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Abstract: Adverse weather conditions impact mobility, safety, and the behavior of drivers on roads.
In an average year, approximately 21% of U.S. highway crashes are weather-related. Collectively,
these crashes result in over 5300 fatalities each year. As a proof-of-concept, analyzing weather
information in the context of traffic mobility data can provide unique insights into driver behavior
and actions transportation agencies can pursue to promote safety and efficiency. Using 2019 weather
and traffic data along Colorado Highway 119 between Boulder and Longmont, this research analyzed
the relationship between adverse weather and traffic conditions. The data were classified into distinct
weather types, day of the week, and the direction of travel to capture commuter traffic flows. Novel
traffic information crowdsourced from smartphones provided metrics such as volume, speed, trip
length, trip duration, and the purpose of travel. The data showed that snow days had a smaller traffic
volume than clear and rainy days, with an All Times volume of approximately 18,000 vehicles for
each direction of travel, as opposed to 21,000 vehicles for both clear and wet conditions. From a trip
purpose perspective, the data showed that the percentage of travel between home and work locations
was 21.4% during a snow day compared to 20.6% for rain and 19.6% for clear days. The overall traffic
volume reduction during snow days is likely due to drivers deciding to avoid commuting; however,
the relative increase in the home–work travel percentage is likely attributable to less discretionary
travel in lieu of essential work travel. In comparison, the increase in traffic volume during rainy days
may be due to commuters being less likely to walk, bike, or take public transit during inclement
weather. This study demonstrates the insight into human behavior by analyzing impact on traffic
parameters during adverse weather travel.

Keywords: adverse weather; traffic conditions; travel behavior; trip purpose; road weather; weather-
related crashes; weather-related travel disruption

1. Introduction

This study analyzes the relationship between inclement weather and road conditions
for an example locale: Boulder, Colorado. According to the Federal Highway Adminis-
tration’s (FHWA) Road Weather Management Program, approximately four-fifths of all
fatal weather-related crashes were due to wet pavements [1], which lead to reduced friction
between a vehicle’s tires and the road surface. Many previous studies have shown that
crash risk increases during rainfall [2–15] and winter weather [4,7,11,16–21]. Increased
crash risk results from both meteorological and non-meteorological factors beyond the
loss of friction. Weather factors such as the intensity, accumulation, and time since the last
precipitation event have all been found to increase risk [4,10]. Non-weather factors such

Meteorology 2023, 2, 489–508. https://doi.org/10.3390/meteorology2040028 https://www.mdpi.com/journal/meteorology

https://doi.org/10.3390/meteorology2040028
https://doi.org/10.3390/meteorology2040028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/meteorology
https://www.mdpi.com
https://orcid.org/0000-0002-9520-4801
https://orcid.org/0000-0002-9336-6532
https://orcid.org/0000-0002-2633-7547
https://doi.org/10.3390/meteorology2040028
https://www.mdpi.com/journal/meteorology
https://www.mdpi.com/article/10.3390/meteorology2040028?type=check_update&version=1


Meteorology 2023, 2 490

as ambient light conditions, road design, driver training and experience, and changes in
traffic volume/flow can contribute to or mitigate crash risk depending on the event.

Past studies [22] have explored the reduction in traffic volume that may result from
inclement weather. For example, reductions in weekday travel due to snowfall range from
7% to 34% while weekend travel is reduced by 19% to 47% [23], with larger reductions
related to higher snowfall totals. Knapp and Smithson [24] found similar reductions in
travel volume of 16% to 47%, and the FHWA estimates that heavy snow may reduce traffic
volume by as much as 44% [1]. Rainfall also leads to reduction in traffic volume [10,25], and
those reductions may be as much as 15% during heavy rainfall [1]. In addition, Keay and
Simmonds [9] found that daily traffic volume decreases 0.08% for each 1.0 mm of rainfall.
More recent work [26,27] took observational and modeling approaches to demonstrate how
traffic volumes during adverse weather conditions can vary with vehicle classifications;
noting reductions in personal passenger vehicles paired with increases in commercial
vehicles, suggesting the more discretionary nature of passenger vehicle trips.

Research [22] suggests that motorists do alter their behavior during inclement weather
conditions. In general, the behavioral changes made by those who do travel are not enough
to offset the increased crash risk of driving during these conditions [4,18,19,21], leading to
the previously mentioned increase in crash risk. An example of this is that many drivers will
make minor adjustments to their speed during inclement weather by slowing down [28].
However, Edwards [28] argues that this decrement in speed is not enough to offset the
increased risk associated with stormy weather conditions. Beyond decreasing speed, many
people choose not to travel, as reflected in the traffic volume reductions. For example,
an individual’s ability to engage in self-regulation influences their decisions related to
driving [29]. Self-regulation is an individual’s ability to understand and manage their
behavior in the context of their emotions and the surrounding environment. Additionally,
other factors (e.g., age, gender, driving strategies, and views on the utility of driving)
interact with a person’s ability to self-regulate their driving behavior [29]. In addition
to the aforementioned variables, there are a wide range of other factors that influence a
person’s driving habits and abilities, such as experience, visual attention ability, visuo-
spatial scanning abilities, and the environmental cues that the person perceives [30,31].

In addition to changes in driving behavior, adverse weather conditions also contribute
to modifications in trip purpose and occurrence [32–37]. The most common self-reported
modifications included changes in mode of travel, departure time, and travel route [32].
Snow was consistently found to have the greatest impact on trip purposes [33]. Moreover,
commuting trips to work or school were more resistant to change than shopping or leisure
trips [33]. Some studies [37] consider a longer-term climate change lens relative to changes
in trip purpose and subsequent travel patterns. An important limitation of these previous
studies is that they often rely on survey data and methods to understand and quantify
changes in trip purpose. The use of crowdsourced and artificial intelligence applications
would yield a more robust dataset with greater efficiency in data collection, as well as
mitigating potential survey biases.

