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New Die-Compaction Equations for Powders as a Result of
Known Equations Correction: Part 2—Modernization of M Yu
Balshin’s Equations
Anatolii V. Laptiev

Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine,
3 Krzhizhanovsky Str., 03142 Kiev, Ukraine; avlaptev@ipms.kiev.ua

Abstract: Based on the generalization of M. Yu. Balshin’s well-known equations in the framework
of a discrete model of powder compaction process (PCP), two new die-compaction equations for
powders have been derived that show the dependence of the compaction pressure p on the relative

density ρ of the powder sample. The first equation, p = w
(1−ρ0)

(n−m) ·
(ρ−ρ0)

n

(1−ρ)m , contains, in addition

to the initial density ρ0 of the powder in die, three constant parameters—w, n and m. The second

equation in the form p = H
(1−ρ0)

(b−c) ·
(ρ−ρ0)

b

[(1−ρ0)
c−a(ρ−ρ0)

c]
also takes into account the initial density

of the powder and contains four constant parameters H, a, b, and c. The values of the constant
parameters in both equations are determined by fitting the theoretical curve according to these
equations to the experimental powder compaction curve. The adequacy of the PCP description with
these equations has been verified by approximating experimental data on the compaction of various
powders, including usual metal powders such as iron, copper, and nickel, highly plastic powders
such as tin and lead, a mixture of plastic powder (Ni) with non-plastic powder (Al2O3), nickel-plated
alumina powder, as well as powder of a brittle compound, in particular titanium carbide TiC. The
proposed equations make it possible to describe PCP with high accuracy, at which the coefficient of
determination R2 reaches values from 0.9900 to 0.9999. The four-constant equation provides a very
accurate description of PCP from start to finish when the density of the samples stops increasing once
the pressure increases to an extremely high level, despite the presence of porosity.

Keywords: powders; pressure; density; die-compaction; equation; approximation accuracy

1. Introduction

In Part 1 of this article [1], the frequently used equations for describing PCP in a rigid
die are considered, analyzed, and, in some cases, refined. They were proposed mainly
in the form of mathematical functions for an adequate description of PCP as well as in
the form of semi-empirical equations. A peculiarity of the mathematical dependencies is
that, in most cases, the parameters of such equations, determined from the experiment,
are not related to the properties of the powders, and their physical meaning is hidden.
Some physical parameters of the powder material are taken into account in the semi-
empirical equations, for example, the yield strength and the strengthening law, the forces
of internal and external friction of the powders, as well as such physical phenomena as
the rearrangement of particles and their plastic deformation. In this regard, of increased
interest are the equations obtained as a result of using an approach that initially takes into
account the properties of particles, the shape of particles, the features of their interaction,
and other physical processes. Such an approach, in contrast to the search for mathematical
functions, can be designated as “discrete”, since it considers the features of interaction
during the compaction of a large number of individual particles and operates with average
statistical characteristics and values. One of the pioneers of the “discrete” approach was
the famous Soviet scientist M. Yu. Balshin.
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2. Correction of the Balshin’s Equations
2.1. Correction of One of the Main Equations

The main statements and results on the compaction of powders are presented by M.
Balshin in his last two books [2,3]. According to M. Balshin, PCP in a rigid die consists
of three different stages that cannot be described by a single equation. Therefore, in the
general case, each stage requires its own equation, and so he proposed such equations [2].
One of them describes PCP as consisting of two stages—the first and second or the second
and third. Here, the general statement for all stages is that the external pressure during
powder compaction is equal to the product of the contact pressure pk by the dimensionless
contact section α:

p = pk × α. (1)

It is known that when compacting plastic powders, their plastic deformation occurs,
and as a result, the particle material is strengthened. Therefore, the contact pressure pk
increases during compaction. To take into account the strengthening of particles during
PCP, M. Balshin refined Equation (1) and wrote it as:

p = (pk)e f f × α × f (2)

where (pk)eff is the effective contact pressure that does not change under powder compaction
during the first two stages (up to ρ = 0.9–0.95) and is equal to the Brinell hardness of the
non-hardened powder material if the annealed powder is used; α is the contact section,
which is a function of the relative density, and f is the strengthening coefficient, which also
depends on the density.

M. Balshin proposed the following dependence of the contact cross-section α on the
relative density ρ [4]:

α = ρ2
(

∆ρ

θ0

)
= ρ2

(
ρ − ρ0

1 − ρ0

)
(3)

where ρ and ρ0 are the current and initial relative densities, θ0 = 1 − ρ0 is the initial porosity.
As for the strengthening coefficient, M. Balshin [3] proposed three options for the

dependence f on the contact section α, but we will use one of them (since they do not differ
significantly) presented in the form:

f =
1(

1 − 2
3 α

) (4)

After substituting Equation (3) into Equation (4), we obtain the dependence of the
strengthening coefficient f on the relative density ρ:

f =

(
1 − 2

3
ρ2
(

ρ − ρ0

1 − ρ0

))−1
(5)

A feature of such strengthening coefficients is that, with a relative density equal to
1.0, they have a final value equal to 3. That is, Balshin’s strengthening coefficient provides
a finite value of the compaction pressure of plastic powders pressed to a compact state.
However, most of the known equations for describing PCP show that as the relative density
approaches 1.0, the compaction pressure tends to infinity. M. Balshin did not foresee such
a change in the compaction pressure. However, it is quite evident that as the porosity
approaches zero, the possibility for plastic deformation of the particles disappears. In this
case, the absence of plastic deformation is mathematically expressed through an infinite
pressure during PCP.

Based on this fact, it can be suggested that the real strengthening coefficient should
take into account not only strain strengthening but also strengthening associated with
increasing difficulty in deformation with decreasing porosity, that is, with constraining
plastic deformation. When compacting the powder in a rigid die, the particles experience
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an increasing degree of deformation constraint with decreasing porosity (or with increasing
density). The strengthening coefficient, which takes into account two types of strength-
ening, namely due to the amount of deformation and due to the degree of constraint of
deformation, is unambiguously related to the change in porosity. Let us denote such a
coefficient by the symbol β and offer the following generalized dependence of this new
strengthening coefficient on porosity or relative density:

β =
1

θm =
1

(1 − ρ)m (6)

where the exponent m reflects the intensity of the change in the degree of constraint with
decreasing porosity and must be greater than zero.

