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Abstract: Population balance models (PBMs) for milling processes are based on two fundamental
concepts: specific breakage rate function and breakage distribution function, which vary with particle
size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of
these two functions’ parameters, may cause falsified kinetics and breakage distribution mechanisms.
This perspective article aims to expose and mitigate various aspects of potential falsification, thus
enabling the development of a robust PBM. Through an in-depth analysis of historical approaches to
the PBM inverse problem and experimental observations, as well as the author’s recent contributions
to the inverse methodology within the context of back-calculation methods, six principles have
been offered: (i) include the governing physical phenomena and reduce errors in model building;
(ii) reduce the number of model parameters via size–operation-dependent functional forms, hybrid
approaches for back-calculation, and combination with CFD–DEM and other mechanistic models;
(iii) generate a dense particle size distribution data set obtained at various milling times and/or
locations; (iv) ensure a grid-independent solution with a sufficient number of size classes; (v) use a
global optimization-based back-calculation method for parameter estimation and provide standard
errors of the estimates; and (vi) test the predictive capability of the PBM. This perspective article boosts
awareness of various challenges involved in the solution of the inverse PBM problem as pertinent to
milling processes and provides researchers with six principles to minimize falsified kinetics.

Keywords: population balance model; milling; specific breakage rate; breakage distribution; inverse
problem; falsified kinetics; parameter estimation; back-calculation methods; global optimization

1. Introduction

Population balance models (PBMs) enable engineers to simulate, design, control,
and scale up various particulate processes and tailor product particle size distributions
(PSDs) [1,2]. They have been widely used for comminution processes such as crushing and
milling [3,4] by process engineers in industries such as minerals, ores, cement, pharma-
ceuticals, paints, inks, agrochemicals, etc., since their first use for comminution processes
in the early 1950s [5,6]. Any PBM for milling processes is based on two fundamental
concepts: the specific breakage rate function Si and the breakage distribution function bij,
or its cumulative counterpart Bij [6]. The former function describes how fast particles of a
given size break, while the latter describes the distribution of broken particles and gives
fundamental information about the particle breakage mechanisms. Once estimated, these
parameters allow for simulating batch milling processes as well as continuous milling
processes. Obviously, continuous processes entail specifying the residence time distribution
(RTD) function, and internal–external classification functions are also incorporated if size
classification within the mill is of relevance [2–4].

All functions in a PBM vary with particle size xi and contain several parameters to be
estimated from experiments. Some of them, especially Si, are strongly affected by various
milling conditions [3,4], e.g., agitator speed n, ball loading φb, etc., as well as equipment
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design parameters such as mill diameter D and length L, ball size xb, shape, type, etc.,
in a tumbling/stirred ball mill. On the other hand, Bij parameters are known to be less
sensitive to most process–design conditions compared with Si parameters [4,7]. Hence, Bij
is usually represented by parent–progeny size-dependent functions that are presumed to
be process–design invariant. Despite this common assumption, however, some studies
have demonstrated the dependence of Bij on ball size and type in ball milling [4,8].

As implied in the dependence of Si and Bij on particle size and operation–design
parameters, a PBM for any milling process may contain a few model parameters up to about
a dozen to be estimated from experimental PSD data. The estimation of the PBM parameters
is known as the inverse problem, which poses a multitude of challenges associated with
uniqueness, statistical significance, etc. In essence, if the PBM is formulated without
considering the key physical mechanisms and the parameters estimated are not unique or
statistically significant, then the estimated parameters will yield false information about the
dependence of Si and Bij on particle size and operation–design parameters (see, e.g., [8–10]).
Moreover, such a PBM may not have significant prediction capability within and, more
importantly, beyond the experimental space over which it has been calibrated.