The aim of this study is to assess the feasibility and potential insights of using crowd-
sourced, smartphone-based traffic mobility data to understand the context of motorist
travel behavior and decision-making during inclement weather. Given the proliferation of
smartphones and various location-tracking applications, these data offer new and poten-
tially rich insights into motorist behavior and travel decision-making beyond conventional
techniques. Moreover, these insights can integrate a database of conventional traffic mo-
bility information such as speeds and volumes in conjunction with the demographics of
those who are traveling and the purpose of these trips. This information has the potential
to expand our understanding of motorist travel behavior and decision making during
inclement weather with the broader goal of improving safety and efficiency. This study
represents a proof-of-concept analysis incorporating a novel, proprietary database on a
case study.
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2. Methods and Data

To examine the relationship between adverse weather events and traffic conditions,
data were obtained for three different weather stations for 2019 from the National Centers
for Environmental Information [38]. These weather stations are located near Colorado
Highway 119, which is a favored commuting route that connects the cities of Boulder,
Longmont, and Niwot (Figure 1). This corridor was selected given the personal familiarity
of the research team with traffic patterns and conditions during the study period. The
locations of the weather stations are indicated by the red circles and the location of the
“virtual traffic data logger” is indicated by the blue circle in Figure 1. The distance between
the weather stations and the corridor varies between 7–14 km. This “virtual traffic data
logger” is a polygon that can be drawn as small as a singular directional road segment and
as large as a four-square kilometer area. All vehicular movements within the bounds of the
polygon are considered and incorporated into the analysis.
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Figure 1. Study area in north-central Colorado for traffic data (blue) and weather station data
(red) information.

The traffic data were retrieved from a company called StreetLight Data. Their plat-
form records data by using smartphone applications to measure vehicle motion on most
roads [39]. StreetLight provides anonymized, crowdsourced traffic mobility data that
includes information relevant to this analysis such as traffic volume, traffic speed, trip clas-
sification (i.e., school/work-related commute versus short or long-distance personal travel),
trip duration, trip length, and traveler attributes. In addition to smartphone movement and
location information, census tract and parcel zoning information are integrated to define
the residential locations in which a particular smartphone “resides” (typically overnight)
as the “home” location. Proprietary artificial intelligence algorithms have been trained on
the dataset to make these reasonably accurate classifications; however, it is important to
acknowledge that there may still be classification errors. Additionally, a trip begins when
a smartphone moves greater than 20 m at “reasonable vehicular speeds” from any given
location. This criterion is implemented to ensure that walking, running, or cycling around
a home or neighborhood is not classified as a trip. The trip ends once the device has been
stationary for at least five minutes. These data can be used as a proxy to help understand
driver behavior at a given place and time, as well as how external factors may disrupt
behavior relative to “normal” conditions. Additional work leveraging these data have
assessed impacts of flooding on the number of trips taken in a given community [40] and
air pollution and greenhouse gas emissions [41].

To better understand the variation in the traffic parameters, the data were divided into
three main weather classifications: “Clear”, “Rain”, and “Snow”. Days that contain both
rain and snow precipitation are automatically labeled as “Snow” if the snow measurement
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is greater than or equal to 0.1 in. (0.25 cm). If snow is absent but rain exceeded 0.01 in.
(0.025 cm), then the day is labeled as “Rain”. If neither type of precipitation meets the
criteria, then the day is labeled as “Clear”. Rainfall or snowfall was required at any point
within a 24 h period of given day. Although the weather station data gathered were of high
quality, there were some missing data. As a quality control measure, three weather stations
were compared to determine which location had the most complete data, as seen in Table 1.
Because the Boulder station contained only one missing value (Table 1), this location was
used to draw conclusions for this research.

Table 1. Daily weather type day classifications for the 2019 year in Boulder, Longmont, and Niwot.

Weather Types
Number of Days

Boulder Niwot Longmont Total

Clear 263 256 249 768
Rain 55 19 63 137
Snow 46 40 40 126

Missing 1 50 13 64

The traffic data were divided into four periods for analysis: (1) All Times (12 a.m.–12 a.m.
local time [LT]), (2) Peak Morning (6 a.m.–10 a.m. LT), (3) Mid-Day (10 a.m.–3 p.m. LT), and
(4) Peak Afternoon (3 p.m.–7 p.m. LT). LT for this region is either Mountain Daylight (UTC-
6) or Mountain Standard Time (UTC-7). For each of these periods, the yearly averages
of the following traffic parameters were calculated: (1) Traffic Volume, (2) Trip Speed,
(3) Trip Length, and (4) Trip Duration. StreetLight Data and its partners anonymously
monitor smartphone device movement over a period of at least one month to develop
a profile for a particular device and classify its trip purposes. As an example, suppose
an individual leaves a residential zoned parcel at the same time every weekday morning
during a one-month period and concludes a trip at a commercial zoned parcel where
the device does not depart until several hours later. The algorithms would reasonably
assume that this would be a trip between a home and work location. The percentages
for the following trip purposes are calculated: (1) Home-Based Work, (2) Home-Based
Other, and (3) Non-Home-Based. Home-Based Work was defined for trips in between
home and work locations, while Home-Based Other applies for trips that are between
home and non-work locations such as dropping off children at school or picking up coffee.
Non-Home-Based travel accounts for trips that do not involve travel to or from home, such
as picking up food during a lunch break at work or returning home from work at the end of
a day. All these variables were calculated separately for eastbound and westbound traffic,
weekdays versus weekends, and then calculated again with respect to weather class. A
multivariate general linear model assessed the influence of several variables on a variety of
trip purposes. The independent variables in the model were traffic volume, day of week
(weekday versus weekend), time of day, and type of weather. The three trip types that were
entered into the model as the dependent variables were “percent of home-to-work” trips
(Home-Based Work), “percent of home to non-work locations” (Home-Based Other), and
“percent of non-home-based trips” (Non-Home-Based). The pairwise comparisons utilized
Bonferroni’s Correction.

To consider finer temporal resolution weather data, thrice-hourly (i.e., every 20 min)
automated weather observations from the Boulder, CO station was obtained from the Iowa
Environmental Mesonet (IEM) archive [42] for each day during the study period. The
number of observations with snow, rain, or clear conditions were then tabulated for the
four time periods available from StreetLight Data: All Times, Peak Morning, Mid-Day, and
Peak Afternoon. It is important to note that there are a variety of classification techniques
that could be used to define sub-daily weather types such as the most frequent observation
during the period and/or the more “severe” weather event.

