, can reduce the acquisition of DR-GNB [84]. Bifidobacterium longum subsp. infantis
can change the neonate gut microbiome and lower the abundance of common gut taxa,
such as Proteobacteria and Firmicutes phyla (e.g., Escherichia and Clostridium) [90].

8. Hospital-Acquired Bloodstream Infection

The preterm neonate is at an increased risk for HA-BSI. The lower the gestational
age and birth weight, the higher the risk for HA-BSI [12,91]. Other risk factors include
dysbiosis, long-term use of invasive interventions, e.g., mechanical ventilation and in-
travascular catheterization, delay in early enteral feeding with human breastmilk, a lengthy
period of parenteral nutrition, hospitalization, surgery, and underlying respiratory and
cardiovascular diseases [12].
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HA-BSI can further be related to microbial–host interactions, including direct bacterial
translocation. Organisms that usually cause HA-BSI include coagulase-negative Staphy-
lococci, Staphylococcus aureus, Gram-negative bacilli, and fungi [12]. A retrospective study
conducted in South Africa indicated that the majority of HA-BSI infections were caused by
Gram-negative bacteria, with Staphylococcus aureus and Acinetobacter baumannii as the most
common organisms [92].

Neonates who develop sepsis are usually born with low microbial diversity. Premature
neonates who do not develop neonatal sepsis may have a definable ‘healthy microbiome’. In
contrast, prolonged broad-spectrum antibiotics profoundly decrease gut microbial diversity
and promote a pathogen-predominant microbiota associated with sepsis [93]. A delay in the
colonization of Proteobacteria may cause an excessive immune response that compromises
mucosal barrier integrity, resulting in inflammation, NEC, and bacterial translocation into
the bloodstream, and leading to HA-BSI [65,67].

A growing body of evidence suggests that probiotics can prevent HA-BSI in premature
neonates [94]. A systematic review and meta-analysis found that probiotic supplementation
is safe and effective in reducing HA-BSI in preterm neonates and that the use of Lactobacillus
species and Bifidobacterium species, or a combination of two or three species of probiotics,
could be most beneficial [95–97].

Methods with which probiotics could reduce the incidence of HA-BSI include com-
petitive barring of potentially pathogenic luminal bacteria and fungi by colonizing the
gut, improved mucosal IgA response, modulation of gut barrier function and permeability,
production of antimicrobial peptides, and upregulation of the immune response. Neonates
who receive breastmilk appear to benefit even more from probiotics than formula-fed
neonates. The reasons include reduced gut permeability, and thus less translocation of
pathogens from the gut, intake of anti-infective agents, e.g., Lactoferrin, Immunoglobulin
A, Immunoglobulin G, and Immunoglobulin M, as well as the intake of oligosaccharides
which act as a prebiotic [95].

9. Feeding Intolerance

A high percentage of premature neonates experience feeding intolerance, possibly
linked to an immature GIT in terms of poor gastric emptying, gastro-duodenal hypomotility,
and/or duodenal gastric reflux [98,99].

Probiotic supplementation may reduce feeding intolerance. According to a systematic
review and meta-analysis, 19 out of 25 trials indicated that probiotics could shorten the
time to full enteral feeds, reduce observed episodes of feeding intolerance, improve weight
gain and growth velocity, decrease transition time from orogastric to breast feeds, increase
postprandial mesenteric flow, and shorten hospital stays [17]. Neonates supplemented
with probiotics (irrespective of Bifidobacterium or non-Bifidobacterium strains, single or
multiple strains, or early and late initiation of probiotics) took less time to achieve full feeds
compared to the placebo groups [17].

Reducing feeding intolerance could lead to increased GIT maturity and motility
through increased intestinal transit time and gastric emptying, as well as increased superior
mesenteric artery flow [17].

10. Necrotizing Enterocolitis

NEC is a multifactorial, inflammatory disease of the newborn GIT and has an incidence
of 7–12% in preterm neonates of less than 1500 g [18]. It is the leading cause of mortality,
with mortality rates varying between 15% and 30% [78,100,101]. While the exact etiology of
the development of NEC is still unknown [102,103], numerous factors have been reported
to play a role [102,104–109]. These factors can lead indirectly to a disruption of intestinal
mucosal integrity and to intestinal ischemia [17,106].

Most theories on NEC pathogenesis focus on dysbiosis [102], due to the strong link be-
tween the pathogenesis of NEC and abnormal bacterial colonization [105,108,109]. Changes
in microbiota composition can already be observed in the preclinical phase of NEC, and
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volatile fecal organic compounds can serve as a non-invasive biomarker for the detection
of NEC, two to three days before the onset of its clinical symptoms [110].

A systematic review and meta-analysis showed varying effects between probiotic
trials and the prevention of NEC, with no definitive conclusion drawn [109]. AlFaleh and
Anabrees showed in their systematic review and meta-analysis that the administration
of Lactobacillus species alone, as well as a mixture of probiotics, significantly reduced
the incidence of severe stage II to III NEC. The administration of a mixture of probiotics
also showed a reduction in the incidence of mortality. However, the administration of
Lactobacillus or Bifidobacterium species alone did not reduce mortality [105]. Bi et al. also
concluded after a meta-analysis that Lactobacillus alone reduces the incidence of NEC, but
that a Bifidobacterium probiotic mixture could be the preferred option for NEC, sepsis, and
all-cause mortality reduction in premature neonates [96].

One single-center retrospective observational study indicated that the use of a triple-
species probiotic consisting of L. acidophilus, B. bifidum, and B. longum subspecies infantis
can lead to a 4.4% reduction in NEC and an 11% decrease in HA-BSI pre- and post-
implementation [111]. Another study using Bifidobacterium infantis and Lactobacillus aci-
dophilus showed a reduction in NEC from 6.6% (85 NEC cases out of 1282 participants in the
control group) to 2.7% (34 NEC cases out of 1237 participants in the probiotic group) [112].

11. Discussion

Various maternal, neonatal, and environmental factors place the preterm neonate
at high risk of dysbiosis, which could increase the risk of short-term complications, e.g.,
feeding intolerance, NEC, and HA-BSI. These morbidities, in turn, could contribute to the
development of long-term consequences of premature birth [43].

There is a growing number of studies conducted in preterm neonates using different
probiotic strains and dosages. Some studies show that probiotics can play a role in prevent-
ing dysbiosis and thus avoiding neonatal complications. For example, a review by Under-
wood shows there is strong evidence that the use of a multi-strain probiotic in breastfed
infants can prevent NEC [113], while other reviews indicate little or no effect in preventing
NEC morbidity and mortality [114]. A systematic review and meta-analysis indicated that
probiotic supplementation is safe and effective in reducing HA-BSI in preterm neonates.
However, these authors recommend the use of Lactobacillus species and Bifidobacterium
species, or a combination of two or three species of probiotics, as most beneficial [95–97].

It is important to note that different probiotic strains and dosages can have different
effects. There is thus the need for large RCTs to investigate the optimal dosage and
combination of probiotic strains to prevent several complications in the preterm neonate.

12. Conclusions

Various factors in the preterm neonate play a role in gastrointestinal dysbiosis. Some
factors can be modified (e.g., reduced use of unnecessary antibiotics, use of formula milk)
and some factors are unavoidable (e.g., preterm birth). The pathogenesis of the develop-
ment of short-term complications in the preterm neonate can be linked to the immaturity
of the host immune system as well as alterations seen in the intestinal microbiome. There
is a growing body of evidence that probiotics can play a role in preventing dysbiosis and
thus complications observed in the preterm neonate. However, the optimal combination of
probiotic strains and dosage still needs to be identified.
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