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Abstract: Organoids have emerged as a powerful tool for studying organ development, disease
modeling, and drug discovery due to their ability to mimic the in vivo structure and function of organs
in a three-dimensional in vitro model. During in vivo organ maturation, the process of vascularization
is crucial for the provision of nutrients and oxygen to cells and the removal of waste products as the
organ increases in size. Similarly, organoids can grow to sizes greater than the millimeter scale, yet
transport of oxygen and nutrients to the center becomes increasingly difficult, often resulting in the
formation of a necrotic core. Herein, we provide a concise summary of the recent development of
methods to initiate and maintain vascularization of organoids. Broadly, vascularization of organoids
has been achieved primarily by two means: generating organoids that contain endothelial cells or
employing the secretion of vascular growth factors to promote vascularization. Growth factors play a
fundamental role in regulating blood vessel formation through chemical signals that cause changes
in the cell–cell adhesions and ultimately the migration of endothelial cells. Furthermore, models with
perfusable systems demonstrate that through the application of growth factors and cells, the vascular
network in vascularization-based organoids can administer biological substances to the interior
of the organoid, opening up new possibilities for long-term organoid culture in vitro. This goal is
being realized through the development of bioengineering tools, such as vascularized organoids
on a chip, which are currently tested for various organ systems, including the lung, brain, kidney,
and tumors, with applications in cancer angiogenesis and metastasis research. Taken together, our
review underlines the vast potential of vascularized organoids to improve the understanding of organ
development, while also proposing exciting avenues of organoid-on-a-chip and disease modeling.

Keywords: organoids-on-a-chip; angiogenesis; microfluidic device

1. Introduction

Organoids are self-assembled, three-dimensional, in vitro units constructed from either
stem cells or specific progenitor cells [1–3], which enable realistic micro-anatomy to form [4–6]
through the provision of appropriate culture conditions and growth factors [7,8]. For instance,
lung organoids serve as models for studying respiratory diseases [9,10], and blood-brain
barrier (BBB) organoids recapitulate the selective diffusion function across the vessel wall
of the in vivo BBB [11]. Organoids often grow into the millimeter scale [12], affording a
greater likelihood of reproducing the complex cellular interactions and structures found in
in vivo organs. However, the delivery of oxygen and nutrients to the center of the organoid
relies solely on passive diffusion due to the lack of perfusive vasculature, leading to the
development of a necrotic core. In vivo vasculature facilitates active transport of nutrients
and oxygen while also removing waste and carbon dioxide [13–17]. Therefore, strategies to
improve the vascularization of organoids are needed.
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Vascularization involves the formation and development of new blood vessels in
biological tissues [13,18]. In vitro, endothelial cells promote the development of nascent
vascular structures which, with proper support and cues, can maturate into luminal-
containing, branched vessels [19,20]. These cues arise from the co-culture with supporting
cells such as pericytes and mesenchymal stem cells (MSCs), which make up the perivas-
cular niche and wound repair response, respectively [21–23]. When endothelial cells and
pericytes are co-cultured, pericytes form a close association with endothelial cell sprouts,
leading to an increase in sprout number and vascular diameter compared to endothelial
cells alone [23]. A similar effect is observed when MSCs are used in place of pericytes,
where more endothelial-vessel-like structures were observed [24]. This is because these vas-
cular support cells increase the secretion of angiogenic factors that promote angiogenesis,
similar to the in vivo environment [21,24].

Theoretically, by integrating a vascularized organoid into a perfusable system, the overall
size and lifespan of the organoid can be significantly increased [25]. Early work on this
took advantage of in vivo implantation of pre-vascularized or vascular organoids, whereby
the implanted organoid was eventually anastomosed with the host vasculature, resulting in
organoid survival [25–28]. The establishment of perfusion systems in vitro [29–31], mostly by
incorporating organoids into microfluidic bioreactor systems, provides perfusion to increase
the delivery of nutrients [32]. Here, we refer to these systems collectively as “organoids-on-a-
chip (OOCoid)”. OOCoid can be used to study and enhance the vascularization process as a
result of the induced flow stresses on the engineered tissues which better mimic physiological
conditions [32–34]. For example, BBB models generated from endothelial cells, pericytes and
astrocytes co-cultured in a microfluidic system exhibit vasculature that is perfusable with
selective microvessels exhibiting lower permeability than conventional in vitro models, which
improves the function of BBB models [35].

Herein, we review the development of vascularized organoids. Firstly, we will briefly
recap the angiogenesis process, highlighting the importance of vascular growth factor secre-
tion in angiogenesis. Secondly, we will summarize co-culture works with endothelial cells,
as well as the inclusion of vascular support cells such as pericytes, MSCs, and fibroblasts,
which further promote the generation of vascularized organoids. Next, we describe in situ
vascularization with vascular organoids and primary cell organoid implantation. Finally,
we culminate in the state-of-the-art organ cultured on a chip.