For example, during the four-hour peak morning period, there are 12 total observations
available (i.e., thrice-hourly). There are numerous instances in the data where six of the
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observations could be snow, three of the observations rain, and three of the observations are
clear. This presents a classification challenge for the period as there are several possibilities:
(1) classify the period as snow, as this is the most frequent observation; (2) classify the
period as snow, as this is the most “severe” weather observation; (3) consider a new
classification of “mixed”, as the period is not a homogeneous weather type; (4) consider a
new classification of “wet snow”, as it is unlikely that snow coincident with rain and clear
conditions during the same four-hour period would be substantially impactful; (5) classify
the period as “clear”, as it is the least “severe” weather type; or (6) classify the period
as “rain”, as it is the intermediate “severity” of weather type. There would be benefits
and caveats with all of these methods; however, the greater challenge was the desire to be
both objective and consistent. There also exists the case where all 12 observations could be
split evenly among the categories. Moreover, observed precipitation does not necessarily
provide context for how that precipitation may or may not be accumulating on the surface
of the road in particular. There could be observed snow that is simply leaving the road
pavement wet instead of icy, slushy, or snow-covered. Similarly, there could be observed
extremely light rain that is only making the road surface damp instead of soaking wet.
In summary, there is a precipitation “intensity” component that is unavailable for further
scrutiny in the current analysis.

The traffic mobility data was not available at any finer temporal resolution than these
three sub-daily periods. The overall number of days defined as a particular weather
type changed very little when using sub-daily data compared to daily data, with ten or
fewer days changing classification between the two methods. Given the non-homogenous
distribution of sub-daily weather information, the increased subjectivity in selecting a
classification strategy shown by the example, and the relatively small differences from the
daily weather types, the original daily classifications were used for the remainder of the
analysis. This decision is supported by previous studies that have found similar results
when comparing the utility of daily versus sub-daily data when examining weather-related
crash risk [43]. In most cases, the use of sub-daily weather data does not result in risk
estimates that vary significantly from those calculated from daily weather data [43]. To
best understand the variability of the parameters by weather type, it is crucial to analyze
every single day for Boulder in 2019, rather than just the year as a whole. Thus, we provide
plots to reveal the variation in these parameters along with their relationship with different
weather classes.

3. Results and Discussion

The methodology described in the previous section was applied to all 365 days of
2019 for Boulder, to determine differences in the parameter values that imply a link to
human behavior with weather class. The averages for these parameters were calculated
separately for each time period and weather type (Tables 2–5). Table 2 shows the All Times
aggregation, while Tables 3–5 break Peak Morning, Mid-Day, and Peak Afternoon periods.

These tables indicate that eastbound traffic (leaving Boulder) is overall more congested
than westbound traffic (toward Boulder) during the entire day (Table 2) and Peak Afternoon
(Table 5), while westbound travel is more common during the Peak Morning (Table 3) and
Mid-Day (Table 4). One can argue that the westbound volume is higher in the morning
because most people on the road are either traveling to work or dropping their children
off at school, both of which are primarily in that direction of travel. This should also be
expected as Highway 119 is often used by people living in Longmont and points farther
north or east who commute to Boulder, and beyond, for work. Similarly, traffic volumes in
general are higher on weekdays associated with commuters, compared to more recreational
and leisure travel on weekends.
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Table 2. Average All Times weather-related traffic parameters based on Boulder weather. Percent-
age change relative to clear conditions are shown in brackets for the rain and snow weather type
traffic parameters.

Day of Week Travel
Direction

Weather Type
Traffic Parameters

Volume
(Number of Vehicles)

Speed
(mph [km/h])

Length
(miles [km])

Duration
(min)

All Days

Eastbound
Clear 20,850 28.0 (45.1) 24.4 (39.3) 52.7
Rain 21,593 [3.6] 28.2 (45.4) [0.7] 23.5 (37.8) [−3.7] 53.0 [0.6]
Snow 18,429 [−11.6] 27.5 (44.2) [−1.8] 23.5 (37.9) [−3.7] 52.3 [−0.8]

Westbound
Clear 19,004 28.4 (45.6) 23.8 (38.3) 50.5
Rain 19,489 [2.6] 28.2 (45.4) [−0.7] 22.3 (35.9) [−6.3] 50.7 [0.4]
Snow 16,780 [−11.7] 27.6 (44.4) [−2.8] 22.8 (36.7) [−4.2] 50.3 [−0.4]

Weekdays

Eastbound
Clear 22,356 27.5 (44.2) 23.5 (37.9) 52.1
Rain 22,435 [0.4] 27.8 (44.7) [1.1] 23.9 (38.4) [1.7] 52.3 [0.4]
Snow 20,133 [−9.9] 26.8 (43.1) [−2.5] 22.7 (36.5) [−3.4] 51.9 [−0.4]

Westbound
Clear 20,426 27.8 (44.8) 23.1 (37.2) 50.1
Rain 20,234 [−0.9] 27.9 (44.9) [0.4] 23.2 (37.4) [0.4] 50.1 [0.0]
Snow 18,300 [−10.4] 26.9 (43.2) [−3.2] 22.2 (35.7) [−3.9] 50.4 [0.6]

Weekends

Eastbound
Clear 17,076 29.6 (47.6) 26.7 (43.0) 54.3
Rain 19,125 [12.0] 29.4 (47.3) [−0.7] 26.7 (43.0) [0.0] 54.9 [1.1]
Snow 14,532 [−14.9] 29.0 (46.7) [−2.0] 25.5 (41.0) [−4.5] 53.1 [−2.2]

Westbound
Clear 15,440 29.7 (47.8) 25.6 (41.2) 51.5
Rain 17,160 [11.1] 29.1 (46.8) [−2.0] 25.7 (41.4) [0.4] 52.6 [2.1]
Snow 13,307 [−13.8] 29.2 (47.0) [−1.7] 24.2 (38.9) [−5.5] 50.2 [−2.5]

Table 3. Average Peak Morning weather-related traffic parameters based on Boulder weather. Per-
centage change relative to clear conditions are shown in brackets for the rain and snow weather type
traffic parameters.

