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Abstract: Beyond their deterministic predictability limits of ≈10 days and 6 months, the atmosphere
and ocean become effectively stochastic. This has led to the development of stochastic models
specifically for this macroweather regime. A particularly promising approach is based on the
Fractional Energy Balance Equation (FEBE), an update of the classical Budyko–Sellers energy balance
approach. The FEBE has scaling symmetries that imply long memories, and these are exploited in
the Stochastic Seasonal and Interannual Prediction System (StocSIPS). Whereas classical long-range
forecast systems are initial value problems based on spatial information, StocSIPS is a past value
problem based on (long) series at each pixel. We show how to combine StocSIPS with a classical
coupled GCM system (CanSIPS) into a hybrid system (CanStoc), the skill of which is better than either.
We show that for one-month lead times, CanStoc’s skill is particularly enhanced over either CanSIPS
or StocSIPS, whereas for 2–3-month lead times, CanSIPS provides little extra skill. As expected, the
CanStoc skill is higher over ocean than over land with some seasonal dependence. From the classical
point of view, CanStoc could be regarded as a post-processing technique. From the stochastic point of
view, CanStoc could be regarded as a way of harnessing extra skill at the submonthly scales in which
StocSIPS is not expected to apply.
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1. Introduction

The lifetime of planetary structures in the atmosphere and ocean are roughly ten
days and six months, corresponding to the average energy rate densities of, respectively,
ε ≈ 1 mW/kg and ≈10 nW/kg [1]. Since the lifetimes are close to the corresponding
predictability limits, at longer times (in the “macroweather” regime, [2,3]), deterministic
General Circulation Models (GCMs) , become stochastic and this occurs independently
of whether or not stochastic parametrization is used to enhance the small scale variabil-
ity [4–10].

The ten-day and six-month predictability limits are somewhat variable from location
to location [1] but they are sufficiently distinct such that there exists two somewhat different
stochastic regimes; the first, a transitional regime over scales of several weeks to a year, the
second, over the lower frequencies. These correspond to GCMs optimized for “long-range”
(macroweather) monthly, seasonal interannual forecasts (Long Range Forecasts, LRF) and
those optimized for longer-term (e.g., multidecadal) climate projections, i.e., forecasts based
on scenario forcings. Whereas the main challenge of LRFs is predicting the response to
(stochastic) internal forcings, the longer-term climate models attempt to average out these
responses to estimate the deterministic response to anthropogenic forcings. This paper will
focus on LRF models, the forecasts of which benefit somewhat from the (coupled) ocean
part that still has some deterministic skill.

After a decade or more of fairly intensive effort in many countries, there are now
fourteen Global Producing Centres for LRF’s (GPC-LRF) that regularly send forecasts to the
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WMO (https://community.wmo.int/en/global-producing-centres-long-range-forecasts,
accessed on 21 November 2023). Tracing back to [11] and developing in parallel with
GCM LRFs, there have also been stochastic LRFs developed, notably by [12–15], under
the rubric “Linear Inverse Modelling” (LIM) models. LIM models are based on systems
of (conventional) integer-ordered stochastic, not fractional, differential equations. Conse-
quently, LIM impulse response (Green’s) functions are composed of (short memory) expo-
nentials; the memory in the system—which is the basis of the stochastic forecast—decays
rapidly, its memory is “short”. In comparison, starting with [16–18], stochastic LRF models
(the ScaLing Macroweather Model, SLIMM) were developed based on long-range memory
processes called “fractional Gaussian noises” (fGn). fGn processes are themselves based on
fractional (ordered) differential equations and, hence, power law (not exponential) Green’s
functions. Consequently they have much stronger “long-range” memories. However, in
order to exploit these long memories for forecasting, long data series are needed. Contrary
to GCM models that are classical initial value PDE solvers, SLIMM models effectively solve
a past value problem, the forecast skill of which improves the more past data that are used.

Initially, the use of long memory fGn processes was justified by the underlying spatial
(and hence temporal) scaling of the governing equations and GCM models. However,
starting with [19,20], it was justified as the high frequency limit of the Fractional Energy
Balance Equation (FEBE), itself a phenomenological equation that results by applying the
scaling principle to the energy storage processes. Finally, refs. [21,22] showed that an impor-
tant special case of the FEBE—the Half-order Energy Balance Equation (HEBE)—follows
as a necessary consequence of eliminating a key approximation in the derivation of the
classical Budyko–Sellers-type energy balance models. The half-order surface temperature
equation is in fact a direct consequence of the classical heat equation with the (correct)
radiative–conductive surface boundary conditions. This HEBE derivation shows that the
source of the long memory is in the heat conduction into the atmosphere and subsurface
(ocean or land) where heat is stored, and, that this is generally a long memory, power
law process. If, instead of starting with the classical heat equation, we proceed from its
generalization, the fractional heat equation, then we obtain the more general FEBE.

Just as GCMs can be optimized for the LRF or lower frequency climate projection
regimes, the same is true with the FEBE; SLIMM simply corresponds to the high-frequency
FEBE limit with internal (stochastic) forcing. To make climate projections, one uses the
full FEBE but with deterministic (external, mostly anthropogenic) forcing. Following the
precursor Scaling Climate Response Function (SCRF) projections [23], ref. [24] showed how
the FEBE may be used with Bayesian parameter estimates to make global temperature
projections through to the year 2100, which had significantly lower uncertainties than the
Climate Model Intercomparison Project GCMs used in the IPCC’s fifth and sixth assessment
reports (the CMIP5 and CMIP6 GCMs). Also significantly, it was also shown that “hybrid”
projections made by combining the FEBE and GCM projections could do better still [25]. In
this paper, we propose an analogous hybrid LRF model.

To make a complete, practical forecast system even over seasonal time scales, it is
necessary to forecast the responses to anthropogenic forcings. This turns out to be easy
because the SLIMM model is a linear stochastic model, so that the response to anthropogenic
forcing can be forecast separately and linearly combined with the SLIMM forecast of the
internal variability. The use of a linear stochastic equation such as the FEBE may be justified
because of the exceptionally low intermittency in the macroweather regime (e.g., [26]).
This is in contrast to the (turbulent) intermittent weather regime that requires nonlinear
stochastic (cascade) models and would involve multifractal predictions.