2. Vascularization

Vascularization is used to describe the formation of blood vessels in a tissue or organ,
including angiogenesis, the branching of existing vessels [36], vasculogenesis, and the
development of new blood vessels [37–39], to ensure that tissues and cells receive adequate
oxygen and nutrients and removal of waste products [14,25]. In this process, growth factors
play a fundamental role in regulating vascularization through signaling that causes the
release and migration of endothelial cells as they construct new microvessels.

2.1. Angiogenesis

Within a hypoxic tissue, a tissue in a state of low oxygenation, pre-existing blood
vessels secrete pro-angiogenic factors, such as hypoxia-inducible factor-1 (HIF-1), which
upregulates multiple target genes, such as vascular endothelial growth factor (VEGF) [40].
VEGF activates endothelial cells in a nearby blood vessel to loosen their endothelial
tight junction bonds, causing static stalk endothelial cells to become migratory tip cells
(Figure 1) [41,42]. Meanwhile, pericytes, which are present in the perivascular space, also
disengage and migrate through the hypoxic region while secreting VEGF, resulting in the
guidance of tip endothelial cells during sprouting [42–46]. Eventually, the tip cells give
rise to more stalk cells which are highly proliferative and are responsible for establishing
new tight junctions and the formation of the lumen of the new capillary [47,48]. The newly
created vessels are unstable and require pericyte recruitment to ensure survival. For this,
endothelial cells secrete platelet-derived growth factor (PDGF) to attract PDGFRβ-positive
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pericytes, enabling pericyte and endothelial cells’ interaction through various molecular
mechanisms to initiate maturation by promoting the formation of a tight vascular bar-
rier [49–51]. Additionally, transforming growth factor-β (TGF-β) can potentiate the effects
of VEGF receptor signaling, as well as be involved in the formation of new blood vessels
by affecting the synthesis and release of PDGF, thereby enhancing the process of angio-
genesis. For example, experiments involving the knockout of TGF-β have demonstrated
their role in endothelial cell proliferation, contributing to the formation of new blood
vessels [52,53]. Furthermore, cellular membrane tension fluctuations caused by fluid flow,
such as the induction of cellular stretching in the lumen, increase the longevity of resident
endothelial cells [54]. Similarly, mechanical stimulation results in the release of endothelial
nitric oxide synthase (eNOS), which influences endothelial cell polarity and angiogenic
sprouting. Notably, the inhibition of eNOS significantly hinders VEGF-induced migration
of endothelial cells while fluid flow can still lead to their polarization showing the dichotic
role of mechanical regulation [55]. Readers interested about the role of mechanosensing in
vascular development are referred to two excellent reviews on the topic by Gray et al. [56]
and Tarbell et al. [57], which discuss in more detail the biochemical and biophysical cues
that result from blood flow signaling on endothelial cells.
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Figure 1. Schematic diagram of the in vivo angiogenesis process. A precursor to the angiogenic pro-
cess is the development of a hypoxic region which induces the release of pericytes into the peri-
vascular space and the conformation change of stalk (resident) endothelial cells to tip (migratory) 
endothelial cells. The dashed lines indicate the cross-section of the blood vessel, with arrows indi-
cating the temporal progression of angiogenesis. 

2.2. Vascular Growth Factor Secretion 
2.2.1. Exogenous Growth Factors 

Growth-factor-directed angiogenesis has been exploited to great effect by incorporat-
ing growth factors into gels to enhance sprouting and promote the generation of vascular 
organoids. Hydrogels encapsulating exogenous VEGF stimulate the proliferation and mi-
gration of endothelial cells, leading to angiogenesis [58]. PDGF encapsulation within hy-
drogels has also been shown to promote angiogenesis and play a role in vascularization 
by promoting pericyte recruitment and stabilization of the newly formed blood vessels 
[59]. Similarly, in other trials, endothelial cell and capillary lumen formation in vitro were 
promoted by TGF-β1 at relatively low concentrations (100 pg/mL–1 ng/mL); however, lu-
men size in gels was markedly reduced at invasion-potentiating doses of TGF-β1 [60]. 
Hence, exogenous growth factors in hydrogel can influence the generation of vasculature 
for tissue engineering. 

Exogenous trophic factors occur naturally in vivo, including VEGF and granulocyte-
macrophage colony-stimulating factor, where following implantation they have been ob-
served to mobilize endothelial progenitor cells from bone marrow and have been shown 
to contribute to neovascularization of ischemic tissues [61,62]. Similarly, in animal models, 

Figure 1. Schematic diagram of the in vivo angiogenesis process. A precursor to the angiogenic
process is the development of a hypoxic region which induces the release of pericytes into the
perivascular space and the conformation change of stalk (resident) endothelial cells to tip (migratory)
endothelial cells. The dashed lines indicate the cross-section of the blood vessel, with arrows
indicating the temporal progression of angiogenesis.