Day of Week Travel
Direction

Weather Type
Traffic Parameters

Volume
(Number of Vehicles)

Speed
(mph [km/h])

Length
(miles [km])

Duration
(min)

All Days

Eastbound
Clear 2680 29.6 (47.6) 25.5 (41.0) 50.7
Rain 2856 [6.6] 29.6 (47.7) [0.0] 26.2 (42.1) [2.7] 52.1 [2.8]
Snow 2368 [−11.6] 27.4 (44.1) [−7.4] 24.6 (39.5) [−3.5] 53.1 [4.7]

Westbound
Clear 5823 29.1 (46.8) 24.1 (38.8) 49.7
Rain 5938 [2.0] 29.0 (46.6) [−0.3] 24.2 (38.9) [0.4] 49.9 [0.4]
Snow 5254 [−9.8] 27.3 (43.9) [−6.2] 23.0 (37.0) [−4.6] 51.6 [3.8]

Weekdays

Eastbound
Clear 3216 28.8 (46.4) 24.3 (39.1) 49.7
Rain 3258 [1.3] 29.1 (46.8) [1.0] 24.8 (39.8) [2.1] 50.6 [1.8]
Snow 2881 [−10.4] 26.4 (42.6) [−8.3] 23.0 (37.0) [−5.3] 52.7 [6.0]

Westbound
Clear 7068 28.2 (45.4) 23.4 (37.6) 49.9
Rain 6969 [−1.4] 28.4 (45.7) [0.7] 23.5 (37.8) [0.4] 49.9 [0.0]
Snow 6497 [−8.1] 25.9 (41.6) [−8.2] 22.6 (36.3) [−3.4] 53.2 [6.6]

Weekends

Eastbound
Clear 1336 31.4 (50.5) 28.4 (45.7) 53.1
Rain 1680 [25.7] 31.3 (50.4) [−0.3] 30.2 (48.7) [6.3] 56.4 [6.2]
Snow 1165 [−12.8] 29.6 (47.7) [−5.7] 28.1 (45.2) [−1.1] 53.8 [1.3]

Westbound
Clear 2701 31.1 (50.1) 25.9 (41.6) 49.2
Rain 2919 [8.1] 30.6 (49.3) [−1.6] 26.2 (42.1) [1.2] 50.1 [1.8]
Snow 2412 [−10.7] 30.5 (49.1) [−1.9] 23.9 (38.5) [−7.7] 47.9 [−2.6]

To understand the extent to which adverse weather affects these traffic parameters,
average traffic parameters were again calculated by time of day but broken into the weather
classes. It is important to note that while differences in values may seem small, they were
found to be statistically significant (p < 0.05). Tables 2–5 all indicate that traffic volume
during snow is substantially smaller than during rainy or clear weather. This result aligns
with recent work by Call and Flynt [16], who found that daily snowfall had a substantial
impact on passenger vehicle counts whereas commercial vehicle counts were less affected.
It is important to note that the metrics used in the current study did not segment traffic
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volume by vehicle type due to data limitations. Overall, this decrease in traffic volume
during snow may be due to individuals cancelling trips, as they may believe that it will be
too dangerous to commute. It is also important to note the variability of the average all
trip duration for snow. Tables 4 and 5 indicate that trip duration during Mid-Day and Peak
Afternoon is shortest during snow, while Table 3 indicates that trip duration during Peak
Morning is longest for snowy conditions. Individuals may still commute to work, but it
may take longer to get to their destination. Additionally, longer-distance trips are more
likely to be canceled in lieu of shorter, commuter-type trips for potentially more essential
activities. There are no substantial differences when considering day of week, beyond the
differences in traffic volumes.

Table 4. Average Mid-Day weather-related traffic parameters based on Boulder weather. Percent-
age change relative to clear conditions are shown in brackets for the rain and snow weather type
traffic parameters.

Day of Week Travel
Direction

Weather Type
Traffic Parameters

Volume
(Number of Vehicles)

Speed
(mph [km/h])

Length
(miles [km])

Duration
(min)

All Days

Eastbound
Clear 6608 27.9 (44.8) 24.0 (38.7) 52.1
Rain 6928 [4.8] 27.8 (44.7) [−0.4] 24.1 (38.8) [0.4] 52.4 [0.6]
Snow 5739 [−13.2] 27.6 (44.4) [−1.1] 23.1 (37.2) [−3.7] 50.9 [−2.3]

Westbound
Clear 6213 27.8 (44.7) 23.4 (37.6) 50.6
Rain 6377 [2.6] 27.6 (44.4) [−0.7] 23.8 (38.3) [1.7] 51.4 [1.6]
Snow 5326 [−14.3] 27.7 (44.6) [−0.4] 22.4 (36.1) [−4.3] 49.1 [−3.0]

Weekdays

Eastbound
Clear 6769 27.5 (44.2) 23.5 (37.9) 51.9
Rain 7013 [3.6] 27.6 (44.5) [0.4] 23.8 (38.2) [1.3] 52.1 [0.4]
Snow 5998 [−11.4] 27.0 (43.4) [−1.8] 22.7 (36.5) [−3.4] 51.5 [−0.8]

Westbound
Clear 6049 27.4 (44.2) 22.8 (36.8) 50.2
Rain 6169 [2.0] 27.3 (43.9) [−0.4] 23.1 (37.2) [1.3] 50.5 [0.6]
Snow 5318 [−12.1] 27.3 (44.0) [−0.4] 22.0 (35.4) [−3.5] 48.9 [−2.6]

Weekends

Eastbound
Clear 6203 28.8 (46.4) 25.3 (40.7) 52.4
Rain 6675 [7.6] 28.2 (45.4) [−2.1] 25.1 (40.4) [−0.8] 53.2 [1.5]
Snow 5147 [−17.0] 29.1 (46.8) [1.0] 24.1 (38.8) [−4.7] 49.5 [−5.5]

Westbound
Clear 6625 26.7 (42.9) 24.7 (39.8) 51.8
Rain 6982 [5.4] 28.4 (45.8) [6.4] 25.8 (41.4) [4.5] 53.8 [3.9]
Snow 5345 [−19.3] 28.6 (46.0) [7.1] 23.4 (37.7) [−5.3] 49.4 [−4.6]

Table 5. Average Peak Afternoon weather-related traffic parameters based on Boulder weather.
Percentage change relative to clear conditions are shown in brackets for the rain and snow weather
type traffic parameters.