The limits of change in the strengthening coefficient β based on Formula (6), are
1.0 (when there is no constraint and strain strengthening, that is, at a relative density
equal to zero) and infinity (when the porosity is zero and there is no possibility of plastic
deformation for the powder particle material). However, when compacting powders, it is
necessary to consider that there is no strain strengthening and constraint in the presence
of an initial relative density equal to ρ0. Thus, it is more correct to use the strengthening
coefficient β (without a dash), which takes into account the initial density of the powder in
the die and has the following form:

β =

(
1 − ρ0

1 − ρ

)m
(7)

where m is the intensity indicator of the change in the strengthening coefficient during the
compaction of the powder from the initial relative density to ρ = 1.

It is important to note that dependence (7) makes it possible to use the strengthening
coefficient with sufficiently different strengthening laws in comparison with dependence
(5), as shown in Figure 1. Therefore, it is likely that the exponent m is able to take into
account not only the degree of constraint of plastic deformation but also the degree of strain
strengthening.
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Figure 1. Change in the strengthening coefficient during PCP in a rigid die according to Equation (5)
with ρ0 = 0.3 (dotted line), and according to Equation (7) with m values: 0.7 (solid line), 0.35 (long-dash
line), 0.2 (short-dash line).

Furthermore, it is possible to correct the dependence of the contact section α on the
relative density offered by M. Balshin according to Equation (3) and to write it in the form:

α =

(
ρ − ρ0

1 − ρ0

)n
(8)
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In accordance with this dependence, the contact cross-section α = 0 at an initial density
equal to ρ0, and α = 1 at a relative density equal to 1.0. In this case, the exponent n stands
for the possibility of changing the contact cross-section with a change in the relative density
along significantly different curves that reflect the effect of various shapes and sizes of
powder particles on the contact cross-section.

With the proposed formulas for the dependence of the contact section and the strength-
ening coefficient on the relative density, along with an assumption that the parameter
(pk)eff, which we denote as w, is constant throughout the entire PCP, the dependence of
the compaction pressure on the relative density represented by Equation (2) acquires a
different look:

p = w·
(

ρ − ρ0

1 − ρ0

)n
·
(

1 − ρ0

1 − ρ

)m
=

w

(1 − ρ0)
(n−m)

· (ρ − ρ0)
n

(1 − ρ)m (9)

where w, n, and m are constant parameters not known in advance and determined by fitting
the theoretical curve according to this equation to the corresponding experimental curve.

The dimension of parameter w corresponds to that of pressure, i.e., MPa, or the
dimension of specific energy, J/cm3. Therefore, in the first approximation, the physical
meaning of this constant may be associated with the specific energy spent on the plastic
deformation of the powder during compaction, whereas the physical meanings of the
constants n and m are associated with the intensity of the changes in the contact cross-
section and the strengthening coefficient, respectively, during PCP in a rigid die.

The proposed equation has three constant parameters, which allows it to describe PCP
for various powders and, in many cases, with a fairly high accuracy. Let us show this with
examples of approximation with Equation (9) of the experimental data on the compaction
of various powders. To begin, of interest is the ability of Equation (9) to describe the
compaction process of iron, copper, and nickel powders from [5–7], respectively, which
we used in article [1], as well as nickel powder, an equivolume mixture of nickel powder
with oxide aluminum, and powder of Al2O3 plated with 15.1 mass% Ni. The values of the
experimental points of relative density and the corresponding compaction pressure during
densification of Ni, Ni + 50 vol.% Al2O3, Al2O3 + 15.1 wt.% Ni powders were obtained
by digitizing the points on the graphs from ([8] Figures 6 and 7), and they are shown in
Table 1.

Table 1. Experimental values of relative density ρ at various densification pressures for three different
powders, taken from [8] via digitizing the graphs.

Powders
Densification Pressure, p, MPa

0 25 50 100 150 250 375 500 675 850 1000

Ni 0.234 0.344 0.4 0.466 0.514 0.577 0.6345 0.682 0.724 0.747 0.772
Ni-50Al2O3 0.361 0.425 0.464 0.515 0.549 0.595 0.638 0.67 0.698 0.722 0.741

Al2O3-15.1Ni 0.512 0.537 0.558 0.589 0.607 0.637 0.653 0.666 0.682 0.694 0.699

The approximation results of the compaction process of these powders are shown in
Figure 2, and the values of constant parameters and coefficient R2 are listed in Table 2.

The approximation results show high accuracy of the description by Equation (9) of
the compaction process of both plastic powders and a mixture of plastic powder with
non-plastic aluminum oxide powder, as well as even non-plastic Al2O3 coated with a small
amount of nickel. In this regard, the possibility of the new equation to describe PCP of
brittle powders, for example, titanium carbide from [9] and highly plastic powders, for
example, tin, lead, and annealed copper from [10], and lead from [6], as well as stainless
steel Kh18N15 with a particle size of less than 60 µm from [11] is also of interest. The results
of the approximation of these powders by Equation (9) are shown in Figure 3, and the
values of the constant parameters and R2 are given in Table 3.



Powders 2024, 3 140Powders 2024, 3, FOR PEER REVIEW 5 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Approximation curves according to Equation (9) for describing the experimental data on 
the compaction of powders of (a) iron [5], (b) copper [6], and (c) nickel [7], as well as (d) nickel 
powder, (e) equivolume mixture of Ni and Al2O3 powders, and (f) Al2O3 coated with nickel [8]. 
Here and below, open circles are experimental data. 

The approximation results show high accuracy of the description by Equation (9) of 
the compaction process of both plastic powders and a mixture of plastic powder with 
non-plastic aluminum oxide powder, as well as even non-plastic Al2O3 coated with a 
small amount of nickel. In this regard, the possibility of the new equation to describe 
PCP of brittle powders, for example, titanium carbide from [9] and highly plastic pow-
ders, for example, tin, lead, and annealed copper from [10], and lead from [6], as well as 
stainless steel Kh18N15 with a particle size of less than 60 µm from [11] is also of inter-
est. The results of the approximation of these powders by Equation (9) are shown in Fig-
ure 3, and the values of the constant parameters and R2 are given in Table 3. 