The system that forecasts the responses to both anthropogenic and internal forcings is
called the “Stochastic Seasonal and Interannual Prediction System” (StocSIPS, see: [27]).
StocSIPS was first developed for global temperature forecasts in [18], and then for regional
forecasts in [28,29]. Its regional forecasts were produced by independently forecasting
each pixel from the pixel’s time series. At first sight, it might appear that, by discarding
spatial correlations (notably, teleconnections), the forecasts would not be optimal. However,
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in [30], it was further shown that—contrary to intuition—neither distant (nor neighbouring)
pixels had any Granger causality so that—by definition—using their information would
not improve the forecasts, implying that the StocSIPS regional forecast was indeed optimal.
Further, in [30], it was shown how the long memory stochastic model that underlies
StocSIPS produces El Nino events. Just as in GCMs, StocSIPS does not put in the El Nino
events “by hand”, in both cases, they are rather a emergent features of quite different
model types.

The latter paper marked the first application of Granger causality to long memory
geoprocesses, and it is important in understanding climate “networks” (e.g., [31–33]).
Teleconnection-inspired forecast models often use climate (especially El Niño) indices [34,35]
to make regional stochastic forecasts. However, ref. [30] showed that, if the time series at
each location was long enough and was correctly exploited, the spatial correlations that
they imply are not useful for forecasts. The reason for this is that, in predictions using
extremely long series, information from the distant past—including the influence of events
such as El Nino—have already been “used”. Equivalently, this analysis showed that, if
regional forecasts are made with only short series of past data, then they can partially make
up for the missing (distant past) data by “borrowing” recent information from other spatial
locations. However, if long enough data exists, other pixels will no longer have any new
information to “borrow”.

Thus, there exist two complementary LRF model types: initial value GCMs and the
past value StocSIPS model. How do they compare? In a recent paper, ref. [36] reviewed
and evaluated the seasonal temperature forecasts of six LRF models, and also considered
seven different ways of combining them as copredictors into unique optimal seasonal
LRF products. The forecast skill was quantified in various ways including the standard
Mean Square Skill Score (MSSS = 1 − <E2>/<T2>); T is the temperature anomaly, E is
the forecast error, MSSS = 1 is a perfect score, and forecasts with MSSS = 0 have no
skill, “< “> means ensemble average. For seasonal forecasts, ref. [36] found that, even when
the optimal seasonal LRF product was used, the skill was still low, with MSSS ≈ 0.1 over
land, and MSSS ≈ 0.1–0.8 over ocean with a global average MSSS ≈ 0.2 (depending slightly
on the season, see the figures in Section 2.3). Using the same reanalyses to define the
anomalies and for the evaluation, ref. [28] showed that for seasonal forecasts at zero lead
times, StocSIPS generally showed comparable MSSS skill and, in the case of the temporal
correlation coefficient, it showed somewhat better skill. This is not so surprising when
it is remembered that, theoretically, most of the deterministic skill of the GCMs is in the
first two weeks or so, whereas most of the StocSIPS skill is over time scales of two weeks
and longer.

The MSSS error metric was used because, for Gaussian processes, it is the quantity that
is maximized in order to yield the conditional ensemble forecast. It is also standard in the
literature. Using other metrics such as the root mean square error or correlation coefficients
do not change the qualitative results discussed below. See [18] for a detailed theoretical
discussion and empirical analysis in the case of StocSIPS.

The thorough analyses by [36] showed that—unsurprisingly—the six individual LRF
models were not very different from each other and—also unsurprisingly—that combining
them to give an optimal predictor did not markedly increase the overall skill. However,
StocSIPS is a past value problem: its’ skill comes purely from the past. This is in complete
contrast with the GCMs whose skill comes completely from the spatial structure at the
initial instant. Their qualitatively different natures can therefore potentially be combined to
produce a significantly better hybrid LRF. In this paper, we show how to make such a hybrid
by combining StocSIPS with the Canadian Stochastic and Interannual Prediction System
(CanSIPS) GCM-based LRF. The resulting product “CanStoc” is indeed a significantly
improved product, especially over time scales of one month, in which their respective
scales of validity overlap the most. From the point of view of conventional LRF models,
CanStoc could be considered as a (greatly) improved post-processing procedure to reduce
the bias of the model [37–40]. More information is available in the thesis [29].
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2. The Models
2.1. StocSIPS

For readers unfamiliar with StocSIPS, in this section, we give a succinct summary; the
full details are given in [18] (global), and in [28] (regional; see also [30]). A key point to
remember, is that, theoretically, StocSIPS is only expected to apply to the macroweather
regime, i.e., beyond the lifetime of planetary structures, which is typically around ten days
(although the lifetime varies quite a bit from place to place). Since the horizontal (but not
vertical) weather regime wind statistics follow the Kolmogorov law up to planetary scales
(for reviews, see [1,41,42]), the lifetime of planetary structures is close to the atmosphere’s
deterministic predictability limits, such that the beginning of StocSIPS’s prediction skill co-
incides with the extreme limit of deterministic (GCM) skill (this is a simplification since the
ocean deterministic limits are longer—see below). The two models are thus complementary.

The development of StocSIPS was originally motivated by the empirical finding that
macroweather temperatures showed scaling over wide temporal scale ranges. In addition,
unlike the turbulent weather regime, macroweather temperatures had low intermittency,
such that the statistics were not so far from Gaussian. Although the scaling exponents
vary somewhat with geographical location, they are typically in the range of fractional
Gaussian noise (fGn) processes [43], such that the latter could be used as models [16,17].
This discovery was exciting, because, unlike classical autoregressive or moving average
processes, the “memories” of which decay exponentially, fGn processes have long (power
law) memories, implying that the current state of the atmosphere is affected by events
many time steps in the past. Indeed, as discussed above, past values are so important that
forecasting fGn processes is essentially a “past value” problem (more details shortly).