This perspective article aims to expose all these issues and provide general principles
for their solution so that falsification of the breakage parameters estimated and, thus, of
the breakage kinetics and distribution is minimized. To this end, based on an in-depth
analysis of the author’s recent contributions to the inverse methodology [8,9], which will
be elaborated on in the rest of the perspective, as well as historical approaches to the PBM
inverse problem and experimental observations (e.g., [4,6,10]), the author suggests six
principles within the context of back-calculation methods. The two main ideas behind
these principles are to reduce the number of parameters in a PBM that captures the es-
sential physics of the respective milling process and to obtain accurate and statistically
significant parameter estimates via a grid-independent solution of the PBM within a global
optimization algorithm along with a dense PSD data set. Although different principles
have been inherently used before without elaboration, most of these six principles were
only successfully implemented in two studies in the last decade [8,9]. While Muanpaopong
et al. [8] applied all six principles without examining the statistical significance of the
estimated parameters, Capece et al. [9] applied the first four principles (see Section 3) along
with an assessment of the statistical significance of the estimated parameters. Overall, all
six principles have been used successfully in these two studies. To the best knowledge of
the author, no prior work has presented a unique holistic view of the inverse problem of
PBM within the context of the back-calculation method for milling processes and offered
six principles to minimize falsified kinetics.

The perspective article is organized as follows: Section 2 presents a size-discrete PBM
for milling processes. The inverse problem is posed, and the six principles are introduced
along with the historical approaches in Section 3. Finally, Section 4 presents an overarching
assessment of the six principles and their relative importance while providing a response
to the question posed in the title of the article.

2. A Size-Discrete Population Balance Model (PBM)

As the purpose is to expose the challenges involved in the solution of the inverse PBM
problem, instead of starting with an elaborate mathematical treatment of the most general
PBM based on the number micro/macro-continuity equations, which can be found in [1],
let us record one of the most useful size-discrete, time-continuous forms of the PBM, with
slightly different formalism, used for modeling milling processes [11]:

d(HMi)

dt
= fi − pi − (Si/di)pi +

j=i−1

∑
j=1

bij
(
Sj/dj

)
pj (1)

Here, H and Mi stand for mass or volumetric hold-up and mass concentration or
fraction of particles in size class i (1 ≤ j ≤ i ≤ N) in the mill at time t; fi and pi are the mass
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flow rates of particles with sizes xi in the feed and product streams, respectively, while
di stands for the discharge rate function. Here, size class 1 contains the coarsest particles,
whereas size class N contains the finest particles (sink class). By definition, pi = diHMi,
bij = Bij − Bi+1j, and bii = 0 hold; the following constraints apply: bNj = BNj and SN = 0. This
PBM assumes that (i) the mill content is well-mixed, (ii) there is no aggregation or particle
growth during the milling, and (iii) the breakage rate is first-order or linear. A normalized
discharge rate d∗i is defined as d∗i = τdi, with τ being the mean residence time. Given the
volumetric flow rate Q or mass flow rate

.
m of the feed, we can calculate τ from τ = H/

.
m or

τ = H/Q, depending on the flow rate definition used. Note that d∗i can serve as an average
classification function. For a continuous mill operating in a steady state, we can reduce
Equation (1) to the following widely used forms:

pi = fi − (Si/di)pi + ∑j=i−1
j=1 bij

(
Sj/dj

)
pj (2)

pi = fi − τ(Si/d∗i )pi + τ∑j=i−1
j=1 bij

(
Sj/d∗j

)
pj (3)

In the absence of significant particle classification within the mill, one can set d∗i = 1.
Readers are reminded that the PBMs expressed by Equations (1)–(3) were selected in
this perspective article for two reasons: their wide use in the milling literature and their
simplicity to illustrate the challenges associated with the inverse problem. Finally, in the
case of no feed–product streams, Equation (1) with pi = diHMi reduces to the following
form for a batch milling process [6]:

dMi/dt = −Si Mi +
j=i−1

∑
j=1

bijSj Mj (4)

It should be noted that Equation (4) also applies to continuous mills with a high
length-to-diameter (L/D) ratio and little to no back-mixing of particles due to the absence
of internal mixing elements, e.g., as in a tumbling ball mill (plug flow approximation). In
this scenario, one can replace time t with contact time t* = y/u for any axial position y in
the mill, with u denoting the average axial velocity of the particles: u = L/τ = L

.
m/H. So,

after replacing t with t*, one can solve the set of ordinary differential equations (ODEs) in
Equation (4) with the initial condition Mi(0) = Mi,ini, with Mi,ini representing the initial or
feed PSD, and predict the steady-state PSD at t* = τ.

