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Abstract: Dye-containing effluent generated in textile industries is polluting and complex wastewater.
It should be managed adequately before its final destination. The up-flow anaerobic blanket (UASB)
reactor application is an ecofriendly and cost-competitive treatment. The present study briefly
reviews the UASB application for dye-containing wastewater valorization. Bioenergy and clean-
water production potential during dye-containing wastewater treatment are emphasized to promote
resource recovery in textile industries. Hydraulic retention time (HRT), organic loading rate (OLR),
pH, temperature, and hydraulic mixing influence sludge granulation, microbial activity, and dye
removal. HRT and OLR ranges of 6–24 h and 1–12 kg m−3 d−1 of chemical oxygen demand (COD) at
a mesophilic temperature (30–40 ◦C) are recommended for efficient treatment. In these conditions,
efficiencies of color and COD of 50–97% and 60–90% are reported in bench-scale UASB studies.
Complex dye structures can hinder biomineralization. Pretreatment may be necessary to reduce
dye concentration. Carbon-source and redox mediators are added to the UASB reactor to expedite
kinetic reactions. A biogas yield of 1.48–2.70 L d−1 in UASB, which treats dye-containing effluents, is
documented. Cotreatment of dye wastewater and locally available substrate could increase biogas
productivity in UASB reactors. Organic waste generated in the textile industry, such as dye sludge,
cotton, and starch, is recommended to make cotreatment cost competitive. Bioenergy production and
water reuse allow environmental and economic benefits. Studies on combined systems integrating
UASB and membrane processes, such as ultrafiltration and nanofiltration, for the production of
reusable water and pretreatment of wastewater and sludge for improvements in biogas production
might realize the complete potential for resource recovery of UASB technology. UASB bioenergy
usage for integrated treatment trains can reduce operating costs and assist process sustainability in
the textile industry.

Keywords: biogas; dye-containing wastewater; resource recovery; sludge; UASB reactors; water reuse

1. Introduction

Dye-containing wastewater discharged from textile industries poses a significant
environmental challenge. Among the several concerns, colored effluents impair plant
photosynthesis and reduce light penetration and oxygen levels in aquatic ecosystems. It
may also be lethal for marine life due to the presence of metals and chlorine in synthetic
dyes [1]. In textile wastewater, metal ions, dyes, and color are of the first concern due
to their harmfulness to public health and the environment. Discharge standards vary
according to the local regulatory agency and municipalities; thus, it should be checked
in each situation [2]. The recognition of the health hazards of dyes has highlighted the
need to develop rapid and reliable analytical methods for detection and forced regulatory
permissible limits in this respect. Twenty pharmacologically active dyes were quantified
in water and industrial textile effluent samples. Dyes were found in two treated effluents.
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In one, rhodamine B was found at a concentration of 0.043 µg L−1, and the other one
contained crystal violet, methyl violet 2B, and rhodamine B in 0.023, 0.017, and 0.027 µg L−1,
respectively [3].

Dye wastewater should be preferentially treated using ecofriendly technologies. In
this context, biotreatments are cost competitive, give total mineralization or nonhazardous
byproducts, and consume less water than physical and oxidative methods [1]. Biotreat-
ments occur under aerobic or anaerobic conditions, as the products of aerobic treatment
are biomass, CO2, and H2O. In contrast, the main product of anaerobic treatment is biogas
(composed of CH4 and CO2 in varying compositions). Combinations of anaerobic and aer-
obic systems are implemented on a full scale for dye-wastewater purification. The up-flow
anaerobic sludge blanket (UASB) reactor is a promising anaerobic wastewater-treatment
technology for high-strength wastewater like dye-containing effluents [4].

‘UASB’s compact design and low cost are useful for several applications, such as
brewing and beverage, distilleries, food, pulp and paper, food processing, chemical indus-
tries, landfill leachate, and textile effluents [5,6]. A full-scale 1800 m3 d−1 UASB-treating
sewage wastewater was monitored for 35 weeks. Organic matter removal was higher than
90%, and the biogas yield was estimated at 0.2 m3 per kg of chemical oxygen demand
(COD) removed [7]. For textile wastewater, a two-phase pilot UASB reactor was tested. A
maximum COD removal of 88.5% was recorded in the methanogenic reactor with a biogas
production of 0.312 m3 d−1 [8].