At the same time, the development of scaling climate projection models involved
the empirical determination of the optimal scaling exponent required for longer (multi-
decadal) global climate projections [23,44]. It was soon realized [20] that this long time scale
deterministic exponent and the shorter time scale stochastic exponent [16,45] could both be
explained as, respectively, the long and short time scaling behaviours of a single wide-scale
range model. The model—the Fractional Energy Balance Equation, FEBE—was a fractional
generalization of the Budyko–Sellers energy balance model and it predicted both low-
and high-frequency scaling exponents as consequences of a unique fractional derivative
of the order h ≈ 0.4 ± 0.1. Finally, refs. [21,22] analytically derived the h = 1/2 special
case of the FEBE by updating the Budyko–Sellers model to include the correct radiative–
conductive surface boundary conditions (the Half-order EBE or HEBE). Not only is the
HEBE exponent compatible with observations, but it is attractive, because it represents
the theoretical solution of the classical heat equation when forced by (realistic) radiative–
conductive surface boundary conditions. This means that its parameters (relaxation times
and diffusion distances) have direct physical meanings and interpretations. At the same
time, it unifies the high- and low-frequency responses to both stochastic (internal) and
deterministic (external) forcings.

Appealing to the energy balance principle is a theoretically satisfying basis for predic-
tions and projections, because it shows how nonclassical (long) memories arise naturally
even in otherwise classical equations (here, the heat equation). The resulting (horizontal)
space–time (r, t) FEBE model for (surface) temperature anomalies T is

τh ∂hT
∂th + T = sF

∂hT
∂th = 1

Γ(1−h)

t∫
−∞

(t− p)−hT′(p)dp
(1)

In the top equation, F is the forcing anomaly, s is the climate sensitivity parameter
(the inverse of the cloud feedback parameter), τ is the relaxation time, and h is the FEBE
exponent. T and F are time-dependent, but the parameters τ and s are only functions of
position. Γ is the standard gamma function. On the left, the response to the forcing has two
contributions: the linearized blackbody radiation response (the T term), and the subsurface
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and atmospheric storage is the fractional derivative term defined in the second line. The
latter is an order h fractional derivative (it is partial—“∂”—since T is a function of both
time and position), T′ is the usual derivative, and p is a dummy variable of integration. A
third contribution to the response comes from the divergence of the (anomalous) horizontal
heat flux, but this is unimportant for long-range forecasting, and, for simplicity, we have
ignored it here (see, however, the discussion in the conclusions). We already mentioned that
h = 1/2 yields the HEBE [21], and, when h = 1, we instead obtain the (globally averaged)
Budkyo-Sellers Energy Balance Equation (EBE) (equivalent to a “box” model). The more
general case h 6= 1

2 , 6= 1 is the Fractional EBE (FEBE).
We could note that various definitions of fractional derivatives and integrals exist;

here, we use a particularly simple one: the Weyl fractional derivative, the Fourier transform

(“F.T.”) of which is simply ∂h/∂th F.T.→ (iω)h, where ω is the Fourier conjugate variable, the
frequency. When h is an integer, this relationship is classical.

Since the FEBE is linear, it may be solved by impulse response (Green’s) functions Gh:

T = sGh ∗ F; (Gh ∗ F)(t) =
t∫
−∞

Gh(t− p)F(p)dp (2)

where “*” indicates time convolution and s is only a function of position. For the classical
h = 1 value, we have

G1(t) = 1
τ e−t/τ ; h = 1 (3)

and for 0 < h < 1, the leading order terms of the small and large t Green’s function expan-
sions, are, respectively,

Gh(t) ≈
− 1

τΓ(−h)

( t
τ

)−h−1; t > τ

1
τΓ(h)

( t
τ

)h−1; t < τ
(4)

(the full Green’s functions are based on “generalized exponentials”, Mittag–Leffler
functions, see ref. [44] for a summary). Comparing Equations (3) and (4), we see that the
standard integer case (h = 1) is very special: the impulse responses fall off very rapidly
(exponentially) rather than slowly (as a power law with an exponent −h − 1; with h not far
from the value 1/2).

When F is a deterministic forcing (e.g., the anthropogenic climate forcing), then the low
frequency term with h ≈ 0.4 can be used for global climate projections through to the year
2100 [24]. When the same (AR6) forcings are used, the median FEBE projections are quite
close to the IPCC AR6 Multi Model Ensemble (MME) projections; the agreement between
the models gives support to both. However, an important advantage of FEBE projections is
that they have much smaller uncertainties. For example, the 90% MME confidence range
for the AR6 climate sensitivity is 2.0–5.5 C/CO2 doubling, whereas, for the FEBE, it is
1.5–2.2 C/CO2 doubling. Ref. [24] explained the slightly lower FEBE sensitivity by their
finding that the (negative) aerosol forcing was somewhat too strong, hence that the overall
anthropogenic forcing used in the GCMs was too weak. The lower FEBE sensitivity was a
consequence of using the slightly higher forcing that resulted from moderating the aerosol
cooling. The issue of the correct level of aerosol forcing is still not clear, but, in any case, it
will not much affect the FEBE uncertainty about the median.

In contrast to these low frequency projections, StocSIPS uses the high-frequency ap-
proximation (Equation (4), the t < τ case) to make monthly, seasonal, and annual forecasts.
Over these time scales, the responses to anthropogenic forcings are smaller than the re-
sponses to the (stochastic) internal forcings and—due to the linearity—the two are forecast
separately and combined at the end (see Figure 1 for an illustration). For the stochastic part,
F is taken to be Gaussian white noise. When this high frequency approximation is used, the
response is exactly a fractional Gaussian noise (fGn) process.
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Figure 1. Examples of forecasts. One example of forecast for the 12 months following April 1982 for
both StocSIPS and CanSIPS. In red, we show the verification curve of observations for the Mean-G
dataset. In blue, the median hindcasts for StocSIPS, with the corresponding 95% confidence interval
based on the root mean square error (RMSE) for the verification period. The ensemble mean for
CanSIPS is shown in black, with each of the 20 members shown in dashed light colors and the 95%
confidence interval based on the RMSE of the hindcasts represented in grey. The COeq trend for the
Mean-G dataset (green line) was added as a reference of the long-term equilibrium of the temperature
fluctuations. Reproduced from [18].

fGn processes are noteworthy because of their long memories. To help understand this,
consider the autocorrelation functions R(∆t) = 〈T(t)T(t− ∆t)〉 (“< >” indicates ensemble
average), when F = γ(t) is a white noise (i.e., T = sGh ∗ γ):

R1(∆t) ∝ e−∆t/τ

Rh(∆t) ∝ ∆t2h−1
h = 1

0 < h < 1/2
(5)

(the bottom equation is for the fGn approximation, i.e., Gh(t) = (t/τ)h−1/(τΓ(h))),
at small ∆t, there is a divergence that is cutoff by the finite resolution of the process; here,
by the inner scale of the macroweather regime ≈ 10 days). We note the very slow decay
in the autocorrelation for 0 < h < 1

2 , indicating that values in the distant past affect the
present value. If one defines the “integral time scale” of a process by the integral of its
autocorrelation function, then, for 1

2 ≥ h > 0, Rh(∆t) diverges, hence these fGn processes
are termed “long memory” processes.