2.2. Vascular Growth Factor Secretion
2.2.1. Exogenous Growth Factors

Growth-factor-directed angiogenesis has been exploited to great effect by incorporat-
ing growth factors into gels to enhance sprouting and promote the generation of vascular
organoids. Hydrogels encapsulating exogenous VEGF stimulate the proliferation and
migration of endothelial cells, leading to angiogenesis [58]. PDGF encapsulation within
hydrogels has also been shown to promote angiogenesis and play a role in vascularization
by promoting pericyte recruitment and stabilization of the newly formed blood vessels [59].
Similarly, in other trials, endothelial cell and capillary lumen formation in vitro were pro-
moted by TGF-β1 at relatively low concentrations (100 pg/mL–1 ng/mL); however, lumen
size in gels was markedly reduced at invasion-potentiating doses of TGF-β1 [60]. Hence,
exogenous growth factors in hydrogel can influence the generation of vasculature for
tissue engineering.

Exogenous trophic factors occur naturally in vivo, including VEGF and granulocyte-
macrophage colony-stimulating factor, where following implantation they have been ob-
served to mobilize endothelial progenitor cells from bone marrow and have been shown to
contribute to neovascularization of ischemic tissues [61,62]. Similarly, in animal models,
it has been shown that implanting autologous bone marrow cells, following hindlimb
injury, results in the induction of angiogenesis and enhanced exercise capacity as a result
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of improved blood flow. The authors attributed this result to the secretion of VEGF [63].
Additionally, endothelial progenitor cells, activated by unidentified cellular signaling path-
ways, release cytokines that enhance the proliferation and migration of smooth muscle cells
and vascular endothelial cells in the ischemic limb and promote the formation of collateral
vessels [64].

2.2.2. Endogenous Growth Factors

VEGF, PDGF, and many other angiogenic factors are naturally secreted in vivo by
the vascular cells, and as such the inclusion of vascular, wound repair and perivascular
cells can be employed to facilitate angiogenesis [65–68]. For instance, Ding et al. demon-
strated that the angiocrine trophogens Wnt2 and hepatocyte growth factor were released
because of the activation of VEGFR2/inhibitor of differentiation 1 signaling, thereby pro-
moting hepatocyte proliferation and tissue regeneration. The authors went on to show
that, after 8 days post hepatectomy, genetic inhibition of VEGFR2 impairs hepatic and
vascular recovery. They suggested that this is a result of the inhibition of the endothelial-
cells-specific transcription factor, inhibitor of differentiation 1 [65]. Similarly, pulmonary
capillary endothelial cells utilize VEGFR2, and after pneumonectomy, the production of
MMP14 is restricted to VEGFR2-activated pulmonary capillary endothelial cells but not
to other vascular-rich organs, such as the liver, spleen, heart and kidneys, highlighting a
unique functional signature of pulmonary capillary endothelial cells in alveolar regenera-
tion [66]. Additionally, when MSCs were co-cultured with endothelial cells and pancreatic
organoids, VEGF-secreting MSCs promoted vascularization, as seen by the differentiation
of endothelial progenitor cells into endothelial cells via paracrine mechanisms, which was
verified by the enhanced expression of specific endothelial phenotype markers, including
cluster of differentiation 31 (CD31) and von Willebrand factor [67]. VEGF secreted by MSCs
has also been shown to enhance the cutaneous wound healing process in a mouse model.
This is because autophagy increases the VEGF secretion from MSCs through regulating
extracellular signal-regulated kinase phosphorylation. Kinase phosphorylation then acts on
nearby endothelial cells to promote angiogenesis [68]. In tumor organoids, the progressive
growth of the tumor eventually leads to intertumoral hypoxia, which induces HIF-1 [40].
HIF-1 upregulates VEGF and VEGF activates endothelial cells in a nearby blood vessel,
which induces more sprouting within the tumor [36,47,69]. In similar studies, fibroblast
growth factor (FGF) and bone morphogenetic protein (BMP) pathways were shown to
be significantly upregulated in human iPSC-derived hepatic endoderm cells when co-
cultured with stromal cells [70]. The authors conclude that the FGF pathway promotes
new vessel formation by stimulating endothelial cell proliferation and migration, while the
BMP pathway is involved in the regulation of endothelial cell differentiation and tissue
construction. Additionally, the BMP4 signaling pathway is essential for lung endothelial
cell differentiation from bronchioalveolar stem cells along the alveolar lineage, which plays
a role in defective alveolar injury repair. In null mice, it was observed that the repair was
significantly inhibited illustrating the importance of endothelial repair mechanisms in
addition to angiogenic potential [71].