Recently, investigators have examined the factors affecting the UASB reactor’s per-
formance, conventional configuration, and derivatives [4]. Some parts of our previous
work discussed treatability findings of UASB in textile-wastewater purification [9]. How-
ever, research still needs to analyze this cost-effective technology, focusing on energy
and water recovery. Given the global energy crisis and rising water demand, bioenergy
production and water reuse during wastewater treatment are fundamental to achieving
sustainability [10].

This paper provides a short overview of UASB reactors for the valorization of dye
wastewater. It introduces the aspects of UASB reactors and the operating conditions
employed for effective dye removal. Next, it delves into the potential of bioenergy and
clean-water production, emphasizing their role in promoting resource recovery in textile
industries. In this context, knowledge gaps and research opportunities are identified.

2. Up-Flow Anaerobic Sludge Blanket Reactors

The UASB reactor, also known as a three-phase separator, allows the reactor to separate
mixtures of gas, water, and sludge under conditions of high turbulence. During the UASB
treatment, the wastewater passes through a bed of expanded sludge containing a high
biomass concentration (up to 80 g L−1) [11]. The peristaltic pump pumps the influent into
the UASB reactor from the bottom. It moves upwards, coming into contact with the biomass
in the sludge bed and then moving upwards [12,13]. The typical height–diameter ratio
of UASB reactors ranges from 0.2 to 0.5 [14]. A three-phase separator (Gas–Liquid–Solid,
GLS) above the sludge blanket separates the GLS mixture. It, therefore, allows fluid and
gas to exit the UASB reactor [15]. The GLS separator must have a designed height to
avoid flotation effects and, consequently, floating layers. After treatment, the treated water
is collected by the collection system through several drains distributed throughout the
discharge area up to the main drain provided on the periphery of the reactor. The biogas
generated is drained, and it contains mainly CH4, followed by CO2 and traces of other
compounds [16]. Figure 1 presents a 3D-designed UASB reactor for wastewater treatment
and biogas production.
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The UASB performance is influenced by hydraulic retention time (HRT), temperature,
organic loading rate (OLR), hydraulic mixing, and sludge granulation. HRT affects the
treatment time and removal performance of pollution parameters. It is also linked with
the up-flow velocity chosen for UASB operation. When the up-flow velocity is higher than
1.5 m/h, sludge disintegration and biomass washout may occur, reducing the removal
efficiency of chemical oxygen demand (COD) [17]. In addition, OLR impacts microbial
activity and biodegradation performance. An HRT range of 3–10 and an OLR of 4–15 is
recommended to achieve COD removal of 60–85% [9,11]. The thermophilic temperature
(50–65 ◦C) assures higher process stability and biogas production [18]. Still, a temperature
range of 30–40 ◦C effectively maintained methanogen activity and reactor stability [17]. The
following section presents a comprehensive summary of influence parameters impacting
dye removal in UASB.

Likewise, the successful adoption of this technology depended on establishing a dense
granular sludge bed within the UASB reactors. The efficacy of these reactors in wastewater
treatment is ascribed to forming a compact sludge bed in the lower region of the bioreactor.
Anaerobic granules comprise microbial clusters that are densely organized and highly
structured, requiring no carrier media for support. This granular biomass presents as a
densely aggregated microbial consortium characterized by its condensed architecture and
expansive specific surface area, thereby facilitating the adsorption and biotransformation
of contaminants [14].

In contrast, developing anaerobic granular sludge requires 2 to 8 months, leading
to an extended initiation phase for the bioreactor—a notable challenge inherent to UASB
technology [19]. Hulshoff Pol et al. [20] thoroughly examined theories on sludge granu-
lation within UASB reactors, ultimately discerning the pivotal role of incorporating inert
support particles in conjunction with operational conditions in the genesis of granular
sludge. Likewise, a hypothesis suggesting that granulation is an inherent defensive re-
sponse of microorganisms against external stresses is presented in the literature [20]. Such
stresses could be manipulated by regulating reactor operational conditions to stimulate
the development of granules. It was reported that the rapid growth of granules could be
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achieved through particle agglomeration of the flocculant sludge induced by hydraulic
stress. In UASB, the up-flow liquid provides a selection pressure by washing out light and
dispersed particles while retaining denser biomasses. Thus, controlling up-flow liquid
velocity could be critical for granule formation [21].