Table 2. Values of the constants w, n, m, and coefficient R2 obtained through approximation by 
Equation (9) the experimental data on the compaction of iron [5], copper [6], and nickel [7] pow-
ders, as well as nickel powder, an equivolume mixture of Ni and Al2O3 powders, and aluminum 
oxide coated with nickel taken from [8]. 

Parameters 
Powders 

Fe  
[5] 

Cu  
[6] 

Ni  
[7] 

Ni  
[8] Ni-50 vol% Al2O3 [8] Al2O3-15.1 mass% Ni [8] 

ρ0 0.268 0.3 0.36 0.234 0.361 0.512 
w, (MPa) 309.37 458.48 436.38 390.77 557.38 106.50 

n 1.1730 1.8683 1.3527 1.4964 1.5044 0.5785 
m 0.6819 0.3453 0.5394 1.2147 1.5179 5.7128 
R2 0.99333 0.99985 0.99977 0.99896 0.99964 0.99853 

 

Figure 2. Approximation curves according to Equation (9) for describing the experimental data on the
compaction of powders of (a) iron [5], (b) copper [6], and (c) nickel [7], as well as (d) nickel powder,
(e) equivolume mixture of Ni and Al2O3 powders, and (f) Al2O3 coated with nickel [8]. Here and
below, open circles are experimental data.

Table 2. Values of the constants w, n, m, and coefficient R2 obtained through approximation by
Equation (9) the experimental data on the compaction of iron [5], copper [6], and nickel [7] powders,
as well as nickel powder, an equivolume mixture of Ni and Al2O3 powders, and aluminum oxide
coated with nickel taken from [8].

Parameters
Powders

Fe
[5]

Cu
[6]

Ni
[7]

Ni
[8]

Ni-50 vol%
Al2O3 [8]

Al2O3-15.1
mass% Ni [8]

ρ0 0.268 0.3 0.36 0.234 0.361 0.512
w, (MPa) 309.37 458.48 436.38 390.77 557.38 106.50

n 1.1730 1.8683 1.3527 1.4964 1.5044 0.5785
m 0.6819 0.3453 0.5394 1.2147 1.5179 5.7128
R2 0.99333 0.99985 0.99977 0.99896 0.99964 0.99853

Table 3. Values of constant parameters and coefficient of determination R2 obtained through approxi-
mation by Equation (9) of the experimental data on compaction of powders of titanium carbide [9],
tin, lead, and annealed copper [10], as well as lead from [6], and stainless steel Kh18N15 powders
from [11].

Parameters
Powders

TiC [9] Sn [10] Pb [10] Cu [10] Pb [6] Kh18N15 [11]

ρ0 0.37 0.501 0.439 0.3 0.58 0.281
w (MPa) 382.5 21.71 8.547 180.79 74.02 865.34

n 2.5556 0.9015 0.9983 1.5169 2.711 1.6938
m 2.8268 0.5081 0.6666 0.6028 0.3687 0.3779
R2 0.99761 0.99768 0.99919 0.99946 0.99916 0.99969
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The approximation results by Equation (9) of both brittle and highly plastic powders
confirm the possibility of describing the process of their compaction with high accuracy.
At the same time, a question arises about the ability of Equation (9) to describe with high
accuracy the compaction process for powders that cannot be compacted to a dense state
even under very high pressures. Experimental data on the compaction of such powders
are available in the book [12], which presents the results of compaction of iron powders
of various origins under increasing compaction pressure up to 3000 MPa. It is reasonable
to present these unique experimental data, which can be used to control the results of
approximation by various equations and perform other calculations. Therefore, we present
in Table 4 the experimental data for only six of nine iron powders since the data for three
more powders (FeKH3, FeKH6, and FeKH9) have been presented in Part 1, Table 5 [1].

Table 4. Experimental data on the compaction of various iron powders given in the book by R. Kieffer
and W. Hotop (1948) [12] (Table 30). (The pressure values have been converted to the SI system).

Pressure, p
(MPa)

Powders *

FeKH1 FeKH2 FeKH4 FeKH5 FeKH7 FeKH8

Relative Density, ρ

0 0.285 0.266 0.389 0.344 0.403 0.427
196 0.698 0.699 0.676 0.679 - 0.755
392 0.809 0.821 0.778 0.808 0.707 0.852
588 0.862 0.886 0.820 0.869 0.796 0.898
784 0.897 0.917 0.843 0.910 0.849 0.919
980 0.921 0.929 0.875 0.928 0.889 0.935
1470 0.967 0.949 0.928 0.958 0.937 0.956
1960 0.978 0.955 0.951 0.965 0.958 0.964
2450 0.983 0.956 0.962 0.969 0.969 0.970
2940 0.987 0.960 0.976 0.972 0.972 0.976

* Iron powders were produced by the following methods: FeKH1—reduction from oxide; FeKH2—recovery
from scale; FeKH4—spraying on a centrifuge; FeKH5—electrolytic; FeKH7—spraying cast iron on a centrifuge;
FeKH8—spraying under gas pressure.
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Table 5. Values of the constant parameters and coefficient of determination R2 obtained through
approximation by Equation (9) of the experimental data on compaction of various iron powders
from [12].

Parameters
Powders

FeKH1 FeKH2 FeKH4 FeKH5 FeKH7 FeKH8

ρ0 0.285 0.266 0.389 0.344 0.403 0.427
w (MPa) 237.93 14.974 902.88 74.897 287.09 107.88

n 0.7993 0.1575 2.5426 0.0582 0.3091 0.5960
m 0.6261 1.7843 0.3999 1.1412 0.7468 1.0550
R2 0.99449 0.96607 0.99673 0.98158 0.99327 0.99773

The results of approximation by Equation (9) of the experimental data on the com-
paction of various iron powders shown in Table 4 are presented in Figure 4, and the values
of constant parameters and the coefficient of determination are given in Table 5.
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The results of approximation by Equation (9) of the experimental data on the com-
paction of iron powders show that this equation describes the PCP in two of six cases with a
reduced accuracy. Herein, for the FeKH2 and FeKH5 powders, Equation (9) less accurately
describes the intermediate stage of the compaction process (see Figure 4b,d). Therefore,
the value of the parameter w for these powders turns out to be lower than the values
of w for other powders. These facts indicate that Equation (9) is not able to accurately
describe the compaction process of some powders at the intermediate stage if they are
compacted to high densities. Another feature of Equation (9) appears when approximating
the compaction process of some powders. This means that the curve starts in Figure 4d,e
is somewhat unusual: it is characterized by a rapid rise in compaction pressure, not char-
acteristic of the beginning of a real compaction process. It follows that this equation is
not able to adequately describe some experimental data on the compaction of plastic (but
hard) powders despite the presence of three empirical constants. This also indicates that
Equation (7) proposed above for the strengthening coefficient does not provide certain laws
of strengthening during PCP, especially for cases where the powder is not compacted to a
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dense state, even under high pressures. Therefore, one more equation for the compaction of
powders in a rigid die has been derived along with one more equation for the strengthening
coefficient, which made it possible to describe with high accuracy specific experimental
data difficult to describe by various known equations and the new Equation (9).