3. Co-Culture of Endothelial Cells with Organoids

Endothelial cells regulate the secretion of vascular growth factors. Co-culturing with
endothelial cells allows for the emulation of in vivo cellular interactions, thus enhancing
the production of vascular growth factors. Therefore, the inclusion of these cells and
factors is paramount to ensuring angiogenesis (Figure 2a). Therefore, the makeup of
organoids should be derived from one or a few discrete cell types such as embryonic
stem cells, induced pluripotent stem cells, or primary differentiated cells in conjunction
with endothelial cells. These cells can self-organize in 3D culture owing to their adhesion
strength and dynamic adhesion capacities which enables more in vivo-like structures to be
constructed, such as the liver, lung, tumor organoids and more [72–74].
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3.1. Co-Culture with Endothelial Cells

Endothelial cells, when co-cultured with other types of cells, such as pericytes and
MSCs, enable the endogenous secretion of proangiogenic factors, which can promote sprout-
ing and the formation of stable blood vessels [75–77]. For instance, co-culturing pericytes
and astrocytes with endothelial cells resulted in more stable and shorter vessel branches,
with more circular cross-sections and smaller vessel diameters compared to only culture
endothelial cells [35]. Manocha et al. found that pericytes were able to induce angiogenesis
in endothelial cell spheroids. Conditioned medium from pericytes led to the proliferation
of endothelial cells, indicating their ability in angiogenesis stimulation (Figure 2b) [78].
Similarly, MSCs have also been shown to be able to play a role similar to perivascular
cells allowing for tight BBB reformation with a vessel-constrictive capacity (Figure 2c) [79].
Endothelial cells/MSCs co-culture demonstrated significant enhancement effects on cell
proliferation and angiogenic capacity in direct contact co-culture, and PDGF-BB treatment
enhanced angiogenic capacity [80]. In particular, co-culturing spheroids of uniformly
distributed endothelial cells and MSCs showed more vasculogenesis and cell–cell commu-
nication than endothelial cells seeded on the perimeter of the MSC core [81]. Shanbhag et al.
encapsulated human umbilical vein endothelial cells with gingiva-derived progenitor cells
as spheroids in a xeno-free environment. Endothelial cells revealed characteristic in vitro
sprouting [82].

3.2. Co-Culture of Endothelial Cells with iPSC-Derived Organoids

Mesodermal progenitor cells derived from induced pluripotent stem cells (iPSCs), which
differentiate into cells within the vascular niche, have shown interesting vascular network
formation in 3D organoid assembly. The inclusion encourages both the development of
angiogenesis and vasculogenesis to improve overall organoid maturation [83,84]. Human
pluripotent stem cell aggregates can differentiate into organoids by mesoderm induction; fol-
lowing the induction of the mesoderm, endothelial networks emerge through vessel sprouting
and develop into well-established blood vessels in about two weeks, supported by pericytes
and surrounded by a basement membrane for stability [84]. Wörsdörfer et al. initially in-
corporated iPSC-derived human mesodermal progenitors specifically into organoids. Since
endothelial cells were differentiated from mesodermal progenitor cells treated with VEGF, the
co-culture of mesodermal progenitor cells with spheroids resulted in the in vitro generation of
vascularized organoids [27]. Likewise, hepatic endoderm cells can be prepared from human
iPSCs, to construct three-dimensional vascularized liver buds. This system consists of hepatic
endoderm cells with endothelial and mesenchymal lineages which gives rise to a collective
structure that better recapitulates the in vivo structure [70].

3.3. Vascular Niche Cells Further Promote the Generation of Vascularized Organoids

When vascularization is induced during the early stages of organoid development, it
means that blood vessel formation is initiated concurrently with the formation of the organoid
structure. On the other hand, inducing vascularization during later stages means that the
organoid structure is already established before the vascularization process is initiated.
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kDa Texas Red dextran containing medium, the tubular structure in vascularized human cortical 
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Figure 2. Co-culturing endothelial cells with other types of cells promotes vasculature formation and
vessel-constrictive capacity. Fusing endothelial cell spheroids and organoids results in the formation
of vascularized organoids. (a) Schematic of endothelial cells co-cultured with pericytes and MSCs
promoting vascular formation in planar culture or co-cultured with organoids to form vascularized
organoids. (b) Sprout formation from endothelial cells and pericytes co-cultured with spheroids. The
number of sprouts formed from CD31−pericytes or endothelial cells only (HUVECs or FEC), is less
than those formed from pericytes and endothelial cells co-cultured with spheroids. Image is adapted
with permission from Manocha et al. [78]. Statistical analysis was performed by one way ANOVA
and Bonferroni’s post-test; * p ≤ 0.05, ** p < 0.01, *** p < 0.001. (c) Co-culturing with MSC allows for
tight BBB reformation with vessel-constrictive capacity, a lower permeability coefficient, and less
vessel width. The image is adapted with permission from Kim et al. [79]. All data are presented as
mean ± SEM (* p < 0.05, ** p < 0.01, *** p < 0.001, Student’s t-test) (d) Stacked confocal images show
the formation of a neurovascular organoid (30 days). The authors highlighted regions of invading
endothelial cells (lower white box) and neurite infiltration (upper white box). Immunohistochemistry
stained for Hoechst (blue), βiii tubulin (green), and CD31 (red). Endothelial cell spheroids and brain
organoids were fused to obtain vascularized brain organoids. The image is adapted with permission
from Salmon et al. [85]. (e) Vascularized human cortical organoids formed CD31+ endothelial-like
networks on day 50 with 5% FBS supplementation. After incubation in 70 kDa Texas Red dextran
containing medium, the tubular structure in vascularized human cortical organoids was visualized.
Images are adapted with permission from Ahn et al. [86].