Day of Week Travel
Direction

Weather Type
Traffic Parameters

Volume
(Number of Vehicles)

Speed
(mph [km/h])

Length
(miles [km])

Duration
(min)

All Days

Eastbound
Clear 7624 26.7 (42.9) 23.5 (37.8) 53.3
Rain 7591 [−0.4] 26.8 (43.1) [0.4] 23.7 (38.1) [0.9] 53.6 [0.6]
Snow 6898 [−9.5] 26.5 (42.6) [−0.7] 22.3 (35.9) [−5.1] 51.5 [−3.4]

Westbound
Clear 4607 27.1 (43.5) 23.3 (37.5) 51.6
Rain 4657 [1.1] 27.0 (43.4) [−0.4] 23.3 (37.5) [0.0] 52.2 [1.2]
Snow 4139 [−10.2] 26.9 (43.2) [−0.7] 22.1 (35.5) [−5.2] 49.6 [−3.9]

Weekdays

Eastbound
Clear 8403 25.7 (41.3) 22.6 (36.4) 53.4
Rain 8147 [−3.0] 26.1 (42.0) [1.6] 23.0 (37.0) [1.8] 53.6 [0.4]
Snow 7829 [−6.8] 25.8 (41.6) [0.4] 21.7 (34.8) [−4.0] 51.3 [−3.9]

Westbound
Clear 4878 26.2 (42.1) 22.4 (36.0) 51.5
Rain 4690 [−3.9] 26.4 (42.5) [0.8] 22.6 (36.4) [0.9] 51.8 [0.6]
Snow 4337 [−11.1] 26.2 (42.1) [0.0] 21.3 (34.3) [−4.9] 49.2 [−4.5]

Weekends

Eastbound
Clear 5673 29.1 (46.8) 25.8 (41.4) 53.1
Rain 5961 [5.1] 28.8 (46.3) [−1.0] 25.5 (41.1) [−1.2] 53.9 [1.5]
Snow 4769 [−15.9] 28.0 (45.1) [−3.8] 23.8 (38.3) [−7.8] 51.8 [−2.4]

Westbound
Clear 3928 29.3 (47.1) 25.6 (41.2) 52.0
Rain 4561 [16.1] 28.5 (45.9) [−2.7] 25.3 (40.7) [−1.2] 53.4 [2.7]
Snow 3686 [−6.2] 28.4 (45.8) [−3.1] 23.8 (38.4) [−7.0] 50.6 [−2.7]
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A comparison of traffic parameters relative to one another in the context of weather,
day of week, and time period can provide further insight into the nature of adverse weather
travel. To illustrate this, four combinations of the traffic parameters were plotted based on
weather type and day of week.

The first combination of traffic parameters was traffic volume and trip duration. The
figures show two clusters of points during the Peak Mornings and the Peak Afternoons
for traffic volume during All Days and Weekdays, with the rightmost cluster illustrating
westbound traffic for the morning and eastbound traffic for the afternoon (Figures 2 and 3).
This commuter clustering is not apparent during weekends. This is because many com-
muters travel westward to Boulder for work. Eastbound traffic is more common during the
Peak Afternoon, as many commuters leave work and travel home during this time.
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Traffic parameters show the greatest variability during snow (Figures 2–5). The higher
duration values are likely due to people who continue commuting, but take longer to
get to their destination as the snow slows down their average speed, while the lower
values are due to people who choose to commute a shorter distance due to the inclement
weather (Figures 2–4). This is highlighted in Figure 3, where the average trip speeds were
generally the lowest for snow. It is important to emphasize that these observed changes in
speed are averaged over the entire study period, so it is likely that speed during a specific
weather event, such as a snowstorm, may be even lower than what these averages alone
suggest. The average trip length contains the lowest variability out of the four parameters
(Figures 4 and 5). This is to be expected, as inclement weather has no effect on the distance
that it takes to travel from one location to another. An exception to this would be possible
closure of certain roads due to icy pavements or weather-related traffic incidents. Such
closures may be one source of the variability in trip length during snowy conditions.
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Figure 4. Mean trip speed and mean trip length for significant weather types during the study period.
From top to bottom, the rows represent All Days (top row), Weekdays (middle row), and Weekends
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Unlike snow, the parameters for rainy weather are not substantially different from
clear weather (Figures 2–5). This similarity between rain and clear conditions suggests that
people are not modifying their travel behavior or driving to accommodate the change in
road conditions. Moreover, this implication agrees with Pisano et al. [44] that most weather-
related crashes occur due to rain, as motorists are not slowing down for the changed weather
conditions. Overall, snowy conditions indicate a departure from “normal” conditions,
whereas there is substantial overlap between clear and rainy conditions irrespective of the
day of the week.

To understand the nature of travel for the individuals on the road, the percentages
for the main three trip purposes were calculated (Tables 6–9). Recall that these results
are salient, as the trip purposes vary within each period, day of week, and with weather
type. Overall, home-based work values are highest on the weekdays (associated with
commuter travel), while home-based other values are highest on weekends (associated
with more leisure, shopping/errands travel). One will note that the home-based work
percentages are the highest during snowy weather (Table 6). This is likely due to the overall
reduced volume caused by people who choose not to commute in favor of more essential,
work-related travel.
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The results for the peak morning period align with most of the working population
in Boulder beginning their workday (Table 7). It is also possible that some of the working
population may be labeled as “Home-Based Other” if those that are traveling to work
make a stop for other errands during their commute (e.g., dropping off children, picking
up coffee).

The mid-day results are not surprising either, since this is typically the time where
people may go out for lunch or to run errands, which results in a higher “Home-Based
Other” volume (Table 8). Additionally, workers are usually on their lunch break during this
time. This gives time for workers to make a short trip for lunch, which is responsible for the
large “Non-Home-Based” percentage (Table 8). One will note that the “Home-Based Other”
percentage elevates a bit during the evening (Table 9). This may be due to commuters
returning home from work and families picking up their children from school or childcare.