2.2. Correction of the Last Balshin’s Equations

Our second new equation was derived through the generalization of the last of Bal-
shin’s equations presented in [2]. To describe the first and second stages of PCP in a
die, when the processes of rearrangement of particles along with their elastic and plastic
deformation in the contact zones of particles prevail, M. Balshin proposed the following
equation:

p =
(p′k)0

(1 − 2ν′)
× α =

(p′k)0(
1 − 2ν0

√
α
) × α (10)

where (p′k)0 is the effective contact stress equal approximately to the Brinell hardness HB or
Vickers hardness HV of the powder particle material [2], ν′ is the contact Poisson ratio of a
porous sample, ν0 is the Poisson ratio of the powder particle material, α is the dimensionless
contact section, which here is determined by a different formula than Formula (3):

α = ρ2
(

∆ρ

θ0

)b
= ρ2

(
ρ − ρ0

1 − ρ0

)b
(11)

where the exponent b > 1 for the first stage and b = 1 for the second stage of PCP in a rigid
die [2].

Further, M. Balshin focused on the fact that powder particles do not have a single-
valued Poisson’s ratio [2]. The value of Poisson’s ratio depends on the method of determi-
nation. Therefore, there are two Poisson’s ratios, namely the contact (ν′ = ν0

√
α) and the

inertial (ν = ν0
√

α/ρ) ones. It follows that if the inertial Poisson’s ratio is used, then the
form of the powder compaction equation changes:

p = (p′k)0 ×
α(

1 − 2ν0
√

α/ρ
) (12)

At the same time, M. Balshin did not answer the following question: In which case is it
necessary to use the equation with the contact Poisson ratio, and in which case is it necessary
to use the inertial equation? In addition, an ambiguous situation is also associated with
the determination of the contact section α by Formula (11), since the exponent b depends,
according to M. Balshin, on the compaction stage, and when describing two stages of
compaction, its value is unknown in advance. Attention should also be paid to the choice
of the value of the effective contact stress (p′k)0. It is difficult to agree with Balshin’s
opinion that this value is equal to the hardness of the compact particle material, so it can
be taken from a reference book. It is well-known that the hardness of a compact plastic
material is a structure-sensitive characteristic, and with a decrease in the grain size, the
hardness increases. Moreover, since the powder particle size can be several times smaller
than the grain size in a compact or cast material, the hardness of the original, e.g., iron
powders, can be much greater than the hardness of undeformed massive samples and
even greater than the hardness of deformed or cold-hardened samples. To confirm this
statement, it is reasonable to present here our previous findings in studying the hardness
of dense powder samples obtained by hot densification at low and high temperatures. At
low densification temperatures, as experiments have shown, the initial size of the powder
particles is practically preserved, and at high densification temperatures, recrystallization
is observed, and the structure becomes coarse-grained. Such changes in the structure are
accompanied by a significant change in the sample hardness. Figure 5 shows the hardness
of samples made of copper, iron (with different initial particle sizes) and “nichrome”
(Cr20Ni80) obtained by impact densification at different temperatures [13–15].
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Figure 5. Change in the hardness of samples obtained at different temperatures of impact densification
in vacuum from (a) copper [13], (b) iron [14], and (c) nichrome [15] powders.

In particular, as shown in [13], the Brinell hardness of copper powder samples com-
pacted at 250 and 950 ◦C is 1364 and 540 MPa, respectively. The hardness of compact sheet
(6 mm thick) copper is 580 MPa. It follows from the analysis of the reference data [16]
that the hardness of deformed copper reaches 900–1050 MPa, and the hardness of cop-
per annealed at 600 ◦C is 340–400 MPa. In [14], where impact densification at different
temperatures of coarse and fine iron powders was studied, the following findings on the
hardness of the samples were presented. The compaction of PZh3M2 powders (particle
size of 50–150 µm) and DIAFE5000 (2.5–5.0 µm) at temperatures of 600 and 1100 ◦C leads
to the following hardness values: 1740 and 1050 MPa (PZh3M2) and 1490 and 720 MPa
(DIAFE5000). The hardness of the samples from PZh3M2 powder obtained at 500 ◦C is
1870 MPa, and the hardness of armco iron, according to [16], is 785–1180 MPa. In addition,
according to the results of hardness measurements in “nichrome” powder samples [15], the
increase in the nichrome densification temperature from 1100 to 1300 ◦C leads to a decrease
in the Brinell hardness from 3800 to 1800 MPa (the hardness of cast nichrome is 1400–1500
MPa). Thus, based on the experimental data presented in Figure 5, it can be argued that the
hardness of powder samples with a fine-grained structure is at least the doubled hardness
of related undeformed monolithic materials. Therefore, for a more accurate description of
PCP, it is necessary to know the true hardness of the powder particles, which can differ
significantly for the same material. Since the hardness of powder particles, especially small
particles, is not easy to determine, it is problematic to use Equation (10) or (12) without
experiment. In addition, without experimental data on powder densification, it is also diffi-
cult to establish the exponent b in Equation (11) to determine the contact cross-section. An
ambiguous situation with the determination of the contact cross-section α is also associated
with the presence of another dependence of the contact cross-section on the relative density
proposed by G. M. Zhdanovich [17]:

αк = ρ2 ln(ρ/ρ0)

ln(1/ρ0ρ)
(13)

This indicates that no matter how much we would like to a priori describe the process
of powder compaction, this is still impossible. Therefore, it seems appropriate to gener-
alize the Balshin and Zhdanovich equations and introduce arbitrary parameters into the
generalized equation that could be determined by fitting the theoretical dependence of
the compaction pressure on the relative density to the experimental dependence. In this
regard, the effective contact pressure (p′k)0, which, according to M. Balshin, is constant up
to a relative density of 0.9–0.95 and equal to the particle hardness, is generally unknown
and can be denoted by the symbol H. The formula for the contact section α can be taken
according to Equation (8). Thus, the expression in the denominator of Equations (10) and
(12) will be generalized and replaced by the following expression:[

1 − a·
(

ρ − ρ0

1 − ρ0

)c]
(14)
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where a = 2ν′0 and c are constant parameters, and ν0
′ is the elastic-plastic Poisson ratio,

which can take values in the range from ν0
′ = ν0 (for elastic deformation) to ν0

′ = 0.5 (for
plastic deformation).