3. The Inverse Problem: Estimation of the PBM Parameters

The inverse problem entails estimating Si, bij, or Bij, as well as d∗i if there is classification
in the mill after the equipment design parameters and operating conditions are specified
and a PBM is formulated mathematically (see Figure 1). The experimental PSD data must
be gathered directly from the specific mill of interest. On the other hand, other (lab-scale)
mills and drop-weight test instruments, as will be discussed below, can also be used to
obtain breakage data in the hybrid (semi-back-calculation) method.

There are two major approaches to estimating the parameters and solving the inverse
problem: “direct measurement methods” and “back-calculation methods” [4]. The former
include the one-size fraction method [12] and the BI, BII, and BIII methods [13], respectively,
and treat/fit experimental batch ball milling data. Without delving into details, the PBM is
quite simplified in the limit of narrow feed sizes, which allow simple analytical solutions
to estimate the unknown parameters. The pros/cons of these methods were extensively
discussed by Austin et al. [4]. Another direct measurement approach is to find Bij based on
the breakage index tn–t10 family of curves. Here, tn and t10 refer to the percent of progeny
particles that are finer than 1/nth and 1/10th, respectively, of the initial geometric mean
size of the parent particles. These curves are constructed by characterizing materials via
laboratory single-particle breakage tests and/or particle bed breakage in drop-weight tests
or specialized comminution devices (see, e.g., [14–16]). All direct measurement methods
entail the separate milling of multiple narrowly sized feed samples covering the size range
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of interest. Hence, they are experimentally time-consuming and expensive, some requiring
specialized equipment/instruments. Importantly, while suitable for conventional ball
milling [4], the one-size fraction method and the BI, BII, and BIII methods may not be
accurately used for stirred media milling in fine milling applications as particle breakage is
expected to be faster, which limits their applicability. Also, for fine milling and nanomilling
applications, it is hard to prepare samples below <30 µm. Finally, all these methods
yield information about Si and Bij of typically 3–8 size classes and apply interpolation–
extrapolation to cover the whole size range and number of size classes of interest.
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inverse problem (parameter estimation via either the full back-calculation method or the semi-back-
calculation/hybrid method), and testing–validating the PBM.

The (full) back-calculation method [10,17] aims to resolve the issues associated with
the direct measurement methods, although it is plagued with other issues (non-uniquness
and statistical insignificance). It typically uses a local optimizer along with the analytical
or numerical solution of the PBM [6,8–10,17,18] to estimate the Si and Bij parameters
simultaneously. The optimizer minimizes the sum-of-squared residuals SSR between the
model-predicted PSD and the experimental PSD. However, a major challenge since the early
applications of the back-calculation method is to find a unique set of statistically significant
PBM parameters [4,8–10]. A local optimizer could get stuck at one of the local minima or
hit a flat surface of the objective function, leading to an erroneous set of parameters despite
yielding a deceptively reasonable fit to the specific set of PSD data. The non-uniqueness of
the solution is revealed when the set of initial guesses for the parameters to be estimated is
varied, which leads to different parameter estimates [8]. Unlike the direct measurement
methods, the full back-calculation method has the advantage of general applicability to
all milling processes as it is not bound by the size of the particles, the number of size
classes, or the special equipment/instruments needed (e.g., for the tn method). On the other
hand, the semi-back-calculation (hybrid) method couples a direct measurement method
with the back-calculation method and will be discussed in Section 3.2. As both the full
back-calculation and semi-back-calculation (hybrid) methods use an optimizer to estimate
PBM parameters, they are plagued with several common issues. Hence, the rest of this
perspective article is largely dedicated to resolving the challenges associated with both
types (full and semi) of the back-calculation methods, with the goal of minimizing the
potential falsification of the estimated parameters. The direct measurement methods are
too restrictive and limited, as discussed in the previous paragraph; their pros/cons have
been extensively discussed in [4,12,13]. Hence, direct measurement methods are generally
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excluded from this perspective article unless otherwise indicated. Six principles have been
given below, which have been implicitly implemented in refs. [8,9].