As mentioned, the issue of sludge granulation relies on the extensive reactor’s start-
up time to develop granules. In this sense, one effective method for a rapid start up is
acquiring healthy granules from other reactors and using them as the inoculum. However,
the availability of granular sludge may be limited, and the expenses for acquiring and
transporting the granules can hamper it. Other possible ways to accelerate the start up
include supplementing chemicals and polymers or stressing the loading rate [21]. It was
recently demonstrated that chemical addition could stimulate sludge granulation. Calcium
sulfate (CaSO4) and polymers were used to enhance granulation during the treatment of
phenolic wastewater in UASB reactors. The CaSO4 improved the granulation rate as nuclei,
and the subsequent dissolution of CaSO4 improved methanogen activity. The utilization of
CaSO4 and polymers enhanced the microbial diversity. The formed granules had a large
particle size (>0.25 mm), great settleability, and high methanogenic activity [22].

Despite substantial investigative efforts, the mechanisms governing the formation of
anaerobic granules still need to be discovered. Anaerobic granulation has become a central
focus of both engineering and scientific research, making the need for efficient methods to
expedite granule development desirable. In addition to long reactor start up, gas leakage
and corrosion-related issues require periodic monitoring and maintenance for effective
treatment outcomes [23].

3. Mechanisms and Influencing Parameters in Textile Decolorization in
UASB Reactors
3.1. Mechanisms of Dye Removal

The dye-removal process in UASB reactors involves two main mechanisms: abiotic
adsorption and biotic biodegradation. The adsorption mechanism, facilitated by sludge
granules, plays a significant role in decolorization. On the other hand, biodegradation
occurs under anaerobic conditions and primarily focuses on azo ‘dyes’ biochemistry [24].
The primary degradation mechanism involves the cleavage of the azo bond (–N=N–) by
extracellular azoreductase enzymes, which transfer four electrons (reducing equivalents)
(Equation (1)). The permeation of the azo dyes through the membrane of microbial cells
acts as the principal rate-limiting factor for decolorization [25]. The generated hydrazo
intermediates undergo reductive cleavage, resulting in uncolored aromatic amines as
byproducts, as shown in Equation (2) [26].

R1–N = N–R2
2e−+ 2H+

→ R1–NH–NH–R2 (1)

R1–NH–NH–R2
2e−+ 2H+

→ R1NH2 + R2NH2 (2)

where R1 and R2 are aryls or heteroaryl groups.
It is important to note that produced aromatic amines are generally anaerobically

recalcitrant and have higher toxicity than dye precursors. Consequently, anaerobically
treated effluent needs further treatment. Biological sequential anaerobic–aerobic treatment
has been used to remove azo dyes completely. Under low oxygen concentrations, facultative
bacteria consume oxygen and introduce hydroxyl groups into polyaromatic compounds,
facilitating biodegradation pathways. However, aromatic amines have substituents with
nitro and sulfonic groups; these are highly recalcitrant for aerobic microorganisms, which
prevents efficient contaminant mineralization [9,25]. The decolorization of azo dyes under
anaerobic conditions is thought to be a relatively simple and nonspecific process. Readers
are guided toward the contribution of Saratale et al. [25] for further background information
on dye decolorization using biological methods.
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In an anaerobic environment, organic matter undergoes four steps: hydrolysis, acido-
genesis, acetogenesis, and methanogenesis. In the three former acid fermentation steps,
fermentative bacteria hydrolyzed and metabolized organic macromolecules and converted
them to carbon dioxide, hydrogen, and acetic acid. Later, acetic acid, carbon dioxide, and
hydrogen are converted to carbon dioxide and methane by methanogenic archaeans [27].

Biodecolorisation under anaerobic conditions necessitates supplementary organic
C-sources, as dye-reducing microbial consortia cannot utilize the dye as a growth sub-
strate. Fermentative bacteria and hydrogenotrophic methanogens primarily carry out dye
reduction. Noteworthy among the microorganisms involved in anaerobic biodecolorisa-
tion are Methanosarcina archaea, Clostridium, Enterococcus, Pseudomonas, Bacillus, Aeromonas,
Enterococcus, Desulfovibrio, and Desulfomicrobium bacteria. [9].

3.2. Influence Parameters of Dye Removal

Dye structure and concentration, electron donors and redox mediators, pH, tempera-
ture regime, hydraulic retention time (HRT), and organic loading rate (OLR) are the primary
influence parameters governing dye removal in UASB reactors (Table 1).

Table 1. Influencing parameters in dye decolorization in UASB reactors.