As a result of the proposed generalization, a new equation for describing PCP acquires
the form:

p = H·
(

ρ − ρ0

1 − ρ0

)b
· 1[

1 − a·
(

ρ−ρ0
1−ρ0

)c] =
H

(1 − ρ0)
(b−c)

· (ρ − ρ0)
b[

(1 − ρ0)
c − a(ρ − ρ0)

c] (15)

where H, a, b, and c are constant parameters determined through approximation of related
experimental data on PCP using this equation.

When considering Equation (15) and comparing it to Equation (9), it should be taken
into account that the former includes a strengthening coefficient that significantly differs
from that in Equation (9) since it has two constants, a and c:

β′ = 1/
[

1 − a·
(

ρ − ρ0

1 − ρ0

)c]
(16)

Due to the presence of two constants, this strengthening coefficient has broader possi-
bilities in describing various strengthening processes during powder compaction. Accord-
ing to Formula (16), it can reproduce a very wide range of strengthening laws and even
laws that provide an infinite increase in pressure at a relative density below 1.0. In this case,
the constant parameter a, which is equal to the doubled elastic-plastic Poisson’s ratio, be-
comes greater than 1.0, which has no physical explanation yet. In this regard, we will show
graphical examples of various strengthening laws in one case for the parameter a ≤ 1 and
the other case for the parameter a > 1. Curves for various real and unusual strengthening
laws are shown in Figure 6. For comparison, the strengthening curve (dotted) is depicted
in Figure 6a according to the Balshin Equation (5), whereas in Figure 6b—according to the
new Equation (7) with one constant.
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Figure 6. The strengthening coefficient against the relative density according to different equations
under consideration: (a) Equation (5) (dotted line); Equation (16) with a = 0.88, c = 1.4 (solid line);
Equation (16) with a = 0.88, c = 2.4 (long-dash line), and Equation (16) with a = 0.8, c = 3.4 (short-
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Of significance is the fact that the strengthening coefficient according to Equation (16)
with the values of the parameters a = 0.667, c = 2.38 and the initial density ρ0 = 0.3 almost



Powders 2024, 3 146

exactly coincides with the strengthening coefficient according to Balshin’s Equation (5)
with the same initial density:

β′ = 1/

[
1 − 0.667·

(
ρ − 0.3
1 − 0.3

)2.38
]
∼= f = 1/

[
1 − 2

3
·ρ2

(
ρ − 0.3
1 − 0.3

)]
(17)

Therefore, Figure 6 and expression (17) indicate that the strengthening coefficient,
according to Equation (16), is able to describe a wide variety of PCP in a rigid die. In this
regard, we will perform an approximation by Equation (15) of the unique experimental
data on the densification of iron powders presented in Table 4 and in Table 5 of Part 1 [1].
The results of the performed approximation are presented in Figure 7, and the values of the
constant parameters are listed in Table 6.
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Table 6 shows the data on the specific work of plastic deformation, Wpd, obtained
through numerical integration of the equation that, in the general case, has the form:

Wpd =
∫ ρ

ρ0

H

(1 − ρ0)
(b−c)

· (ρ − ρ0)
b[

(1 − ρ0)
c − a(ρ − ρ0)

c] ·dρ

ρ2 (18)

Numerical integration was performed within the limits of relative density change from
the initial one, ρ0, to the density ρ corresponding to the compaction pressure of 2940 MPa.
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Table 6. Values of the constant parameters H, a, b, c and coefficient of determination R2 obtained
through approximation by Equation (15) of the experimental data on compaction of various iron
powders from [12] and data on the specific work of plastic deformation Wpd.

Parameters
Iron Powders Obtained by Different Methods from [12]

FeKH1 FeKH2 FeKH4 FeKH5 FeKH7 FeKH8 FeKH3 FeKH6 FeKH9

ρ0 0.284 0.265 0.388 0.343 0.402 0.426 0.253 0.438 0.396
H (MPa) 1460 850 1590 1145 1490 5.0 680 1590 1660

a 1.0135 2.1948 0.7023 1.9057 1.2490 1.00006 1.0592 38.5926 8.3876
b 4.0390 2.7775 2.9115 2.9011 2.1292 0.4338 1.9901 2.8520 3.1864
c 34.137 19.0504 7.3564 24.385 17.8699 0.0399 11.868 54.3505 41.1105

ρ∞ 0.9997 0.9700 1.0301 * 0.9988 0.9926 0.9991 0.9964 0.9635 0.9696
R2 0.99873 0.99050 0.99715 0.99876 0.99663 0.99764 0.99683 0.99236 0.99792

Wpd (J/cm3) 282.92 257.17 372.11 269.87 402.63 227.76 337.46 253.79 270.78

* Calculated densification pressure at ρ = 1 corresponds to ∼5338.2 MPa.

As seen from Figure 7 and Table 6, the approximation Equation (15) describes the
process of compaction of various iron powders quite accurately. In all cases, the value of
R2 is above 0.99, which indicates the adequacy of the description of the entire PCP by this
equation. At the same time, it is necessary to pay attention to the fact that Equation (15),
which contains four constant parameters, leads, in some cases, to an ambiguous decision
regarding the values of the constants while providing a high level of accuracy in describing
the compaction process. This ambiguity manifested itself when approximating experimen-
tal data on the compaction of FeKH8 powder by Equation (15), where the value of the
parameter H turned out to be very low.