The extent of the memory is more explicitly demonstrated when we consider the
optimum fGn forecasting algorithm, which is the basic StocSIPS algorithm. Consider a
discrete time series (i.e., in integer time) with data from −t to t = 0 (the present). The
forecast that minimizes the mean square error is given by a linear combination of past data:

T̂(k) =
0

∑
j=−t

φt,j(k)Tj (6)

where T̂(k) is the k steps predictor and φt,j(k) is the prediction kernel. Since the process is
Gaussian, it turns out that T̂(k) is also the conditional expectation of the process conditioned
on the observed past values t time steps in the past.

In the standard h = 1 (box model, EBE) case, the weights φt,j(k) fall off very quickly as
we move further into the past, such that only one or two terms in the sum are needed (e.g.,
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j = −1, 0), and the process can be modelled as a (short memory) first-order autoregressive
AR(1) process. However, when < 1

2 , the situation is quite different. Figure 2 shows the
typical kernels (weights) for the various h values weights (Equation (6)) of the discrete
time fGn process discussed in [46]. At first (small lags, j), as in the h = 1 case, the weights
fall off quickly (although as power laws) and are not so large at medium lags. However,
what is new and interesting, is that, for weights far enough in the past, they become more
and more important and are singular as j approaches −t! In the continuous time case
studied by Gripenberg and Norros, the divergence at the present and the distant past
are both singularities of order −h. In the words of Gripenberg and Norros [47], “this
divergence when we approach −t is because the closest witnesses to the unobserved past
have special weight”.
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Figure 2. Optimal coefficients, φt,j, in Equation (6) with H = h − 1
2 = −0.1, −0.25, −0.4, (top to bottom

i.e. h = 0.4, 0.25, 0.1) for predicting k = 12 steps in the future by using the data for j = −35, 0 in the
past. Notice the strong weighting on both the most recent (right) and the most ancient available data
(left, both are singular) and how the memory effect decreases with the value of H (hence, with h, the
maximum is when H = 0, h = 1

2 ). Compare to Figure 3.1 in [47]. Reproduced from [18].

The amount of memory needed to make a forecast depends on the value of H = h
−1/2. Figure 3 shows this by plotting the minimum memory needed, m95%, to obtain more
than 95% of the asymptotic skill (corresponding to m = ∞) as a function of the forecast
horizon, k, for different values of H. The line m = 15 k was also included for reference. The
closer to zero the value of the exponent, H (the closer h is to 1

2 ), the less memory we need
in order to approach the maximum possible skill. This fact seems counterintuitive, but
the explanation is simple: for larger values of H (closer to zero), the influence of values
farther in the past is stronger, but at the same time, more information on those values is
included in the recent past, so less memory is needed for forecasting. Following the rule
of thumb found by [47] for the continuous case: “one should predict (. . .) the next second
with the latest second, the next minute with the latest minute, etc.” Actually, from Figure 3
we can conclude that, for predicting k steps into the future, a memory m = 15 k would be a
safe minimum value for achieving almost the maximum possible skill for any value of h
in the range (0, 1

2 ), which is the case for temperature and many other atmospheric fields.
Of course, if h is close to 1

2 , a much smaller value could be taken. The approximate ratio
m95%/k for each H = h − 1

2 was included at the top of the respective curve. From the point
of view of the availability of data for the predictions, this result is important. Once the
value for h is estimated, assuming it remains stable in the future, we only need a few recent
datapoints to forecast the future temperature. The information of the unknown data from
the distant past is automatically considered by the model.
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In Figure 1, we show an example of a forecast for the 12 months following April 1982
for both StocSIPS and CanSIPS (the Canadian GCM system described in Section 2.2, below).
In red, we show the verification curve of the observations for the dataset (see [18] for full
details). In blue, we show the median hindcasts for StocSIPS, with the corresponding
95% confidence interval based on the root mean square error (RMSE) for the verification
period. The ensemble mean for CanSIPS is shown in black, with each of its 20 members
shown in dashed light colors and the 95% confidence interval based on the RMSE of the
hindcasts is represented in grey. The CO2eq trend for the dataset (green line) was added
as a reference of the long-term equilibrium of the temperature fluctuations. As expected,
the dispersion of the different ensemble members for the dynamical model increases as the
horizon increases, which shows the stochastic-like character of the GCMs for long-term
predictions with the consequent loss in skill. The ensemble spread score (ESS), a measure of
the forecast “reliability”, (see, e.g., [40]), is defined as the ratio between the temporal mean
of the intra-ensemble variance and the mean square error between the ensemble mean
and the observations. For CanSIPS, it is in the range 0.57–0.74 for all lead times, except
for zero months lead time, in which case ESS = 0.40 [38]. Notice that the cloud of dashed
lines is narrower than the grey region in Figure 1. The low ESS implies that CanSIPS is
underdispersive for all horizons, whereas (by construction), StocSIPS has ESS ≈ 1 and is
thus nearly perfectly reliable [18].

2.2. CanSIPS

The model that we used as a StocSIPS co-predictor is the Canadian Seasonal to In-
terannual Prediction System (CanSIPS, [48,49]) that was developed by the Meteorological
Service of Canada (MSC). In this work, we used outputs from the second version of the
model (CanSIPSv2, https://climate-scenarios.canada.ca/?page=cansips-technical-notes,
accessed on 23 November 2023). The following details correspond to this new version.