Influencing Parameters Main Aspects Main Findings Reference

Dye structure and concentration

• High dye concentration might affect
microorganism growth rate,
enzymatic activity, and
biodescolorization performance.

• High dye dosage is linked to high
salinity and biotoxicity, which
reduces microbial activity.

• Salinity decreases biomass size and
hydrophobicity, affecting
biodegradation and sludge settling.

• Complex dye structure might
hamper the mineralization of the
molecules by microorganisms.

• 450 mg dye L−1 could decrease the
granular sludge porosity and
strength, reduce its settling ability,
and inhibit methanogenic activity.

• >300 mg L−1 sulfate dosage might
inhibit methanogens.

[28,29]

Electron donors and redox
mediators

• C sources are required in anaerobic
dye removal.

• Redox mediators increase
biodescolorization kinetic as they
accelerate electron transfer from
C-source to dye.

• Riboflavin and sulfonated
compounds, such as anthraquinone
sulfonate and disulfonated
anthraquinone, are usually
employed as redox mediators.

• Riboflavin (0.00175 mg L−1) and
yeast extract (500 mg L−1) increased
as C sources increased dye
decolorization in UASB reactors.

[30–33]

pH

• It affects ‘microorganisms’ growth
rate, enzymatic activity, and
biodescolorization efficiency.

• In an anaerobic environment,
methanogens grow efficiently in the
pH range of 6.0–8.0 and are sensitive
to pH fluctuation.

• Azo dye Direct Black G
biodescolorization of 97% at pH 8.0,
79% at pH 11.0, and 81%
decolorization at pH 4.0 after 48 h of
residence time.

[34,35]

Temperature • It affects the microbial community
and methanogen activity.

• The optimum temperature for
biodecolourisation ranges from 30 to
55 ◦C and exceeding this range could
harm the syntrophic relationship
among anaerobic microorganisms.

[33,36]
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Table 1. Cont.

Influencing Parameters Main Aspects Main Findings Reference

OLR
• High OLR can affect methanogens

and inhibit methane production in
UASB reactors.

• It was reported that
methane-production efficiency was
75% at OLR of 2.4 kg COD m−3 d−1

and 38% at 22.5 kg COD m−3 d−1.
• Temperature adjustment and

effluent recirculation can alleviate
the harmful effects of high OLR.

[37–39]

HRT

• Lower-than-optimal HRT leads to
the misdevelopment of granular
sludge and acidification.

• Higher-than-optimal HRT results in
low reactor components and
biomass washout utilization.

• Dye removal was reported at 67% at
16 h HRT and 55% at HRT of 96 h.

• Optimal HRT ranges from 5 to 20 h.
[40–42]

Note: COD: chemical oxygen demand. HRT: hydraulic retention rate.

In sum, complex dye structures can hinder their biomineralization. Therefore, mon-
itoring the dye level in wastewater before initiating the anaerobic process is essential.
Pretreatment may be necessary to reduce the dye concentration. C-source and redox medi-
ators are commonly added to the UASB reactor to expedite kinetic reactions. Temperature,
pH, OLR, and HRT influence microbial activity and UASB performance. For optimal results,
operating the UASB reactor at 30 ◦C and 40 ◦C, with an HRT ranging from 5 to 20 h, and an
OLR of 2 to 15 kg COD m−3 d−1 was demonstrated to be ideal [11,43]. Likewise, Mohan
and Swathi [4] identified that optimal conditions for UASB for treating various types of
wastewater are an HRT of 3–24 h, an OLR of 1–15 kg COD m−3 d−1, and an operational
temperature in the mesophilic range (30–40 ◦C). To mitigate the harmful impacts of high
OLR, adopting a feed mode in an intermittent regime and employing internal effluent
recirculation can be effective strategies for UASB operations [44].

4. UASB Reactor’s Performance in Treating Dye-Containing Effluents

In decolorization studies, color and COD are commonly employed as monitoring
parameters to evaluate the performance of UASB reactors. Table 2 presents the data on
dye removal using UASB reactors, as reported in the recent literature from 2018 to 2022.
Based on data from Table 2, HRT and OLR ranges of 6–24 h and 1–12 kg COD m−3 d−1 at a
mesophilic temperature are recommended for efficient treatment. The operating conditions
are similar to those previously discussed in the literature when treating diverse wastewaters.
The treatability results demonstrate a range of color removal efficiencies from 50% to 97%
and COD-removal efficiencies from 60% to 90%. All the reported findings are based on
lab-scale investigations, necessitating further full-scale research to validate the outcomes in
full-scale plants.
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Table 2. Studies on UASB reactors on dye removal mapped from the last five years (2018–2022).