3.1. Principle I: Reduce Modeling Errors

No PBM can yield accurate parameters in the inverse problem if it does not account
for key, fundamental physics such as relevant particle change mechanisms, either mecha-
nistically or phenomenologically (modeling errors). In fact, this is the number one reason
for falsified breakage kinetics [9,19,20]. Let us reconsider the underlying assumptions for
the PBMs described in Equations (1)–(4). If the particles in the suspension/powder are
prone to exhibit notable aggregation and particle growth, the use of Equations (1)–(4) in
the inverse problem will lead to falsified breakage parameters. In the best case, this may
become apparent in the deviations in the PBM-fitted PSDs from the experimental PSDs;
in the worst case, the PBM may still provide a reasonable fit with some deviations. To
minimize such modeling errors, two actions can be taken: (i) add the aggregation and/or
particle growth terms to the PBM [21] or (ii) use stabilizers/dispersants in wet milling [22]
and flow aids in dry milling to suppress aggregation–particle growth [23].

Another major modeling error is due to “non-linear breakage”, which is especially
prevalent in dense suspension/powder systems during prolonged milling. The readers
are referred to [24–26] for a comprehensive review of this phenomenon in various milling
systems. Obviously, Equations (1)–(4) assume linear breakage or first-order breakage
kinetics. Although the linear PBM yields reasonable fits to experimental batch milling data
for short milling times, it exhibits notable deviations for prolonged milling [4,6]. In fact,
short batch milling experiments have been commonly used to justify the first-order kinetics.
Moreover, only short milling data can be used in the BI, BII, and BIII methods. When fitted
to sufficiently long milling data, the non-linear effects become notable, and force-fitting the
linear PBM led to falsified kinetics [9,19,20].

Another class of modeling errors pertains to deviations in the RTD of the particles
in a particular continuous mill from the assumed RTD function in the PBM. For example,
Equations (1)–(4) assume perfect mixing, which corresponds to an exponentially decaying
RTD density function. However, perfect mixing is limited to short tubular mills (low L/D
ratio) with fast radial–tangential mixing owing to the motion of the particles; such motion
is usually generated by rotor-mixing elements, e.g., in a stirred media mill. Obviously,
measuring the RTD in a particular mill via tracer studies [27,28] allows for quantifying the
extent of imperfect mixing in continuous mills. Then, a more elaborate RTD model, such as
the convection–dispersion model, the cell-based RTD model with recirculation between the
cells, etc., can be used to formulate the PBM [29,30].

In the sequel, we consider milling processes wherein particle aggregation–growth
is suppressed, perfect mixing in the mill is a reasonable approximation, and the mean
residence time or retention time is not prolonged to cause the emergence of non-first-
order effects. This practical approach is for illustrative purposes and discussion of the
principles; however, the principles II–VI below are otherwise generally applicable to all
milling processes. In fact, without the specific functional forms shown in the context of
particle breakage–milling, the six principles are conceptually applicable to the PBM of other
particulate processes such as granulations, aggregation, etc.