CanSIPS is a multi-model ensemble (MME) system using 10 members from each of
two climate models (CanCM4i and GEM-NEMO) developed by the Canadian Centre for
Climate Modelling and Analysis (CCCma) for a total ensemble size of 20 realizations. It is
a fully coupled atmosphere–ocean–ice–land prediction system relying on operational data
assimilation for the initial state of the atmosphere, sea surface temperature, and sea ice.

To evaluate forecasts and compare StocSIPS with CanSIPS, we accessed the publicly
available series of CanSIPS hindcasts covering the period 1981–2010 (CanSIPS 2021). The

https://climate-scenarios.canada.ca/?page=cansips-technical-notes
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fields, available on 145 × 73 latitude–longitude grids at resolutions of 2.5◦ × 2.5◦ for
each of the 20 ensemble members, were area-weighted and were averaged to obtain the
global mean series of hindcasts at the monthly resolution. CanSIPS produces a forecast
at the beginning of every month for the average value of that month and the next eleven
months, i.e., for lead times from 0 to 11 months for each initialization date. In our case,
this corresponds to forecast horizons (number of periods ahead that are forecasted) from
1 to 12 months. In the verification for k = 1 month (lead zero), the hindcast period is
January 1981–December 2010; for k = 2 months (lead one), the hindcast period is February
1981–January 2011, and so on. This way, all the 12 series of the hindcasts (one for each
horizon) have a length of 360 months.

2.3. CanStoc

Over the relevant monthly, seasonal, and annual time scales, the response to anthro-
pogenic warming is small and relatively easy to forecast (see [28] for details). Below, we
consider the problem of predicting the stochastic response to internal forcings plus the
anthropogenic response, i.e., the full anomalies with respect to the seasonal climatology.
If we denote predictors by a circonflex and use the subscripts C, S, and CS for CanSIPS,
StocSIPS, and CanStoc, respectively, then the combined (linear) “CanStoc” copredictor is

T̂CS = αT̂S + βT̂C (7)

where α and β are weights that depend on the geographical location and on the forecast
lead time. The forecast errors are thus

ES(t) = T(t)− T̂S(t)
EC(t) = T(t)− T̂C(t)
ECS(t) = T(t)− T̂CS(t)

(8)

where T(t) is the actual temperature. The condition in which the forecast is optimal (in the
root mean square sense, e.g., [50]) is given by the orthogonality principle, which states that
the error and the predictor are orthogonal (uncorrelated):

〈
T̂CSECS

〉
= 0. See Figure 4 for a

geometric interpretation and Figures 5 and 6 for examples of forecasts.

Figure 4. A schematic showing the construction of the hybrid forecast T̂CS using the StocSIPS and
CanSIPS forecasts as linear copredictors. The relative weights (α and β) are selected so that the hybrid
error ECS is orthogonal to the predictor (hence minimizing the mean square error). A geometric
interpretation is also given that shows directly how the (hybrid) copredictor (black) improves over
the individual predictors (red, blue).
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scores for CanStoc, we used out-of-sample crossvalidation with 500 random partitions of 
20 years for training and the complementary 10 years for validation. The rows (top to 
bottom), show how the weights evolve as the forecast lead times increase from 0 to 2 
months. We see that, at zero months (top row), most of weight (and hence skill) is contrib-
uted by CanSIPS (most regions are blue), but, at two months lead time, over almost all 
land regions and much of the ocean, StocSIPS makes the largest contribution to the skill. 
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Figure 6. Examples of hindcasts made in February 2007 (top) and February 2008 (bottom). The
actual temperature anomaly is in black, the StocSIPS mean hindcast is solid blue (95% confidence
limits in light blue), with the CanSIPS hindcast in red with the individual members dashed, and the
hybrid CanStoc mean hindcast in solid green with grey, indicating the 95% confidence limits. In the
top hindcast, we see that CanSIPS (red) did somewhat better than StoSIPS (blue), but that CanStoc
(green) was better still. In the bottom, StocSIPS is excellent, but CanStoc is even better.
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Using StocSIPS and CanSIPS as copredictors, at each pixel, we can easily solve for the
weights, α and β. Figure 7 shows the results for the lead times of 1–3 months and (right
hand column) the difference between the weights. To compute the coefficients and skill
scores for CanStoc, we used out-of-sample crossvalidation with 500 random partitions
of 20 years for training and the complementary 10 years for validation. The rows (top
to bottom), show how the weights evolve as the forecast lead times increase from 0 to
2 months. We see that, at zero months (top row), most of weight (and hence skill) is
contributed by CanSIPS (most regions are blue), but, at two months lead time, over almost
all land regions and much of the ocean, StocSIPS makes the largest contribution to the skill.
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Figure 7. The optimum combination of copredictors gives a weight α to StocSIPS (left column) and
β to CanSIPS (middle column, all maps at 2.5◦ resolution). The difference (right column) is red or
yellow when StocSIPs gives the dominant contribution; blue or light blue when CanSIPS does. The
rows (top to bottom), show how the weights evolve as the forecast lead times increase from 0 to
2 months.

The MSSS skills are shown in Figure 8. As expected, for all the lead times, CanStoc
(column at the right, based on the weights from Figure 7) is the best. Also, as expected, the
MSSS for all the forecasts decreases with the lead time. Notice that the CanStoc forecast at
2 months (bottom right) is a little better than the CanSIPS forecast at 1 month (middle).
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Figure 8. The mean square skill scores (MSSSs) for StocSIPS (left), CanSIPS (middle), and CanStoc
(right) for 0, 1, 2 month lead times (top to bottom, all maps at 2.5o resolution). CanStoc is better (as it
must be) for all lead times and, also, the MSSS decreases with the lead time. Notice that the CanStoc
forecast at 2 months (bottom right) is a little better than the CanSIPS forecast at 1 month (middle).

To make the comparisons clearer, Figure 9 shows the pairwise differences in the MSSS.
The left-hand “CanStoc–StocSIPS” column can be interpreted as the improvement made
to StocSIPS by using CanSIPs as a copredictor. The middle column “CanStoc–CanSIPS”
is the improvement provided to CanSIPS by using StocSIPS as a copredictor. Finally, the
right-hand column “StocSIPS–CanSIPS” shows how much better StocSIPS is than CanSIPS
(red) or worse (blue).