The fact is that when approximating the compaction of powders with this equation,
the value of the parameter H is selected by comparing the values of the coefficient of
determination for different predetermined values of H. As a rule, when changing the values
of H, the coefficient of determination passes through a maximum, which determines the
value of H given in Table 6. However, for FeKH8 powder, approximation by Equation (15)
gives a high value of the coefficient of determination for a wide range of H values. In
particular, when the parameter H changes from 500.0 to 5.0, the coefficient of determination
constantly increases, as shown in Table 7, where, as an example, the results of approximation
of the compaction process of FeKH2 and FeKH5 powders with different preset values of
H are also given. From the data in Table 7, it can be seen that for FeKH2 and FeKH5
powders, there is an optimal value of H, which corresponds to the maximum coefficient of
determination. However, for FeKH8 powder, there is no optimal value of H, since there is
no extremum in the coefficient of determination, although the value of R2 changes very
slightly and remains at a high level. That is, in relation to FeKH8 powder, we can say
that Equation (15) with four constants does not provide an unambiguous approximation.
However, the accuracy of the approximation is ensured by high accuracy. An unambiguous
approximation with high accuracy is provided for this powder when using Equation (9)
with three constants. Nevertheless, an important feature of Equation (15) is that it allows
one to establish the ultimate value of the relative density, which in most cases is below 1.0
and cannot be increased up to 1.0 even under infinite pressure. The mathematical result
for infinite pressure at a certain value of relative density indicates the impossibility of
completely eliminating porosity due to plastic deformation.

Hence, it is appropriate to recall the J. Secondi equation, which was considered in
Part 1 [1] and describes cases of PCP in a rigid die when it is impossible to achieve the
density of a compact material. In Part 1 [1], an approximation by the Secondi Equation (18)
was performed for three powders from [12] (FeKH3, FeKH6, and FeKH9), and a high
approximation accuracy for the experimental PCP was shown as well (see Table 6 in [1]). If
we compare the accuracy of approximation by the Secondi equation to the new Equation (15)
for the above three powders, we will see that in two of the three cases, the Secondi equation
gives a slightly higher accuracy. In this regard, it is of interest to consider the accuracy
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of approximation for the other six iron powders presented in Table 4. The results of the
Secondi approximation of the experimental data on the compaction of FeKH1, FeKH2,
FeKH4, FeKH5, FeKH7, and FeKH8 iron powders are shown in Figure 8, and the values of
constant parameters are listed in Table 8.

Table 7. Values of constant parameters and coefficient of determination R2 obtained as a result of
approximation by Equation (15) of experimental data on the compaction of three iron powders at
different values of the constant H.

Parameters
Iron Powders Obtained in Different Ways

FeKH8 FeKH5 FeKH2

ρ0 0.426 0.343 0.265

H, MPa 500 200 5.0 1200 1145 1100 900 855 800
a 1.00942 1.00263 1.00006 2.01400 1.90567 1.82401 2.32567 2.20746 2.07299
b 2.15588 1.16431 0.43378 3.08053 2.90112 2.75565 2.97656 2.79737 2.57792
c 4.09217 1.60108 0.03987 26.1237 24.3850 22.9962 20.3554 19.1804 17.7575

R2 0.99749 0.99762 0.99764 0.99873 0.99876 0.99874 0.99048 0.99050 0.99047

Powders 2024, 3, FOR PEER REVIEW 14 
 

 

Hence, it is appropriate to recall the J. Secondi equation, which was considered in 
Part 1 [1] and describes cases of PCP in a rigid die when it is impossible to achieve the 
density of a compact material. In Part 1 [1], an approximation by the Secondi Equation 
(18) was performed for three powders from [12] (FeKH3, FeKH6, and FeKH9), and a 
high approximation accuracy for the experimental PCP was shown as well (see Table 6 
in [1]). If we compare the accuracy of approximation by the Secondi equation to the new 
Equation (15) for the above three powders, we will see that in two of the three cases, the 
Secondi equation gives a slightly higher accuracy. In this regard, it is of interest to con-
sider the accuracy of approximation for the other six iron powders presented in Table 4. 
The results of the Secondi approximation of the experimental data on the compaction of 
FeKH1, FeKH2, FeKH4, FeKH5, FeKH7, and FeKH8 iron powders are shown in Figure 
8, and the values of constant parameters are listed in Table 8. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Approximation curves according to the Secondi Equation ((17) in [1]) describing the ex-
perimental data on the compaction of iron powders from [12]: (a) FeKH1; (b) FeKH2, (c) FeKH4, 
(d) FeKH5, (e) FeKH7, and (f) FeKH8. 

It follows that the Secondi equation describes PCP as an extremely high density 
with a high enough accuracy as well (Table 8). However, in five of six cases, the accuracy 
of approximation by the Secondi equation is slightly lower than that by the new Equa-
tion (15). Thus, of the nine iron powders studied, the Secondi equation describes PCP 
more accurately in three cases, namely, for FeKH6, FeKH7, and FeKH9 powders. Hence, 
comparing the new to previous equations for the description of PCP to a high density 
reveals that the new equation makes it possible to describe PCP more precisely in most 
cases under extremely high density. 

Table 8. Values of the constant parameters and coefficient of determination R2 obtained through 
approximation by the Secondi Equation ((17) in [1]) of the experimental data on compaction of var-
ious iron powders taken from [12]. 

Parameters 
Powders 

FeKH1 FeKH2 FeKH4 FeKH5 FeKH7 FeKH8 
ρ0 0.285 0.266 0.389 0.344 0.403 0.427 𝐾  (МPа) 273.35 130.36 439.25 238.51 512.49 157.14 
m 1.4236 1.8459 1.7283 1.4629 1.0436 2.1814 
ρ∞ 0.9904 0.9630 1.0062 0.9743 0.9749 0.9879 
R2 0.99702 0.98644 0.99694 0.99683 0.99906 0.99599 

Figure 8. Approximation curves according to the Secondi Equation ((17) in [1]) describing the
experimental data on the compaction of iron powders from [12]: (a) FeKH1; (b) FeKH2, (c) FeKH4,
(d) FeKH5, (e) FeKH7, and (f) FeKH8.

Table 8. Values of the constant parameters and coefficient of determination R2 obtained through
approximation by the Secondi Equation ((17) in [1]) of the experimental data on compaction of various
iron powders taken from [12].