3.2. Principle II: Reduce the Number of Model Parameters

In the back-calculation method, the non-uniqueness of the estimated parameters and
their statistical insignificance originate from the high number of breakage parameters and
lack of sufficiently dense data sets with acceptable precision [8,31]; the latter aspect will
be elaborated in Section 3.3. For a PBM with N size classes, there exist N Si values, N d∗i
values, and N(N–1)/2 values of Bij. In the absence of classification, the total number of
parameters equals (N2 + N)/2; for example, 36 parameters must be estimated for an 8-size
class PBM at a given (constant) set of process–design parameters! Clearly, a PBM with
form-free Si and Bij parameters has little predictive capability. First, an 8-size class PBM has
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high size-discretization errors (Section 3.4); second, it is close to impossible to find them
accurately with statistical significance because of the noise in the experimental milling tests.

Although direct fitting of form-free Si and Bij has been performed for a PBM with
only a small number of size classes, the customary practice is to assume specific size-
dependent functional forms and reduce the number of parameters drastically [4,10], such
as the following:

Si = A(xi/x0)
α (5)

Bij = ϕ0

(
xi−1

xj

)γ

+ (1 − ϕ0)

(
xi−1

xj

)β

(6)

where A, α, ϕ0, γ, and β are the five fitting parameters, and x0 is a normalizing reference size.
Equation (6) is one of the most widely used Bij in the ball milling literature and is known to
be a size-normalized form [4]. Even these simplest forms have a total of five parameters.
Clearly, assuming functional forms brings some bias to the modeling; hence, invoking
specific functions should make use of prior knowledge of the specific mill–material, if
available in the literature, and more preferably, several such models must be discriminated
statistically based on the goodness-of-fit to experimental milling data and the statistical
significance of the parameters (see, e.g., [9,10,20]) in the selection of the best model. For
example, Equation (5) is known to be incapable of describing kinetics in ball milling, and
Equation (6) cannot describe a non-normalized breakage distribution. In these cases, the
following forms have been used [32–34]:

Si = Axα
i (xb,0/xb)

ξ
{

1 +
[
xi/
(
µ0(xb/xb,0)

η)]Λ
}−1

(7)

Bij = ϕ0

(
xmax

xj

)θ(
xi−1

xj

)γ

+

1 − ϕ0

(
xmax

xj

)θ
( xi−1

xj

)β

(8)

In Equations (7) and (8), ξ, µ0, η, Λ, and θ are additional fitting parameters as compared
to the parameters of Equations (5) and (6); xb is the ball size; xb,0 is a normalizing reference
ball size; and xmax is the maximum particle size. When the normalization parameter
θ equals 0, Equation (8) reduces to Equation (6). The total number of fitting parameters is 10.
Note that while Equation (7) is capable of describing the impacts of ball size, it does not
account for the impacts of rotation speed, ball filling, and powder loading in a ball mill. If
these factors are multiplicatively added to Equation (7) in a power-law fashion to make the
PBM more useful and predictive for practical applications (see Section 3.6), the number of
parameters will increase to 13, at a minimum. An increase in the number of parameters
causes more inaccurate estimation of the parameters, and the parameters may not be
statistically significant besides the fact that a probable globally optimum solution will not
be reached by optimization [8–10,31].

As per Principle I, a PBM must incorporate all the relevant physics either phenomeno-
logically or mechanistically; so, Principle II does not suggest that we refrain from disre-
garding some mechanisms or aspects of breakage phenomena. Besides introducing size-
dependent functional forms for Si and Bij, a major approach to reducing the parameters
in the (full) back-calculation is the use of a hybrid method in which a direct measurement
method such as BII (see, e.g., [35,36]) and the tn–t10 family of curves are used to estimate the
parameters or matrix of Bij separately and independently. Then, this Bij is used along with
the PSD data from the mill of interest to estimate Si by back-calculation. Hence, although
some of the issues associated with the full back-calculation method appear, the semi-back-
calculation method reduces the number of parameters significantly and may become the
best approach to the solution of the inverse PBM problem. The number of parameters to
be fitted via semi-back-calculation is two, as opposed to five in Equations (5) and (6), and
six, as opposed to ten in Equations (7) and (8).