The former method aims to incorporate vascularization from the beginning, allowing
for the development of a well-integrated vascular network throughout the organoid as it
matures. During the early stages of this process, endothelial cells are introduced into the
organoid culture along with the primary organoid cells. For instance, vascularized liver
buds can be developed by seeding iPSC-derived hepatic endoderm, human umbilical vein
endothelial cells, and MSCs on Matrigel [70]. The contractile properties of MSCs induced
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condensation within the mixed population of different cell types, leading to the emergence
of spontaneously organized 3D spheroids, and endothelial cells developed early vascular
networks in the spheroids [87].

The latter method involves adding or integrating blood vessels into existing organoids
to enhance their vascularization. Endothelial cells can be incorporated to vascularize
organoids that are generated based on embryoid body formation at a later time point, with
some of the literature using a period of two weeks [88]. By fusing a BBB organoid and later
stage tissue organoid, it is possible to obtain vascularized brain organoids [85,86]; the fused
brain organoids were shown to be engrafted with robust vascular network-like structures,
which prolong tissue culture in vitro [89]. Fusing BBB organoids and tissue organoids is
another method to form vascular organoids. For instance, endothelial cell spheroids and
brain organoids were created separately, and then the two types of organoids were fused to
obtain vascularized brain organoids, the fused brain organoids were engrafted with robust
vascular network-like structures (Figure 2d) [85,89]. Furthermore, Ahn et al. incorporated
blood vessel organoids into brain organoids at day 5 and found vascular cells arising
from blood vessel organoids penetrated the cerebral organoids and developed a vessel-
like architecture composed of CD31+ endothelial vessels coated with SMA+ or PDGFR+
vascular support cells (Figure 2e). Molecular markers of the BBB were detected in the
vascularized cerebral organoids [86]. Finally, the addition of endothelial cells promotes the
development of nascent perivascular structures that maturate to generate vessel sprouting
and lumen. It is noteworthy that, while the presence of vascular network in the organoids
helps with diffusion of nutrients and oxygen, vascularized organoids still lack a perfusion
system, which easily leads to the development of a necrotic core [90].

4. Implantation of Organoids In Vivo Leads to Host Anastomosis

Vascularized implants refer to the anastomosis of living vascular networks with
artificial tissue constructs, which allows for the growth of large functional tissues owing to
nutrient and oxygen delivery [91]. There are two methods to achieve this purpose. One
is in situ vascularization of host ischemic wounds. This model is important as it verifies
the required cells for angiogenesis, anastomosis and allows for a controlled model for the
evaluation of chemokines involved in endothelial, fibroblast, immune, or MSC recruitment
as it relates to the creation of a working vasculature in vivo for implants. The other is
primary cell organoid implantation, which relies on the host’s vascular network to support
the organoid’s vascularization (Figure 3).

4.1. In Situ Vascularization with Vascular Organoids

In situ implantation is done by creating local environments where vascularization is
needed and then implanting vascular organoids comprised of vascularizing cell popula-
tions, aiming to ensure the incorporation of necessary cells such that anastomosis with the
host system is achieved. For example, endothelialized organoids, containing human umbil-
ical vein endothelial cells, were transplanted in the omental pouch of nude rats, whereby
endothelialized parts were randomly assembled in vivo, resulting in the formation of chan-
nels among individual parts that remained stable for a minimum of two weeks, during
which transplanted endothelial cells migrated and established primitive vessels within
these channels [92]. Additionally, the implantation of vascular organoids into ischemic
injuries such as myocardial infarction, or acute ischemic stroke has shown great potential
for promoting neovascularization and tissue regeneration [93,94]. Similarly, myocardial
patches, which increase the blood supply to the infarcted site thereby improving cardiac
function, do so by promoting vascular proliferation while simultaneously reducing fibro-
sis [95]. Hindlimb ischemia is a common model of peripheral arterial disease and can lead
to tissue necrosis and limb amputation. Wound repair is then initiated by the inclusion of
pro-angiogenetic cells such as MSCs within, thereby increasing the tissue’s vascularization,
perfusion, and limb retention [96–98].
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4.2. Primary Cell Organoid Implantation
4.2.1. The Tissues Help Vascularize the Implanted Organoids