Scheme Scale UASB Reactor Conditions Dye Compounds Treatability Results Reference

Type Name Concentration/Amount Color COD

UASB reactor Lab Continuous mode, 27 ◦C,
HRT 24 h, OLR * Azo dye Reactive Red 2 50 mg L−1 51% 89% [45]

UASB reactor + Activated
sludge process Lab

Continuous mode,
16 ◦C–29 ◦C, HRT 24 h,
OLR *

Azo dye Yellow Gold
Remazol 50 mg L−1 85% 67–88% [46]

UASB reactor + shallow
polishing pond Lab

Continuous mode,
16 ◦C–29 ◦C, HRT 24 h,
OLR *

Azo dye Yellow Gold
Remazol 50 mg L−1 85% 67–88% [46]

UASB reactor Lab
Continuous mode,
temperature *, TRH 24 h,
OLR *

Azo dye Red Bronze 40–325 mg L−1 75–94% 60–91% [47]

UASB reactor + Aerated
bioreactor Lab

Continuous mode,
37 ± 1 ◦C, HRT 6 h, OLR
12.97 kg C.O.D. m−3 d−1

Azo dye 2-Naphthol Red 0.1 g L−1 96% 85.6% [48]

UASB reactor +
microaerated UASB reactor Lab

Continuous mode,
25.0 ± 1.4 ◦C, HRT *, OLR
1.27–1.50 kg m−3 d−1

Azo dye Direct Black 22 0.6 mM 70–78% 67–72% [49]

UASB reactor + shallow
polishing pond Lab Continuous mode,

16–29 ◦C, HRT 24 h, OLR * − Real textile
wastewater − 50% 80% [50]

UASB reactor + EC system Lab
Continuous mode,
Temperature *, HRT 8–12 h,
OLR *

Congo Red dye 100 mg L−1 >96% >82% [51]

UASB reactor Lab
Continuous mode,
27–29 ◦C, HRT 24 h, OLR
6.20 kg COD m−3 d−1

Simulated
wastewater
containing

Remazol blue RSP

12.5 mg L−1 97.37 ± 3.62% 76.69 ± 2.83% [52]

UASB reactor + SBR Lab
Intermitent mode, 35 ◦C,
HRT 48 h, OLR
0.74–0.90 kg COD m−3 d−1

Real textile
wastewater − 87.7% 90.4% [53]

Note: *, Data not available. COD: chemical oxygen demand, E: electrochemical, HRT: hydraulic retention time, OLR: organic loading rate, SBR: sequencing batch reactor, UASB: up-flow
anaerobic sludge blanket.
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Bahia et al. [50] used an integrated UASB–shallow pound system in continuous feeding,
achieving color and COD removal rates of 50% and 80%. Saleem et al. [53] combined UASB
with a sequencing batch reactor (SBR) in an intermittent regime, resulting in higher removal
rates of 87.7% for color and 90.4% for COD. These studies highlight how the feeding mode
can significantly impact UASB efficiency. Saleem et al. noted that, during nonfeeding
periods, anaerobic microorganisms can better withstand dye toxicity and effectively handle
changes in temperature, HRT, and OLR. This insight suggests that optimizing the feeding
strategy can improve UASB performance in dye-wastewater treatment.