Parameters
Powders

FeKH1 FeKH2 FeKH4 FeKH5 FeKH7 FeKH8

ρ0 0.285 0.266 0.389 0.344 0.403 0.427
K′ (MPa) 273.35 130.36 439.25 238.51 512.49 157.14

m 1.4236 1.8459 1.7283 1.4629 1.0436 2.1814
ρ∞ 0.9904 0.9630 1.0062 0.9743 0.9749 0.9879
R2 0.99702 0.98644 0.99694 0.99683 0.99906 0.99599
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It follows that the Secondi equation describes PCP as an extremely high density with
a high enough accuracy as well (Table 8). However, in five of six cases, the accuracy of
approximation by the Secondi equation is slightly lower than that by the new Equation (15).
Thus, of the nine iron powders studied, the Secondi equation describes PCP more accurately
in three cases, namely, for FeKH6, FeKH7, and FeKH9 powders. Hence, comparing the
new to previous equations for the description of PCP to a high density reveals that the new
equation makes it possible to describe PCP more precisely in most cases under extremely
high density.

In the literature, other experimental data on PCP can be found that are difficult to
describe with high accuracy by known equations. In Part 1 [1], such experimental data
were taken from F. Lenel’s book [18], and they referred to the compaction of fine powders
of iron and copper. Based on these experimental data, they were approximated by the new
Equation (15) and the transformed J. Secondi Equation (18) from [1]. The approximation
results are shown in Figure 9, and the values of constant parameters and the coefficient of
determination are given in Table 9.
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Figure 9. Approximation curves according to the new Equation (15) (solid line) and to the well-known
Secondi Equation ((17) in [1]) (dotted line), describing the experimental data on the compaction of
coarse and fine powders of iron and copper presented in [18]: (a,b) for coarse and fine iron powders,
respectively; (c,d) for coarse and fine copper powders, respectively.

These results of the approximation of experimental data on the compaction of coarse
and fine powders of iron and copper by the new Equation (15) and the Secondi Equation ((18)
in [1]) show that the Secondi equation is inferior to the new equation in terms of the
accuracy of the description of the experimental PCP for iron and copper powders. The
new equation demonstrates its ability to describe PCP with very high accuracy (Table 9). It
can be seen from this comparison that the new Equation (15) describes the experimental
PCP very well when the sample density stops increasing despite the increase in pressure to
extremely high values. At the same time, there are cases when the density stops increasing
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due to achieving a compact (practically pore-free) state. Such cases are observed in the
compaction of highly plastic powders. Therefore, it is relevant to evaluate the possibilities
of the new Equation (15) and Secondi Equation ((18) in [1]) in describing the experimental
data on the compaction of highly plastic powders, in particular, powders of lead, tin, and
annealed copper. Experimental data on the compaction of lead can be taken from the article
by M. Balshin [6] and those for lead, tin, and annealed copper [10]. We have used these
experimental data for approximation by the first new Equation (9), which made it possible
to compare the results of approximation of the same experimental data using different
equations. The results of the approximation of these data by the second new Equation (15)
and the Secondi equation are shown in Figure 10, and the values of constant parameters
and the coefficient of determination are listed in Table 10.

Table 9. Values of the constant parameters and coefficient of determination R2 obtained through
approximation by new Equation (15) and well-known Secondi Equation ((18) in [1]) when describing
the experimental data on the compaction of coarse and fine powders of iron and copper taken
from [18].

Parameters

Powders

Fe (Coarse) Fe (Fine) Cu (Coarse) Cu (Fine)

Equation Type

New (15) Secondi
(18) [1] New (15) Secondi

(18) [1] New (15) Secondi
(18) [1] New (15) Secondi

(18) [1]

ρ0 0.350 0.183 0.391 0.165
H, K′ (MPa) 970 254.1 970 272.9 815 219.0 1278 313.2

a, m 27593 0.8475 161344000 0.7867 456.9 0.8872 197938 1.2165
b 2.8505 - 2.1792 - 2.7957 - 2.6457 -
c 201.25 - 211.09 - 187.02 - 221.6 -

ρ∞ 0.9677 0.9654 0.9300 0.9273 0.9803 0.9782 0.9552 0.9776
R2 0.99951 0.98876 0.999998 0.99054 0.99976 0.99222 0.99997 0.98994

Table 10. Values of the constant parameters and coefficient of determination R2, obtained through
approximation by the new Equation (15) and the well-known equation of J. Secondi (18) [1] when
describing the experimental data on the compaction of coarse and fine powders of iron and copper
presented in [18].

Parameters

Powders

Sn [10] Pb [10] Cu [10] Pb [6]

Equation Type

New (15) Secondi
(18) [1] New (15) Secondi

(18) [1] New (15) Secondi
(18) [1] New (15) Secondi

(18) [1]

ρ0 0.501 0.439 0.3 0.58
H, K′ (MPa) 89.0 11.68 75.0 3.24 565.0 154.99 202.0 32.46

a, m 0.8384 1.9374 0.8894 2.6319 2.5926 1.4378 0.7749 1.6242
b 2.9815 - 7.1293 - 0.9673 - 4.3125 -
c 30.393 - 36.331 - 12.2454 - 39.511 -

ρ∞ 1.0029 0.9999 1.0018 1.0 1.0019 0.9816 1.0027 0.9996
R2 0.99743 0.98821 0.99936 0.99587 0.99983 0.99949 0.99755 0.99971

From the presented results of approximation of the experimental PCP of highly plastic
powders of tin, lead, and annealed copper using the new Equation (15) and the well-
known Secondi equation, it can be seen that the new equation provides a higher accuracy
of approximation in three of four cases. Perhaps this is due to the fact that there are
four constant parameters in Equation (15) against three constants in the Secondi equation.
However, three constants are also present in the first new Equation (9), which also provides
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a higher approximation accuracy compared to the Secondi equation for the tin and lead
from [10], the same accuracy for annealed copper, and a slightly lower accuracy for lead
from work [6] (see the R2 values for these powders in Tables 3 and 10).

Powders 2024, 3, FOR PEER REVIEW 17 
 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 10. Approximation curves according to the new Equation (15) (solid line) and the well-
known Secondi Equation ((18) in [1]) (dotted line), describing the experimental data on the com-
paction of highly plastic powders: (a) tin, (b) lead, and (c) annealed copper taken from [10], as well 
as (d) lead powder from [6]. 