Primary cell organoids comprised of cells derived from the organ of interest, are
typically pre-formed and cultured in vitro before being implanted into the target tissue
or organ. Once implanted, they rely on the host tissue’s vascular network to provide the
necessary blood supply for their survival and growth. For example, Low et al. introduced
kidney organoids, which have cultured for four weeks, under the renal capsule of mice.
Subsequently, the dimensions of the implant increased over time, as well as the count of
vessels with perfusion. These kidney organoids, upon implantation into a host mouse,
also showed gradual acquisition of glomeruli and mature architecture [99]. Takebe et al.
showed the generation of vascularized and functional human liver from human iPSCs
by transplantation of liver buds created in vitro, whereby the liver buds connected to
the host vessels within 48 h, thereby becoming functional. These implants showed the
formation of functional vasculature, which stimulated the maturation of liver buds into
tissue resembling the adult liver [70]. Additionally, Mansour et al. developed an in vivo
implantation model of human pluripotent stem cell-derived brain organoids. When the
mouse brain was implanted with the brain organoid, the functional vascular system was
established, promoting mature brain tissue generation in vivo [100].

4.2.2. Implanted Organoids Contribute to the Organism

Implanted cardiac organoids develop and secrete better than their ex vivo counterparts
when integrated into the host vasculature [88,93]. Van den Berg et al. developed glomerular
structures by transplanting kidney organoids derived from human iPSCs. These organoids
were placed under the renal capsule, where they showed invasion of the host vasculature
into the organoids. Implanted organoids also showed a greater degree of functionality
compared with organoids that were not implanted [101]. Similarly, Li et al. generated 3D
vascularized liver buds from human MSCs, MSC-derived hepatocytes, hepatic stellate,
and sinusoidal endothelial cells. These organoids were then implanted into the mesentery
of a murine liver failure model which they effectively rescued the animals from [102].
Pham et al. engrafted pre-vascularized, 54-day maturation, brain organoids into a mouse
brain for 3–5 weeks, and observed after transplantation, human CD31-positive blood
vessels between rosettes within the center of the organoid [88]. In vivo, perfusable im-
planted organoids can be incorporated into animal models, which can reflect complex
biological environments.
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5. Development of Organoids-on-a-Chip (OOCoid) within a Perfusable System

In vivo, perfusable implanted organoids can be incorporated into animals, but this
results in a less controllable system. To control the in vitro environment and improve
vascularization and tissue development, it is desirable to integrate the organoid into
a perfusable system. Perfusion systems offer in vitro incorporation of organoids into
microfluidic bioreactor systems which allow for external fluid flow to increase the delivery
of nutrients [13,103,104] (Figure 4a). OOCoid demonstrates that the vascular network
connected to external flow can deliver biological substances to the interior of the organoid,
which decreases the necrotic core of organoids in vitro [103,105]. For example, Wang et al.
proposed that perfusion resulting from chip-based flow would enhance cell viability of liver
organoids compared to those under static culture. At day 30, organoids that had undergone
dynamic culturing showed significantly less caspase-3 staining, which the author connects
to the delivery of necessary nutrients [103].
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Figure 4. Vascularized organoids (e.g., kidney, brain, and more) on-a-chip. The use of chips allows
for the formation of functional vascular networks within the organoid. (a) A general schematic of
the microfluidic device in OOCoids. The central gel region contains cells, which may be combined
from multiple organ or tissue sources to construct an organoid. The central region also contains
hydrogels and side channels that were filled with fluid cell culture medium. This design encourages
in-growth of vascular cells from side chambers (arrows). (b) Fluorescent images of caspase-3 following
62 days of culture for perfused (top row), non-perfused (middle) and control (bottom row); cleaved
caspase-3 (green), N-Cadherin (red) and Sox2 (white). Staining shows increased caspase-3/necrotic
formation in the control and non-perfused organoids. The image is adapted with permission from
Grebenyuk et al. [106]. (c) Vascular cells physically interact with the cerebral organoid, resulting
in the formation of an integrated neurovascular organoid on the chip. The image is adapted with
permission from Salmon et al. [85].