Based on this information, adverse weather does not seem to affect the trip purposes
of commuters as much as time of the day or day of week do. While snow has affected the
Home-Based Work and Non-Home-Based percentages by as much as 2.9% in the morning
(Table 7), the Mid-Day trip purposes had a percentage difference of up to 25% from the



Meteorology 2023, 2 500

morning parameters (Table 8). Therefore, changes in human behavior due to weather does
little compared to the influence of time of day.

Table 6. Average All Times weather-related trip purpose based on Boulder weather.

Day of Week Direction
of Travel

Weather
Type

Traffic Parameters

Volume
(Number of

Cars)

Home-Based
Work Percentage

(Volume)

Home-Based
Other Percentage

(Volume)

Non-Home-Based
Percentage
(Volume)

All Days

Eastbound
Clear 20,850 18.7% (3899) 44.7% (9320) 36.6% (7631)
Rain 21,593 18.5% (3995) 43.6% (9415) 37.9% (8184)
Snow 18,429 20.3% (3741) 44.3% (8164) 35.4% (6524)

Westbound
Clear 19,004 20.6% (3915) 42.1% (8001) 37.3% (7088)
Rain 19,489 20.9% (4073) 40.6% (7913) 38.6% (7523)
Snow 16,780 22.5% (3776) 42.5% (7132) 35.0% (5873)

Weekdays

Eastbound
Clear 22,356 22.9% (5120) 39.7% (8875) 37.4% (8361)
Rain 22,435 22.0% (4936) 40.0% (8974) 38.0% (8525)
Snow 20,133 25.0% (5033) 39.0% (7852) 36.0% (7248)

Westbound
Clear 20,426 25.5% (5209) 36.8% (7517) 37.7% (7701)
Rain 20,234 25.2% (5099) 36.6% (7406) 38.2% (7729)
Snow 18,300 28.2% (5161) 36.5% (6680) 35.3% (6460)

Weekends

Eastbound
Clear 17,076 8.0% (1366) 57.4% (9802) 34.6% (5908)
Rain 19,125 8.1% (1549) 54.1% (10,347) 37.9% (7248)
Snow 14,532 9.6% (1395) 56.4% (8196) 34.0% (4941)

Westbound
Clear 15,440 8.3% (1282) 55.5% (8569) 36.2% (5589)
Rain 17,160 8.1% (1390) 52.2% (8958) 39.7% (6813)
Snow 13,307 9.5% (1264) 56.1% (7465) 34.4% (4578)

Table 7. Average Peak Morning weather-related trip purpose based on Boulder weather.

Day of Week Direction
of Travel

Weather
Type

Traffic Parameters

Volume
(Number of

Cars)

Home-Based
Work Percentage

(Volume)

Home-Based
Other Percentage

(Volume)

Non-Home-Based
Percentage
(Volume)

All Days

Eastbound
Clear 2680 29.5% (791) 36.4% (976) 34.0% (911)
Rain 2856 28.7% (820) 36.6% (1045) 34.7% (991)
Snow 2368 32.4% (767) 35.1% (831) 32.5% (770)

Westbound
Clear 5823 35.6% (2073) 36.2% (2108) 28.1% (1636)
Rain 5938 36.3% (2155) 33.6% (1995) 30.0% (1781)
Snow 5254 37.6% (1976) 34.9% (1834) 27.5% (1445)

Weekdays

Eastbound
Clear 3216 37.0%(1190) 28.1%(904) 34.9% (1122)
Rain 3258 34.8% (1134) 30.6% (997) 34.6% (1127)
Snow 2881 40.2% (1158) 28.6% (824) 31.2% (899)

Westbound
Clear 7068 44.0% (3110) 28.3% (2000) 27.7% (1958)
Rain 6969 43.0% (2997) 28.4% (1979) 28.7% (2000)
Snow 6497 46.4% (3015) 27.0% (1754) 26.7% (1735)

Weekends

Eastbound
Clear 1336 10.9% (146) 57.3% (766) 31.8% (425)
Rain 1680 10.9% (183) 54.1% (909) 35.0% (588)
Snow 1165 14.6% (170) 50.0% (583) 35.4% (412)

Westbound
Clear 2701 14.7% (397) 56.1% (1515) 29.2% (789)
Rain 2919 16.8% (490) 49.1% (1433) 34.1% (995)
Snow 2412 17.6% (425) 53.2% (1283) 29.2% (704)

A multivariate general linear model assessed the influence of several variables on a
variety of trip purposes. The independent variables in the model were traffic volume, day of
week (weekday versus weekend), time of day, and type of weather. The three trip types that
were entered into the model as the dependent variables were “percent of home-to-work”
trips (Home-Based Work), “percent of home to non-work locations” (Home-Based Other),
and “percent of non-home-based trips” (Non-Home-Based). The pairwise comparisons
utilized Bonferroni’s Correction.
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Table 8. Average Mid-Day weather-related trip purpose based on Boulder weather.

Day of Week Direction
of Travel

Weather
Type

Traffic Parameters

Volume
(Number of

Cars)

Home-Based
Work Percentage

(Volume)

Home-Based
Other Percentage

(Volume)

Non-Home-Based
Percentage
(Volume)

All Days

Eastbound
Clear 6608 10.8% (714) 40.8% (2696) 48.5% (3205)
Rain 6928 11.3% (783) 39.9% (2764) 48.8% (3381)
Snow 5739 11.9% (683) 40.8% (2342) 47.4% (2720)

Westbound
Clear 6213 11.4% (708) 40.6% (2522) 47.9% (2976)
Rain 6377 11.4% (727) 40.0% (2551) 48.5% (3093)
Snow 5326 13.3% (708) 42.2% (2248) 44.5% (2370)

Weekdays

Eastbound
Clear 6769 12.8% (866) 35.6% (2410) 51.6% (3493)
Rain 7013 13.0% (912) 36.4% (2553) 50.6% (3549)
Snow 5998 13.7% (822) 35.7% (2141) 50.6% (3035)

Westbound
Clear 6049 13.8% (835) 35.6% (2153) 50.6% (3061)
Rain 6169 13.5% (833) 36.5% (2252) 50.0% (3085)
Snow 5318 16.2% (862) 36.6% (1946) 47.2% (2510)

Weekends

Eastbound
Clear 6203 5.6% (347) 53.6% (3325) 40.8% (2531)
Rain 6675 6.4% (427) 50.1% (3344) 43.5% (2904)
Snow 5147 7.6% (391) 52.7% (2712) 39.8% (2049)

Westbound
Clear 6625 5.5% (364) 53.2% (3525) 41.3% (2736)
Rain 6982 5.4% (377) 50.3% (3512) 44.3% (3093)
Snow 5345 6.7% (358) 54.9% (2934) 38.4% (2052)

Table 9. Average Peak Afternoon weather-related trip purpose based on Boulder weather.