We see that at 0-month lead times (top row), CanSIPS is much better than StocSIPS
(upper right), the main exception being over land in the tropics. This is unsurprising since
CanSIPS is still within its deterministic predictability limit, and StocSIPS is only at the
beginning of its range of validity. Nevertheless, when StocSIPS is used as a copredictor for
CanSIPS to yield CanStoc (top middle), it still makes a significant contribution to improving
the CanSIPS skill. However, already at one-month lead time (middle row), we can see
that over almost all the land, StocSIPS is better than CanSIPS (middle right), but now, it is
CanSIPS that allows for some further improvements in StocSIPS’s skill (middle left). Finally,
at the 2-month lead times (bottom row), StocSIPS has higher skill than CanSIPS, even over
the majority of the ocean, and over land, CanSIPS only contributes a small amount to
improving CanStoc with respect to StocSIPS.
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Figure 9. The difference in MSSS between the three pairs of three forecasts. CanStoc—StocSIPS
(left column), CanStoc—CanSIPS (middle column), StocSIPS—CanSIPS (right column, all maps at
2.5◦ resolution). Note that at 0-month lead times (top row), CanSIPS is much better than StocSIPS
(upper right); the main exception is over land in the tropics. Nevertheless, when StocSIPS is used
as a co-predictor for CanSIPS to yield CanStoc (top middle column), it still leads to significant
improvements in skill. At one-month lead time (middle row), we can already see that over almost all
land, StocSIPS is better than CanSIPS (middle right), but that CanSIPS nevertheless allows for some
further improvements in skill (middle left). Finally, at 2-month lead times (bottom row), StocSIPS
has higher skill than CanSIPS even over the majority of the ocean, and, over land, CanStoc is only
improved a little with respect to StocSIPS.

The most obvious feature of the maps (Figures 7–9) is that there is a systematic
difference of the skills over land, ocean, midlatitudes, and tropics. To summarize this, we
first show Figure 10 that summarizes the monthly resolution MSSS averaged over the globe
(Figure 10a), land (Figure 10b), ocean (Figure 10c), northern midlatitudes (Figure 10d),
southern midlatitudes (Figure 10e), and tropics (Figure 10f) at lead times of up to 11 months
(k = 12). For the global average, we see that at a 1-month lead time, CanSIPS (green) is quite
a bit better than StocSIPS (blue), but that even here, the co-predicted CanStoc (red) is better
still. Notice that the CanSIPS MSSS rapidly decreases, becoming (nearly) zero for the lead
times of 3 months and negative thereafter. A negative MSSS is primarily a consequence
of poorly accounting for the anthropogenic component and annual cycle. In comparison,
StocSIPS has a higher MSSS than CanSIPS for all lead times of 2 months and longer. In
addition, the StocSIPS MSSS always remains positive, since it forecasts the internal and
anthropogenic components separately and the latter forecast is very accurate over these
time scales. For the three-month lead times and longer, CanSIPS does not add much skill to
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StocSIPS, such that the CanStoc and StocSIPS MSSS are nearly the same. Interestingly, for
the tropics (Figure 10f), beyond 8 months or so, neither the StocSIPS nor CanSIPS have skill
on their own, but the hybrid CanStoc does have some skill.
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Figure 10. The MSSS for monthly forecasts for lead times up to 11 months (k = 12). The MSSS averaged
over (a) the globe, (b) land, and (c) ocean, for lead times up to 11 months, with 2.5◦ resolution pixels.
The bottom row are the corresponding MSSS for (d) northern midlatitudes (25◦–67.5◦), (e) southern
midlatitudes (−25◦S–−67.5◦), and (f) tropics (−25◦–25◦).

If we consider the skills over land only (Figure 10b), then roughly the same comments
could be made as for the globe, except that, now, CanSIPS transitions from fairly high skill
at 0 month lead time (k = 1) to virtually zero skill at 1 month lead times (k = 2) after which
its MSSS is negative. As a consequence, StocSIPS and CanStoc skills are nearly identical for
the 1-month lead times and longer.

For the ocean pixels (right hand plot), both StocSIPS and CanSIPS show more skill
than over land, with the CanSIPS MSSS staying positive until about a 6-month lead time.
Nevertheless, StocSIPS has a higher MSSS for the 1-month lead times and longer. Inter-
estingly, over the ocean, even when CanSIPs skill becomes negative, it still provides a
significant boost in skill to the copredicted CanStoc (red).

Finally, instead of considering forecasts with a one-month resolution, the skills of
which are averaged over all the different starting months (as in Figure 10), we may consider
seasonal forecasts (Figures 11–14) with the same geographies as Figure 10. These seasonal
forecasts have three-month resolutions and the forecasts start at the beginning of the season:
winter (Figure 11), spring (Figure 12), summer (Figure 13), and fall (Figure 14). When
compared to Figure 10, we see that both the StocSIPS and the CanStoc skills are often a
little higher for the seasonal forecasts.
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Figure 11. The same as Figure 10 but for seasonal winter forecasts (for the anomaly averaged over
the three months: December, January, February, the forecast starting at the beginning of the season).
Notice that in every case, CanStoc does significantly better than either StocSIPS or CanSIPS.
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Figure 12. The same as Figure 11 but for the spring season (the months March, April, May). Again,
notice the greatly improved CanStoc skill, especially in the tropics.
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Figure 13. The same as Figure 11 but for the summer season (the months June, July, August).
Meteorology 2023, 2, FOR PEER REVIEW 18 
 

 

 
Figure 14. The same as Figure 11 but for the fall season (the months September, October, and No-
vember). 

Although at one month, CanSIPS is better than StocSIPS, the additional information 
provided by StocSIPS significantly improves the hybrid CanStoc. Similarly, although for 
2 months and longer, StocSIPS has higher skill, CanSIPS still contributes to an improved 
hybrid CanStoc, especially over the oceans. The most marked improvement is over the 
tropics, where neither CanSIPS nor StocSIPS have high accuracy, but the hybrid CanStoc 
is much better than either. Remarkably, in the latter, for 8 months and longer, neither 
StocSIPS nor CanSIPS have significant skill, the CanStoc hybrid does have some. 