A third major approach, which entails further research, is the reduction in PBM
parameters through its one-way or two-way coupling with computational fluid dynamics
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(CFD) and the discrete element method (DEM) [37–39]. As an excellent demonstration
of this point, for impact milling applications, Capece et al. [38,39] derived the specific
breakage rate parameter Si of the PBM, which differs from the arbitrary empirical breakage
rate constants commonly employed in the milling literature, rigorously by augmenting
the single-impact breakage model [40] and the impact energy spectra provided by DEM.
They demonstrated that using only two material parameters of the single-impact breakage
model, the specific breakage rate of the five-parameter Kotake–Kanda model [41], which
was fitted to the experimental batch milling data, was reproduced by the DEM owing to
the newly defined Si function [39].

3.3. Principle III: Generate a Dense Data Set

The solution to the inverse problem dictates the availability of a sufficient number
of experimental data, which are reproducible and relatively smooth, as a high number of
PBM parameters are to be estimated. Taking multiple samples at various milling times,
preferably separated at a geometric progression rather than a linear progression, in batch
milling and multiple locations within the mill for continuously operating mills at multiple
steady states are recommended. It is essential to take samples from multiple locations in
the mill if particle classification is expected, for example, due to the presence of screens and
diaphragms [42]. Also, to generate a dense data set, the use of laser diffraction is important
as it provides PSD over 30–130 size classes. As sieving provides PSD information only for
5–10 size classes, a common practice is to combine it with some other sizing techniques to
extend the PSD range to finer particles [8]. On-line and in-line sampling of PSD also enable
engineers to build large data sets. In experimental measurements, care must be exercised
to minimize sampling errors, and the precision of the measurements should be established.
Unfortunately, one can even find studies that make use of 3-size-class PBMs, which are
problematic partly because it is impossible to define a PSD with 3 size classes accurately,
and the PBM is grossly inaccurate (see Principle IV).

3.4. Principle IV: Ensure a Grid-Independent Solution to the PBM

The accuracy of the PBM depends on the accuracy of the size discretization and the
number of size classes used. In this perspective article, various discretization methods
(in fact, solution methods) were excluded, as this topic deserves a separate perspective
article (readers refer to [43]). Within the context of the simple, geometric discretization of
the particle size domain implied in Equations (1)–(4), the use of a sufficiently large number
of classes ensures one to find a non-changing solution, referred to as a grid-independent
solution in CFD terminology. This aspect has been largely excluded from many milling
studies in the minerals engineering literature, and it is not uncommon to find PBMs with
3–6 size classes, with little to no discussion of the errors involved. Austin [44] was the first
to recognize that the use of 1/21/2 geometric progression, commonly used in sieving, could
cause slight non-first-order behavior despite the linearity of the actual breakage kinetics.
To describe the PSD more accurately and precisely, Principles III and IV go hand in hand;
in general, dense data sets should be obtained from experiments. The PBM must be solved
with a sufficient number of size classes, typically matching or exceeding the number of
size classes in laser diffraction measurements, to provide grid-independent solutions or
minimize discretization errors. In fact, one can and should solve the PBM with many size
classes to obtain a grid-independent solution on a fine numerical grid and then reduce the
PSD to the experimental size domain (typically a coarse grid) without incurring much error,
as this would entail highly accurate interpolation on the fine grid (see [8,9] as examples).