Day of Week Direction
of Travel

Weather
Type

Traffic Parameters

Volume
(Number of

Cars)

Home-Based
Work Percentage

(Volume)

Home-Based
Other Percentage

(Volume)

Non-Home-Based
Percentage
(Volume)

All Days

Eastbound
Clear 7624 21.4% (1632) 43.4% (3309) 35.2% (2684)
Rain 7591 20.9% (1587) 42.4% (3219) 36.7% (2786)
Snow 6898 23.0% (1587) 43.1% (2973) 34.0% (2345)

Westbound
Clear 4607 13.4% (617) 46.0% (2119) 40.6% (1870)
Rain 4657 13.9% (647) 43.8% (2040) 42.3% (1970)
Snow 4139 14.9% (617) 47.4% (1962) 37.7% (1560)

Weekdays

Eastbound
Clear 8403 27.1%(2277) 38.0% (3193) 34.8% (2924)
Rain 8147 25.6% (2086) 38.8% (3161) 35.6% (2900)
Snow 7829 29.4% (2302) 37.1% (2905) 33.5% (2623)

Westbound
Clear 4878 16.7% (815) 41.8% (2039) 41.5% (2024)
Rain 4690 17.1% (802) 40.8% (1914) 42.1% (1974)
Snow 4337 18.9% (820) 42.6% (1848) 38.5% (1670)

Weekends

Eastbound
Clear 5673 7.1% (403) 57.0% (3234) 35.9% (2037)
Rain 5961 7.4% (441) 52.7% (3141) 39.9% (2378)
Snow 4769 8.2% (391) 56.7% (2704) 35.1% (1674)

Westbound
Clear 3928 5.3% (208) 56.6% (2223) 38.1% (1497)
Rain 4561 4.8% (219) 52.5% (2395) 42.7% (1948)
Snow 3686 5.9% (217) 58.3% (2149) 35.9% (1323)

We found a significant multivariate effect of weather type (Pillai’s Trace = 0.041,
F(4, 5726) = 29.678, p < 0.001, partial η2 = 0.02). There was a significant impact of weather
when the trips were from home to work, F(2, 2863) = 39.056, p < 0.001, partial η2 = 0.027. For
the pairwise comparison of marginal means, there was no significant difference in trips from
home to work when the weather was clear (M = 0.167, S.E. = 0.001) versus rainy (M = 0.164,
S.E. = 0.002) (p = 0.81). However, drivers were significantly more likely to make the trip
from home to work when it was snowy (M = 0.189, S.E. = 0.002) than when it was clear
(p < 0.001) or rainy (p < 0.001). For the significant impact of weather on home-based trips to
other locations (F(2, 2863) = 19.684, p < 0.001, partial η2 = 0.014), drivers were significantly
more likely to make these trips when it was clear (M = 0.453, S.E. = 0.001) than when it was
rainy (M = 0.439, S.E. = 0.003), p < 0.001, or snowy (M = 0.438, S.E. = 0.003), p < 0.001. There
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was no significant difference in marginal means for home-based trips to other locations
when comparing snowy and rainy days (p = 1.00). Weather also had a significant influence
on trips that were not home-based, F(2, 2863) = 26.802, p < 0.001, partial η2 = 0.018). People
were more likely to make these trips when it was rainy (M = 0.397, S.E. = 0.002) than clear
(M = 0.381, S.E. = 0.001) or when it was snowy (M = 0.373, S.E. = 0.003), p < 0.001. People
were also significantly more likely to make these trips when it was clear than when it was
snowy, p = 0.022.

Within this model, there was also a significant multivariate impact of the day of the
week (weekday versus weekend) on trip purpose, (Pillai’s Trace = 0.614, F(2, 2862) = 2274.385,
p < 0.001, partial η2 = 0.614). The day of the week significantly influenced the percent of
trips that were from home to work F(1, 2863) = 4017.582, p < 0.001, partial η2 = 0.584. People
were more likely to travel from home to work on weekdays (M = 0.254, S.E. = 0.001) than on
weekends (M = 0.082, S.E. = 0.002). The day of the week also significantly influenced trips
from home to non-work locations, (F(1, 2863) = 2954.921, p < 0.001, partial η2 = 0.508). On
the weekend, people were significantly more likely to go from home to non-work locations
(M = 0.525, S.E. = 0.003) than to work locations (M = 0.361, S.E. = 0.001. However, the day of
the week did not significantly influence non-home-based trips, F(1, 2863) = 1.400, p = 0.237,
partial η2 = 0.000.