5.1. Perfusable System

OOCoids give rise to the combination of microfluidic techniques and organoid cultures
resulting in “organoids-on-a-chip”, which helps to establish fluid renewal and stresses that
induce in vivo-like vasculogenesis [103,104]. The flow aligns and maintains the endothelial
cell layer within vessels in vivo, contributing to the structural integrity, while the pressure
adjusts the vessel diameter to regulate the flow [107–109]. Through in vitro experiments,
the impact of flow on vascularization can be simulated. For example, Rimal et al. proposed
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that 3D vascularized human skin models in flow culture promoted vascular openings as
perfusable sites. Dynamic flow culture improved the skin barrier properties, facilitated
the fabrication of thicker tissues, and enhanced wound closure [110]. The flow rate and
pressure of fluid in the perfusable system can be tuned to further enhance vascularization
and nutrient delivery to the organoid cells. Therefore, perfusable systems can improve
tissue function and can be useful for drug screening and disease modeling [103,111].
Hydrogel is an important part of creating perfusable systems in vitro, as it gives support to
the formation of blood vessels in a 3D space. The use of chips allows for the integration of
multiple cell types and for the combination of vascular and tissue organoids, to promote
the formation of functional vascular networks within the organoid.

5.2. Vascularized Organoids on a Chip
5.2.1. Lung Organoids

Recently, lung organoids on a chip have been used to investigate lung diseases such
as chronic obstructive pulmonary disease and acute respiratory disease by simulating
the alveolar–capillary barrier [10,112]. The self-assembly of lung fibroblasts with human
umbilical vein endothelial cells results in the formation of vascular networks that undergo
angiogenic sprouting [104]. In addition, Ko et al. developed a novel bioreactor that
contained a circular, fenestrated inner chamber, which only allowed media and nutrients
to bypass, while restricting cells to the fenestrations. This layout recreates the endothelial
lining of vessels found in vivo. Endothelial cells co-cultured with lung fibroblasts on the
chip can reproduce a 3D vascular network model that controls the sprouting direction of
the angiogenic response in all directions [113].

5.2.2. Brain and Blood-Brain Barrier (BBB) Organoids

Perfusive BBB and brain OOCoid models have shown impressive vascularization
potential due to the inclusion of endothelial cells in either the support matrix or the organoid.
In these models, proper alignment of the cells even gives rise to barrier-like function similar
to that found in vivo [85,106]. For example, Grebenyuk et al. used a 2-photon-mediated, 3D
microfluidics device (Figure 4b), which enabled them to construct neural spheroids. These
spheroids were cultured for 5 days before they were added to Matrigel systems that were
then either perfused or held static. By day 62, the author observed that the organoids had
exceeded 2 mm in scale. Extensive necrosis, by way of caspase-3 staining, was observed
in the core of organoids in the non-perfused group, while those in the perfused group
showed minimal caspase-3 staining [106]. In addition, Salmon et al. designed an open
well microfluidic chip with fenestrated, microfluidic channels flanking the central organoid
chamber for seeding vascular cells via an inlet. Vascular cells physically interact with the
cerebral organoid, resulting in the formation of an integrated neurovascular organoid on
the chip. Fluorescein-40kDa dextran was employed to validate BBB integrity and observe
vascular channels. A strong fluorescent signal was observed within the vascular network
(Figure 4c) [85]. The BBB is a highly selective and protective barrier that separates blood
circulation from the brain and the central nervous system, which plays a crucial role in
maintaining the brain’s microenvironment and protecting it from potentially harmful
substances [114]. Nashimoto et al. established a spheroid model that contained a multi-
chamber system. Endothelial cells were cultured in a central fibrin-collagen coated chamber,
which the authors suggest recapitulates the in vivo ECM. Endothelial cells were also in
adjoining chambers thereby creating a system by which cells could migrate between the
spheroid and the adjoining chambers [115]. Numerous advantages are observed from
using chip-based systems for the analysis of brain organoids. One is the simplification
of the evaluation of BBB permeability, for example, in a BBB-glioma-on-a-chip model
high levels of barrier function, fluorescein, and structure similar to that found in vivo
were observed [11]. Additionally, OOCoid devices allow for the detailed analysis of BBB
functions such as calcium related neuronal activity [116]. Incorporation of neural and
vascular cells results in the formation of neurovascular units, which leads to vascularization
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and production of essential neurotransmitters such as glutamate and gamma-aminobutyric
acid [117]. Dysfunctional BBB is also linked to Alzheimer’s, Huntington’s, Parkinson’s
disease, and multiple sclerosis; therefore, a vascularized brain model would be invaluable
for improving the assessment and understanding of these diseases [118].