3.5. Principle V: Use Global Optimization in Parameter Estimation

Even when Principle II is adopted in different ways to reduce the number of parame-
ters, a useful PBM that accounts for the impacts of all process–design parameters is expected
to have 5–10 parameters. Since the early inception of the full back-calculation method,
local optimization has been commonly used to estimate the parameters [9,10,17,35]. Recent
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research [8,31] clearly established that when the number of PBM parameters is above a few,
it is very difficult, if not impossible, to find a unique set of parameters via local optimization.
The obtained solution may correspond to a local optimum [36] or a flat surface around
an objective function [31]. The significant dependence of the optimization solution on
the initial guess values of the parameters is a signature of its non-uniqueness. Hence, a
global optimization algorithm, which is available in commercial software like MATLAB
(the global optimization toolbox [45]) and Excel, should be used, preferably. For example,
Muanpaopong et al. [8] used a non-linear constrained optimizer “fmincon”, coupled with
the ODE solver “ode15s”, within the global optimization toolbox [45] of MATLAB, which
minimized the sum-of-squared residuals SSR between the PBM-modeled PSD and the
experimental PSD as the objective function. The MATLAB function “GlobalSearch” was
used to generate the next set of initial guesses for the next trial point using the scatter
search method [46]. Note that global optimization has been rarely used in the milling
literature for estimating the parameters of the PBM within the context of the full or hybrid
(semi-back-calculation) methods [8].

Principle V also recommends that the standard errors of the estimated parameters
be reported and even the statistical significance of the parameters (p-values) be assessed.
Interestingly, the early work on the full back-calculation method [4,10] emphasizes this
aspect; however, this practice has rarely been adopted in the milling literature. Besides SSR
and standard-error-of-residuals SER for assessing the goodness-of-fit, the standard error of
the parameters SEP can be used to assess the statistical significance of the model parameters
and even discriminate between alternative Si and Bij models [9,20]. To put it differently,
while SSR and SER give an indication of how well the model fits the experimental data, SEP
is an important statistic in determining the degree of certainty in the estimated parameters.
A high SEP in comparison with the estimated parameter value indicates low certainty of
the parameter estimate (or a wide confidence interval), which may be due to a lack of
sufficiently accurate, dense data sets and/or the use of a poor model. SEP can be calculated
by taking the square root of the diagonals of the parameter covariance matrix C determined
at the back-calculated parameter set (p′) [9], as detailed by Aster et al. [47] and shown in
Equation (9).

C
(

p′
)
= SER2

[
J
(

p′
)T

J
(

p′
)]−1

(9)

where T and –1 stand for matrix transpose and inverse operators, respectively. The Jacobian
matrix J was also computed at the parameter set determined by the back-calculation method.
Each row of the Jacobian matrix comprises the partial derivatives of the squared residual
for a single experimental observation and model prediction with respect to each model
parameter. Capece et al. [9] estimated the partial derivatives by using a first-order finite
difference method also detailed by Aster et al. [47].

3.6. Principle VI: Test Predictive Capabilities of the PBM

A PBM is more than a fitting tool! Unfortunately, the way PBMs have been largely
developed and used in the milling literature has germinated the wrong notion that PBMs
can only be used to fit the spatiotemporal evolution of the experimental PSD data but not to
predict the PSD evolution under different process–design conditions. This is partly related
to the fact that most researchers do not take the next step of PBM validation in their studies,
e.g., considering different feed PSDs, ball sizes, ball types, and processing conditions from
those used in the model calibration step (parameter estimation). Obviously, a useful PBM
should have a mathematical structure and robust parameter estimation to enable such
predictions. For example, as written, a PBM with Equations (5) and (6) can only predict
the impact of the changes in the feed PSD, whereas a PBM with Equations (7) and (8) can
additionally predict the impact of various bead sizes/mixtures. To account for the impacts
of various process parameters, the specific breakage rate parameter A of Equation (5) can
be multiplicatively decomposed in the power-law form as follows:
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A = A0 pa1
1 pa2

2 pa3
3 (10)

where p1, p2, and p3 are three different process–design parameters, e.g., stirrer speed, ball
density, and ball size in stirred media milling or similar process parameters in other milling
processes [48,49]. The coefficient A0 and the exponents a1, a2, and a3 are additional fitting
parameters. Other models that describe the dependence of Si on process–design parameters
have been established for tumbling ball milling [4]. Once calibrated, such a PBM can be
used to predict the impact of the respective parameters. For example, Muanpaopong
et al. [8] predicted the impact of a mixture of ball sizes and different feed PSDs on the
batch milling of cement clinker, and such a feed PSD and ball mixture were not part of the
parameter estimation.