3. Conclusions 
For forecasts beyond the weather regime, GCMs have been optimized for either 

monthly, seasonal, interannual predictions (Long-Range Forecast models, LRFs) and for 
longer-term climate projections. Whereas the main challenge of LRF forecasting is predict-
ing the response to (stochastic) internal forcings, the longer-term climate models attempt 
to average out these responses to estimate the deterministic response to anthropogenic 
forcings. Both variants appear to be in serious trouble. For example, while classical GCM-
based LRFs can undoubtedly be further improved (for example, by using better numerical 
techniques such as Galerkin-like spectral atmospheric models), they have already been 
the subject of intense research and appear to be facing diminishing returns. Evidence for 
this comes from a systematic LRF model intercomparison by [36], who found disappoint-
ingly low skills for seasonal temperature forecast (especially over land), little difference 
in skill between the different LRFs, and little improvement when six different LRFs were 
combined into a single (optimum) forecast product. 

In contrast, physically based stochastic models such as StocSIPS have received virtu-
ally no institutional support, and, scientifically, their development so far has only 
scratched the surface. The StocSIPS and CanStoc models are complementary in several 
ways. First, most of the CanSIPS skill comes from the weather regime (i.e., mostly the first 
two weeks or so) whereas the StocSIPS skill comes from the longer macroweather regime 
beyond the deterministic predictability limits. Second, whereas CanSIPS is a classical 

(a)

StocSIPS

CanSIPS

CanStoc

0 2 4 6 8 10- 0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k (months)

〈M
SS

S〉

Global
(b)

StocSIPS

CanSIPS

CanStoc

0 2 4 6 8 10- 0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k (months)

〈M
SS

S〉

Land
(c)

StocSIPS

CanSIPS

CanStoc

0 2 4 6 8 10- 0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k (months)

〈M
SS

S〉

Ocean

(d)

StocSIPS

CanSIPS

CanStoc

0 2 4 6 8 10- 0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k (months)

〈M
SS

S〉

Northern midlatitudes
(e)

StocSIPS

CanSIPS

CanStoc

0 2 4 6 8 10- 0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k (months)

〈M
SS

S〉

Southern midlatitudes
(f)

StocSIPS

CanSIPS

CanStoc

0 2 4 6 8 10- 0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k (months)

〈M
SS

S〉

Tropics

Figure 14. The same as Figure 11 but for the fall season (the months September, October, and
November).

Although at one month, CanSIPS is better than StocSIPS, the additional information
provided by StocSIPS significantly improves the hybrid CanStoc. Similarly, although for
2 months and longer, StocSIPS has higher skill, CanSIPS still contributes to an improved
hybrid CanStoc, especially over the oceans. The most marked improvement is over the
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tropics, where neither CanSIPS nor StocSIPS have high accuracy, but the hybrid CanStoc is
much better than either. Remarkably, in the latter, for 8 months and longer, neither StocSIPS
nor CanSIPS have significant skill, the CanStoc hybrid does have some.

3. Conclusions

For forecasts beyond the weather regime, GCMs have been optimized for either
monthly, seasonal, interannual predictions (Long-Range Forecast models, LRFs) and for
longer-term climate projections. Whereas the main challenge of LRF forecasting is predict-
ing the response to (stochastic) internal forcings, the longer-term climate models attempt
to average out these responses to estimate the deterministic response to anthropogenic
forcings. Both variants appear to be in serious trouble. For example, while classical GCM-
based LRFs can undoubtedly be further improved (for example, by using better numerical
techniques such as Galerkin-like spectral atmospheric models), they have already been the
subject of intense research and appear to be facing diminishing returns. Evidence for this
comes from a systematic LRF model intercomparison by [36], who found disappointingly
low skills for seasonal temperature forecast (especially over land), little difference in skill
between the different LRFs, and little improvement when six different LRFs were combined
into a single (optimum) forecast product.

In contrast, physically based stochastic models such as StocSIPS have received virtually
no institutional support, and, scientifically, their development so far has only scratched
the surface. The StocSIPS and CanStoc models are complementary in several ways. First,
most of the CanSIPS skill comes from the weather regime (i.e., mostly the first two weeks
or so) whereas the StocSIPS skill comes from the longer macroweather regime beyond the
deterministic predictability limits. Second, whereas CanSIPS is a classical deterministic
initial value problem, StocSIPS is a nonclassical, stochastic past value problem. It is this
complementarity that already allows the hybrid CanStoc system to be attractive.

Although, as discussed, StocSIPS skill is already comparable to CanSIPS, it has much
room for improvement. In particular, the current version of StocSIPS makes two simplifying
approximations that will be relaxed in future versions. The first, discussed in Section 2.1,
is uses the high-frequency fGn approximation to the FEBE Green’s function. The theory
needed to improve this already exists: fGn processes should be replaced by fractional
relaxation noise (fRn) processes, as discussed in [45]. While the high-frequency behaviour
is still fGn, the memory is somewhat diminished depending on the local relaxation time
(τ in Equation (1)), and this, it seems, can vary enormously from place to place (there is
unpublished evidence that, over some ocean regions, it can be of the order of millennia).
Another FEBE improvement would be to reintroduce the neglected horizontal heat flux
divergence operator ζ that couples both neighbouring and distant pixels: symbolically, in

Equation (1), we make the replacement τh∂h/∂th →
(

τ2h∂2h/∂t2h + ζ
)1/2

. Whereas the
operator ζ is local—it describes heat fluxes between neighbouring points (pixels in discrete
approximations), the square root space-time operator is nonlocal, connecting distant pixels
and times. This term is part of an overall fractional space–time operator that was ignored
in Equation (1), and these new nonlocal heat transport effects are currently under study.
We expect that taking these into account will lead to further StocSIPS improvements.