The type of weather and day of the week significantly interacted to influence the
purpose of the trip, (Pillai’s Trace = 0.017, F(4, 5726) = 12.076, p < 0.001, partial η2 = 0.008).
Figure 6 display the marginal means of the home-to-work trips and the comparison of
these means found that drivers made significantly more trips to work during the week
than on the weekend during clear weather, rainy weather, and snowy weather (ps < 0.001).
Figure 7 displays the marginal means for home-to non-work trips and the comparison of
marginal means estimates found that drivers were more likely to make non-work trips
from home one the weekend during clear weather, rainy weather, and snowy weather
(ps < 0.001). Figure 8 displays the marginal means for non-home-based trips. The pairwise
comparison found that during clear weather, drivers were significantly more likely to make
non-home-based trips during the weekdays than on the weekend (p < 0.001), were less
likely to make these trips during the weekday than on the weekend if the weather was
rainy (p = 0.02), and they showed a similar pattern of behavior for both types of days when
it snowed (p = 0.566).
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One particularly noteworthy finding is that while the multivariate interaction between
the day of the week, the time of day, and weather type did not significantly influence the
overall purpose of trip (Pillai’s Trace = 0.007, F(12, 5726) = 1.589, p = 0.087), the between-
subjects univariate analysis of each type of trip purpose found that this interaction impacted
each specific trip purposes differently. While this interaction did not have a significant
influence on home-based trips to work (F(6, 2863) = 0.883, p = 0.506.) and non-home-based
trips (F(6, 2863) = 1.615, p = 0.139.), it significantly impacted home-based trips to non-work
locations (F(6, 2863) = 2.668, p = 0.014.). See Figures 9 and 10 for the estimated marginal
means. Pairwise comparisons of the estimated marginal means found that during the
Peak Mornings on weekdays, drivers made significantly more trips from home to non-
work locations when the weather was rainy than when it was snowy (p = 0.04). These
comparisons also found that on the weekends, drivers were significantly more likely to
make morning trips when it was clear than when it was rainy (p < 0.001) or snowy rainy
(p < 0.001). In the weekend Mid-Day period, drivers were more likely to make trips when it
was rainy than snowy (p < 0.001). During the weekend Peak Afternoon, drivers were more
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likely to make trips when it was clear than when it was rainy (p = 0.01) and more likely to
make trips when it was rainy than when it was snowy (p = 0.01).
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ends, time of day, and weather. The left (red) bar in each group represents clear weather trips, the
middle (green) bar in each group represents rainy weather trips, and the right (blue) bar in each
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Overall, these findings suggest that weekday trips are somewhat less responsive to
weather conditions than weekend trips. One possible explanation is that the nature of
weekday trips tend to be more essential or mandatory (e.g., commuting to work, traveling
to school, other personal/business obligations such as health appointments). Weekend
trips tend to be more discretionary for a greater portion of drivers (e.g., leisure, errands
such as shopping, more personal travel). These discretionary trips are more likely to be
influenced, and either canceled or modified, during adverse weather conditions if drivers
have an easier choice in doing so. As observed in the traffic volume and trip purpose
data, regardless of weekday versus weekend, volumes and the number of trips generally
appear to peak during the afternoon time frame. During the commuting weekday period,
this may be attributable to more eastbound traffic to communities north and east of the
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study corridor. Similarly, during the weekend period, this may be attributable to drivers
returning from weekend leisure trips into Colorado’s famous mountainous terrain.

4. Summary and Conclusions

This work has investigated the relationship between adverse weather and traffic
conditions, and suggests how human behavior is likely to play a role. Traffic statistics
between rainy and clear weather seldom differed, while the impact of snow conditions
revealed the most variability as well as an overall reduction in both the average traffic
volume and trip speeds over a yearly basis. This observation aligns with the literature
that documents that the most common weather-related traffic crashes are due to wet
pavements [44]. Moreover, the current study suggests that the trip purpose was most
influenced by weather conditions. The results show that home to work trips are a larger
proportion of trips during snow days due to overall traffic volume reduction. The findings
in this study indicate that not only does weather play a significant role in traffic conditions,
but it also affects the actions that humans take during these events.

An important limitation of this study is that, as a proof-of-concept incorporating a
novel, proprietary database on a trial basis [39], data represented a single year and were
analyzed for an individual location. A more robust analysis exploring traffic mobility
and driver behavior across multiple roadways and over a longer duration would provide
further insights. Vehicle type classifications would provide another layer to assess changes
in behavior among passenger vehicles and freight/commercial vehicles. Additionally, the
temporal resolution of the weather and traffic mobility data should be explored to consider
a time series analysis of the two datasets on a sub-daily and perhaps even sub-hourly
basis. With a longer period of record spanning multiple years and multiple corridors,
an expanded comparison of the influence of day of week and holidays will be possible.
Moreover, consideration of global disruptions such as the COVID-19 pandemic could
provide additional insights into potentially forever changed commuter patterns as well.

While an annual analysis of the effects of weather on roads is useful for grasping a
general idea of what happens during a typical day in Boulder, it is important to analyze
each day of the year and other years to understand the interannual variability of the
traffic parameters. Future studies will involve repeating these analyses using Boulder
data from 2020 and 2021, as it is important to understand how human behavior changed
on roads during the COVID-19 pandemic. The results from these future studies may be
compared with 2019 to analyze the significance of these changes, especially for trip purpose.
Because most workplaces have either laid off workers or temporarily closed during the
pandemic, we would expect a significant impact on the home-based work percentage.
This future study can help quantify the extent trip purpose is influenced by the pandemic
versus adverse weather. Additional future work may corroborate the more traditional
survey-based approaches to understanding weather-related modifications in trip purpose
in conjunction with these novel mobility dataset to inform decision-risk paradigms and
hazard communication practices.

The previous body of literature [1–28] considers the impacts of weather on mobility
and safety (i.e., vehicle crashes). However, many of these studies are unable to provide
additional context into the potential human factor contributions. Indeed, it is known and
corroborates this study’s results that precipitation, most notably snow, leads to decreases
in vehicle speeds, traffic volume reductions, and increases in crash risk, e.g., [1,4,18].
Further, it is highlighted that rain and wet roads are associated with the greatest crash
and fatality risks, e.g., [1–3,9,13]. However, it is the results presented in this study that
provide confirmation into the driver behavior factor, given the overlap between clear and
rain weather conditions. Past studies have only been able to infer such relationships, while
this novel crowdsourced data provides further benefit and validation of those previous
conclusions. Additionally, the trip purpose classifications are a means for transportation,
meteorological, emergency management, public safety, and other agencies to develop
actionable solutions to improve road safety and mobility during adverse weather. All of the
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other studies highlight the known and documented danger which, by itself, is insufficient
to change the paradigm of weather-related vehicle crashes, fatalities, and disruption to
the transportation system. The crowdsourced data provides awareness of where and why
drivers were traveling during adverse weather events which is pivotal for encouraging
desired protective-action behaviors, such as slowing down, changing routes, or canceling
travel entirely.
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