Table 10. Values of the constant parameters and coefficient of determination R2, obtained through 
approximation by the new Equation (15) and the well-known equation of J. Secondi (18) [1] when 
describing the experimental data on the compaction of coarse and fine powders of iron and copper 
presented in [18]. 

Parameters 

Powders 
Sn [10] Pb [10] Cu [10] Pb [6] 

Equation Type 
New (15) Secondi (18) [1] New (15) Secondi (18) [1] New (15) Secondi (18) [1] New (15) Secondi (18) [1] 

ρ0 0.501 0.439 0.3 0.58 
H, K′ (MPa) 89.0 11.68 75.0 3.24 565.0 154.99 202.0 32.46 

a, m 0.8384 1.9374 0.8894 2.6319 2.5926 1.4378 0.7749 1.6242 
b 2.9815 - 7.1293 - 0.9673 - 4.3125 - 
c 30.393 - 36.331 - 12.2454 - 39.511 - 
ρ∞ 1.0029 0.9999 1.0018 1.0 1.0019 0.9816 1.0027 0.9996 
R2 0.99743 0.98821 0.99936 0.99587 0.99983 0.99949 0.99755 0.99971 

The above results of approximating experimental data on the compaction of various 
powders by new Equations (9) and (15) indicate the possibility of a high-accuracy de-
scription of PCP in most cases. This is ensured by the presence of three or four constants 
in the new equations, which makes it possible to predict any behavior of the powder 
during compaction and which take into account a wide variety in the shape and size of 
particles, in their strength and deformation resistance, as well as in the amount and na-
ture of the action of internal and external friction forces. At this stage in the evaluation of 
new equations for PCP in a rigid die, there is still no unambiguous understanding of the 
physical meaning of the constants of the equations proposed. In particular, one of the 

Figure 10. Approximation curves according to the new Equation (15) (solid line) and the well-known
Secondi Equation ((18) in [1]) (dotted line), describing the experimental data on the compaction of
highly plastic powders: (a) tin, (b) lead, and (c) annealed copper taken from [10], as well as (d) lead
powder from [6].

The above results of approximating experimental data on the compaction of various
powders by new Equations (9) and (15) indicate the possibility of a high-accuracy descrip-
tion of PCP in most cases. This is ensured by the presence of three or four constants in
the new equations, which makes it possible to predict any behavior of the powder during
compaction and which take into account a wide variety in the shape and size of particles,
in their strength and deformation resistance, as well as in the amount and nature of the
action of internal and external friction forces. At this stage in the evaluation of new equa-
tions for PCP in a rigid die, there is still no unambiguous understanding of the physical
meaning of the constants of the equations proposed. In particular, one of the constants
in Equations (9) and (15) has the dimension of pressure—MPa—therefore, this constant
can reflect the average hardness of particles, the average yield strength, and the specific
work of plastic or general deformation of particles, since the dimension of pressure (MPa)
coincides with the unit of specific work of deformation (J/cm3). The two dimensionless
constants n and m in Equation (9) reflect, respectively, the intensity of the change in the
contact cross-section and the degree of restriction of particle deformation with increasing
density of the powder preform in a rigid die.

It is more difficult to understand the physical meaning of three dimensionless constants
a, b and c in Equation (15) since, for example, the constant a cannot take values above 1.0
in view of its initial definition as a double elastic-plastic Poisson’s ratio. However, with a
computer approximation of the compaction of some powders, the constant a can reach a
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nine-digit number (Table 9), which is still difficult to explain in terms of physics. At this
stage, we can only note that a very high value of parameter a indicates that the hardening
coefficient β′ (16) tends to infinity at lower values of the relative density. Some examples of
how the hardening coefficient can change with the value of the parameter “a” at a constant
value of the parameter “c” are shown in Figure 11. This Figure shows that a change in the
value of parameter “a” from 1.2 to 12,000 (that is, by 10,000 times) leads to a decrease in the
limiting density (above which the density does not increase even at infinite pressure) by
approximately ∆ρ = 0.4 at c = 10 or by ∆ρ = 0.06 at c = 100.
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Very large values of the constant “a” in Table 9 are the result of a computer approxima-
tion by Equation (15) of real experimental data on powder compaction. They show that
even ductile metal powders can be very hard and cannot be compacted to a non-porous
state. In addition, compaction of hard powders occurs mainly due to the rearrangement
of particles, whereas strengthening due to both deformation and deformation constraints
occurs only at the end of the compaction process.

The other two dimensionless constants b and c in Equation (15) can be related to the
intensity of change in the degree of particle contact and the degree of restriction of particle
deformation. To clarify the physical meaning of the constants in the new equations for PCP
in a rigid die, it is necessary to conduct, firstly, additional experiments on the compaction
of model or specially selected powders and, secondly, a deeper theoretical analysis of the
equations proposed.

3. Conclusions

1. The proposed equations for PCP as a rigid die include, in one case, three constant
parameters and in the other case—four parameters. It is almost impossible to predetermine
the values of these parameters or constants, but they can be easily determined by computer
approximation of the experimental data on the compaction of various powders. At the
same time, the proposed equations make it possible to describe the experimental PCP with
a sufficiently high accuracy, at which the coefficient of determination R2 lies in the range of
0.9900 and 0.9999.

2. The equation with three constants provides a high accuracy of description of the
experimental PCP, especially in the case of compaction of highly plastic powders or when
the experimental compaction is limited to a low relative density, within 0.8 and 0.9. The
equation with four constants provides a high accuracy of approximation of experimental
data in the case of pressing powders to the maximum possible relative density, which
in most cases is below 1.0. Such experimental data can be described in some cases quite
accurately by the well-known Secondi equation containing three constants. However, to
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perform an approximation by the Secondi equation, careful selection of a predetermined
range of changes in the constant ρ∞ is required.

3. The new equations allow PCP description from the initial relative density in a
die to the maximum possible one, which excludes consideration of PCP as a multi-stage
process with different mechanisms of powder compaction and suggests the possibility
of the existence of a single mechanism that can be a constantly growing constraint of
elastic and plastic deformation of a set of contacting particles, which exists throughout
the entire PCP, that is, from the beginning of powder compaction in a rigid die to the
state of compaction at which the relative density stops increasing with increasing pressure
to infinity.
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