As underlined by the recent (2021) IPCC sixth assessment report (AR6), GCMs opti-
mized for climate projections may be in even worse straits than LRFs. Contrary to hopes,
the AR6 CMIP6 climate projection uncertainties were larger than the earlier generation’s
CMIP5 projections (AR5, 2013), and they are now the largest ever. This “uncertainty crisis”
([19], implicitly recognized in [51]) is concisely illustrated by considering the historical
evolution of the sensitivity of the global temperature to the doubling of CO2. Starting
with the US Academy of Sciences [52] right through to the IPCC AR6 (2021), the official
90% uncertainty limits for CO2 doubling remained as a very wide range (staying close
to the range 1.5–4.5 ◦C). Over these decades, it was hoped that, by making the models
bigger and by adding more processes, the uncertainty (as quantified by the spread in the
Multi Model Ensemble, MME) would be reduced. However, the AR6 shattered this hope:
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while the MME spread (and hence uncertainty) increased from the range 1.9–4.5 ◦C to the
range 2–5.5 ◦C (a 35% increase in the range), at the same time, on the contrary, the experts
(based on better historical and paleo data), reduced their range to 2.5–4 ◦C (a 50% decrease
in uncertainty). In effect, the experts gave the CMIP6 GCM outputs little weight. Ironically,
the increased model uncertainty—the increased spread between models that compose the
multi model ensemble—was a consequence of each GCM team improving its own model,
effectively driving it further from the others (for discussion, see [25]).

During its historical development, the general scientific consensus for how to improve
GCMs could be closely summed up as “the bigger the better”, (see, e.g., [53], reiterated
in [54]) with the holy grail being the attainment 1 km “cloud resolving” scales predicted
for the year 2030. If bigger is no longer better, then how to move forward? Already, in the
context of climate projections, [25] argued that most GCM computations were for irrelevant
details that were known in advance to be wrong. Why forecast the weather in Montreal—or
anywhere else—through to 31 December 2099 if the aim is to project the mean decadal
2090–2100 temperature?

An analogy may be helpful. The atmosphere is composed of molecules and, in princi-
ple, their positions and velocities could be modelled directly with particle mechanics or
quantum mechanics. In comparison, GCMs are based on the equation of fluids: continuum
mechanics and thermodynamics that do not even acknowledge the existence of atoms
or molecules. The advantage of continuum mechanics and thermodynamics is not only
that it is computationally advantageous when compared to tracking and modelling all
the molecules. The real advantage is that it ignores the irrelevant details. However, the
atmosphere is not a single vortex or even a small collection of vortices, it is composed of a
huge number of (turbulent) vortices. We should therefore aim to develop a higher level
theory that ignores the irrelevant weather scale details, a theory and model based on the
higher level statistical laws that result from the collective interactions of huge numbers of
clouds, eddies, structures.

The candidate high-level theories should, from the outset, be stochastic and they
should start with the weather—macroweather transition scale of about 10 days [25]. In
order to handle the large range of scales, they should exploit a basic symmetry of the
governing equations that is well obeyed by the models and the real world: the statistical
spatial and temporal scaling of the atmospheric fields. Finally, they should also respect
energy balance (and probably other conservation laws, symmetries). Ref. [25] further
argued that the Fractional Energy Balance Equation (FEBE) was a promising candidate
for such a macroweather and climate model. The FEBE is a consequence of improving
the (highly successful) Budyko–Sellers-type energy balance models. Ref. [24] showed
how the FEBE could be used to make climate projections through to the year 2100 that
had about half the uncertainty of the current GCM Multi Model Ensemble (MME). The
FEBE median projection with its 90% uncertainty limits was almost completely contained
within the corresponding CMIP5 and CMIP6 projection uncertainties, such that the two
approaches completely agreed with each other. The fact that two qualitatively different
model types give essentially the same median projections gives strong support to both
model approaches. Finally—just as we show here using LRF models—[25] showed how
such stochastic FEBE based projections can be combined with GCM projections to yield
even better “hybrid” projections.

Hybrids obtained by combining GCMs with stochastic models, whether for climate
projections or—as here—for LRFs, are particularly promising, because the source of skill in
both cases is quite different (see [25] for such a hybrid). Whereas the GCMs are classical
initial value problems that effectively only use spatial information (the initialization fields
at t = 0), on the contrary, the StocSIPS stochastic LRF is a past value problem that only uses
past data: if the data series are long enough, then adding spatial correlation information
(such as from teleconnections) makes no improvement since other pixels have no Granger
causality [30]. As we show, using the Canadian Seasonal and Interannual Prediction system
(CanSIPS) and the FEBE-based StocSIPS model as linear copredictors—the CanStoc hybrid
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system—the two model types are indeed highly complementary. At zero-month lead
times, CanSIPS has an overall (globally averaged) higher skill (MSSS = 0.35) than StocSIPS
(especially over oceans), (MSSS = 0.17), but nevertheless, the information from StocSIPS
significantly improves CanSIPS, such that the CanStoc MSSS = 0.41 (see Figure 10a–c).
Conversely, for one-month and longer lead times, StocSIPS has generally higher skill (MSSS
= 0.09) than CanSIPS (MSSS = 0.06), but CanSIPS nevertheless contributes to the optimal
CanStoc forecast (MSSS = 0.13). CanStoc’s skill was particularly impressive over the tropics:
even at 8-month lead times and longer, when both CanSIPS and StocSIPS had negligible
skill (MSSS ≈ 0 to −0.05), the hybrid combination (CanStoc) had some skill (MSSS ≈ 0.14,
Figure 10f). Similarly, CanStoc did significantly better in the three-month resolution, and
the seasonal forecasts are shown in Figures 11–14.

Interestingly, LRFs currently place huge effort on postprocessing to correct for known
biases (e.g., [39]). In this regard, StocSIPS could be regarded as an optimal post-processing
method. Not only does it demonstrably lead to improved forecasts, but it is physically
based in the FEBE; it is a not “black box”-type statistical postprocessing “massage”. The
reason for this is their complementarity: GCMs mostly have deterministic skill and this
is mostly over the first two weeks, such that their monthly average skills are already
somewhat low. In comparison, StocSIPS only works for times longer than about two weeks,
therefore, the one-month lead time is somewhat short. It is therefore logical to conclude
that StocSIPS provides a bias correction in the GCMs at one-month lead times, and that
CanSIPS provides a bias correction to StocSIPS at the longer lead times.
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