5.2.3. Kidney Organoids

Kidneys function by taking in arterial blood and filtering it to regulate nitrogen/urea,
glucose, electrolytes and hypostasis. Filtration results from the complex structure of
glomerular units comprised of vascular capillaries and excretory tubules within the Bow-
man’s capsule. Due to the importance of this organ to body function, kidney organoids
are typically glomeruli-on-a-chip or tubules-on-a-chip models [111,119]. The chip-based
system has been able to establish primitive blood filtration, re-absorption, and urine pro-
duction, which are key functions of the kidney [120]. Canonically, models were constructed
from primary kidney cells and endothelial cells, which were incorporated into hydrogel-
based chip systems to achieve diffusive filtration through the kidney unit [30]. Rayner et al.
proposed a filtration that occurs across the endothelial–epithelial surface in the glomerulus
and reactor systems utilize a collagen membrane as an interface for exchange. This struc-
tural design recapitulates the in vivo dynamic conditions of the kidney. This is because it
employs a cell-remodelable hydrogel and customizable perfusion flow which recreates the
human renal vascular–tubular unit. The authors prove this by showing valid quantification
of the selective reabsorption of albumin [121]. Furthermore, flow can enhance tubular and
glomerular maturation within the organoid following vascular perfusion [122]. Hiratsuka
et al. utilized organoid-on-a-chip to generate a patient autosomal recessive polycystic kid-
ney disease pathogenesis model. With this model, they made a comparison between flow
and static culture organoids and revealed more mature nephron structures that developed
underflow. Additionally, by employing low-molecular-weight dextran glomerular-like
structures, tubular lumen formation was observed in the perfusion condition. This indicates
the presence of tubular luminal flow, which activates mechanosensing in organoid tubules,
which the author proposes is important for autosomal recessive polycystic kidney disease
pathogenesis [54].

5.2.4. Tumor Organoids

Attempts at understanding tumor progression have been advanced by the generation
of 3D vascularized tumor organoids comprised of a mixture of tumor and endothelial cells
within a 3D gel environment containing fibroblasts [123]. This construction results in the
formation of self-assembled tumor microvasculature, which penetrates the tumor organoids
and extends into the surrounding gel [69]. However, these organoids were generated in the
static culture portion of the chip, and therefore lack interstitial flow resulting in improper
vascular lumen formation. So, when malignant glioblastoma cells are seeded in an adjacent
compartment, the tumor-cell-derived soluble factors increase angiogenesis of the tumor in
the microfluidic component of the chip [124]. In a similar study, it was observed that vessel
sprouting within a collagen gel in a flow-directed, 3D human renal cell carcinoma-on-a-chip
could be enhanced by the inclusion of renal cell carcinoma cells [125]. These examples
illustrate the importance of perfusion even in tumor systems, where it is shown to elevate
the tumor model to a more in vivo-like system.

Microvessel invasion of tumors and tumor migration towards microvessels is a key fea-
ture of metastasis whereby cells enter the vasculature and seed other organ
systems [123,126,127]. Tumor cell migration, like endothelial cell migration, has been
linked to the occurrence of morphogens such as VEGF gradients within the interstitial
flow. This has been explored in multichambered chip systems in which tumor and mi-
crovascular assemblies reside in adjoining chambers. Over time tumor cells invade the
vascular assemblies and penetrate inside [123]. These types of systems have also been used
to simulate the role of natural killer leukocytes to destroy cancer. In these systems, natural
killer cells actively migrate across the endothelial barrier of the vasculature to destroy
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the tumor cells [114,128]. Understanding the crosstalk between endothelial, immune and
cancer cells is vital as it has been shown that tumor cells that have been in contact with
immune macrophages have an enhanced intravasation rate on microfluidic devices. The
literature suggests that this is a result of secreted TNFα, which increases microvasculature
permeability [126]. Additionally, the use of tumor-on-chip models improves the in vitro
recapitulation of the complex 3D microenvironment of tumors. This opens the doors to
reducing obstacles in creating cancer treatments, thereby simultaneously reducing cost and
time [129].

6. Conclusions

Organoids hold great potential for studying the development of organ systems and
for the establishment of donor organs for transplantation; however, a major limitation in
organoid execution is due to the small size and incapability of long-term culture. Both
of these points can be addressed by the inclusion of perfusable vasculature which will
provide the cells with the needed nutrients to grow and maintain viability. Initially, studies
focused on cells that made up the primary tissue, but this view has shifted to encompass
the use of vascular niche cells such as endothelial cells. The inclusion of these cells has been
shown to create nascent vasculature within the organoid. Additionally, the implantation
of these organoids shows their capability to connect with the host vasculature. Following
these successes, the need for greater in vitro perfusibility was explored. This has been
mostly covered by the use of vascularizable hydrogel systems. The merging of the pre-
vascularized and vascular hydrogels has resulted in the creation of perfusable in vitro
organoid systems that will enable an improved view of how organ systems organize and
develop in vivo. Much work is still needed to further the development of these systems to
better recapitulate the in vivo system such as the inclusion of greater nutrient availability,
growth factor inclusion/secretion, and culture environment optimization; however, the
results so far have been very promising.
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