4. Final Remarks

The author has presented six principles, within the context of back-calculation meth-
ods, to minimize falsified kinetics–breakage distribution in the PBM of milling processes,
thus ultimately enabling the development of highly predictive and robust models. Ignoring
several of these principles will almost guarantee that some parameters estimated are false
and/or statistically insignificant, whereas consideration of all these principles will decrease
the probability of the occurrence of falsified kinetics–breakage drastically.

An overarching assessment of the six principles is as follows: First and foremost,
without a PBM that takes into account the key particle change mechanisms (Principle I), re-
gardless of how accurately the remaining principles are implemented, the breakage kinetics
and mechanisms will most likely be falsified. In other words, the falsification that originates
from inadequate or wrong models cannot be compensated by using more accurate meth-
ods for solving the PBM, a global optimizer for parameter estimation, or comprehensive
PSD data sets. While Principle I dictates the inclusion of the underling physics of milling
processes and the general mathematical structure of the PBM, Principles II–IV will help to
identify the minimum number of parameters that can be accurately determined with statis-
tical significance. In terms of their significant impacts, these principles can be rank-ordered
as follows: Principle II > Principle III > Principle IV. Principle II, along with Principle I,
sets the total number of parameters estimated; hence, it is the most important among these
three principles. While Principle III is only slightly less important than Principle II, it
also sets some restrictions: the number of parameters cannot be more than the number of
experimental data points; the number of numerical size classes should not be less than the
number of experimental size classes. However, these restrictions are rather weak and thus
rarely violated in practice. Principle IV weighs the least among the three principles because
even a relatively crude size discretization (1/21/4 or even 1/21/2 to a smaller extent) can
lead to a reasonable estimation of breakage parameters, as implied by Austin [9]. On the
other hand, ref. [9] should be viewed with some caution because it is considered one of the
simplest PBM structures, i.e., Equations (5) and (6). To ensure accurate parameter estima-
tion and statistical significance, more elaborate PBMs with a higher number of parameters
entail a denser data set and a finer size discretization. Finally, considering that even with
the application of Principle II, a typical PBM has more than a few parameters, the full and
semi-back-calculation methods entail using a global optimization scheme to find a probable
globally optimal solution (Principle V). The local optimization schemes typically used in
most PBM studies do not provide any assurance that a probable globally optimal solution
(parameter estimates) has been found. Hence, Principle V is as important as Principle II.
If used at all (see below for resources), Principle VI allows for validating the PBM and
gives further assurance that significant falsification of breakage kinetics has not occurred.
Overall, this perspective article suggests the following rank-ordering of all six principles:
Principle I >> Principles II and V > Principle III > Principle IV > Principle VI.

The answer to the question posed in the title of this paper is, perhaps almost being a
cliché: It depends! It depends on the number of parameters being estimated, the specific
milling system–material being tested, the fidelity of the PBM to reality, the availability of



Powders 2024, 3 199

dense, accurate, and precise experimental data for a large number of size classes, etc. In
general, without considering specific cases, if Principles I, II, and V are disregarded, the
PBM output will be falsified kinetics–breakage mechanisms regardless of the nature of the
PSD data sets. On the other hand, it is unrealistic to expect that all six principles can be
applied with the utmost mathematical rigor and excellence. In fact, the author is not aware
of a single PBM study wherein all six principles have been perfectly applied in the milling
literature. The formulation and implementation of PBMs also entails balancing various
competing aspects besides scientific excellence: fit-for-purpose, availability and proper use
of experimental–computational resources, and time and effort that can be dedicated. This
latter point reflects the art-like elements of population balance modeling. In conclusion,
this perspective article raises awareness of various challenges involved in the solution of
the inverse PBM problem as pertinent to milling processes and provides researchers who
want to use PBM with six principles to minimize falsified kinetics.
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