However, anaerobic treatment alone may not fully break down dye byproducts such
as polyaromatic amines. As in those studies, aerobic systems were integrated with UASB
to address this issue. Aerobes can utilize oxygen and introduce hydroxyl groups into
polyaromatic compounds at aerobic conditions. This step is essential in facilitating subse-
quent biodegradation pathways. Consequently, the aerobic process acts as a polishing step,
effectively completing the mineralization of intermediates that arise from the anaerobic
biotransformation. This completion occurs through hydroxylation or cleavage of the ring
using oxidative enzymes such as laccase, phenoloxidase, and peroxidase [54]. On the other
hand, amine byproducts have substituents with nitro and sulfonic groups, hampering their
mineralization in an aerobic environment. Romero-Soto et al. [51] investigated sequential
UASB and electrochemical (EC) systems for Cong Red (CR) removal. COD and CR removals
were >92% and >98% using UASB + electrocoagulation and >99% and >99% when UASB
+ electro-oxidation was employed. Results are promising to be used in dye-wastewater
treatment for removing byproducts that arise from UASB treatment. Still, despite the wide-
range removal of pollutants, easy construction, and operating simplicity, technological
developments of EC systems are needed to reduce energy consumption and electrode
replacement in full-scale plants [55]. In another work, Carvalho et al. [49] proposed using
a microaerated UASB reactor to remove Direct Black 22 azo dye. The UASB reactor was
aerated in the upper part with a low oxygen concentration (0.18 ± 0.05 mg O2 L−1) to facil-
itate the mineralization of amines generated during the anaerobic process. As a result, the
removal of COD and color ranged from 59% to 78%. In addition, the treated effluent from
the microaerated reactor was 16 times less toxic than that of conventional UASB, indicating
the effectiveness of the microaeration method in removing anaerobic metabolites.

5. Dye-Wastewater Valorization

Added-value product extraction from dye-industry wastes has been investigated,
and a comprehensive review of resource recovery of colored effluents was recently
published [56]. Dye-wastewater management for bioenergy, water reuse, and sludge
valorization is explored in the present section (Figure 2). We cover the UASB application
for bioenergy and water reuse, which, to date, are the most realistic strategies for
practical applications.

5.1. Bioenergy Production

Anaerobic technology offers the dual advantage of degrading dye pollutants in
wastewater while also serving as a significant source of clean energy. Dye-containing
wastewaters are rich in organic chemicals. The organic load is converted into biogas in
UASB reactors. Biogas consists of methane (up to 75%), carbon dioxide (up to 50%), and
hydrogen (up to 5%) with small amounts of water vapor, dinitrogen, hydrogen sulfide,
ammonia, and siloxanes. As a result, biogas possesses a high calorific value and can be
directed for thermal and/or electrical energy production [57].

The dual potential of anaerobic technology helps in wastewater valorization and
contributes to sustainable energy production [58]. Katal et al. [59] conducted experiments
using a lab-scale UASB reactor to treat textile effluent and measure the biogas production
yield. They achieved a maximum biogas productivity of 36 L per day at an HRT of 50 h,
with a biomethane content of 79%. Other bench-scale studies reported biogas production
rates ranging from 1.48 to 2.7 L per day [42,60–62] (Table 3).
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The cotreatment of actual dye wastewater and starch effluent indicated higher bio-
gas production than a solely dye-containing treatment in UASB. The literature reports
a maximum biogas production range of 24.5–355 L d−1, cotreating dye and starch efflu-
ents [8,63,64]. Cotreatment using UASB reactors could be promising to increase biogas
productivity; still, a technoeconomic analysis should be performed before adopting such
a strategy since cosubstrate availability and logistics can hamper implementation on a
full scale [65]. Cotreatment is the most cost competitive when the cosubstrate is locally
available and implemented on a large scale [66]. Based on this, organic waste generated in
the textile industry, such as dye sludge, cotton, and starch, is suggested to increase biogas
production outcomes.

Industrial treatment facilities have a high energy demand [67]; thus, UASB technology
offers opportunities for reducing treatment costs while treating wastewater. Gadow and
Li [48] showed that the UASB technology could be extended to full-scale applications for 2-
Naphthol red removal with a bioenergy recovery of 139.6 MJ per m3 of effluent. A maximum
methane yield of 13.3 mmol CH4 g−1 COD d−1 was obtained at an HRT of 6 h. In another
work from the same research group, a similar methane yield of 13.18 ± 0.64 CH4 g−1 COD
was recorded during the treatment of synthetic dye wastewater [68]. Apart from bioenergy
recovery and the related economic benefits, reducing greenhouse-gas emissions is expected
and could help boost the C-neutrality of wastewater-treatment plants. Moreover, lower
excess sludge is discharged from UASB reactors [69].

A recent study compared a pilot-scale UASB and anaerobic membrane bioreactor
(AnMBR) treating domestic wastewater [70]. The UASB reactor produced 230 ± 35 L of
biogas daily (73 ± 3% CH4) at an HRT of 15 h. The UASB pilot plant demonstrated high
stability and fewer technological requirements than AnMBR. Thus, it is a better candidate
for decentralized treatment. It could also be integrated with other renewable energy
alternatives for heat and electricity production.
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Table 3. Biogas production treating dye wastewater in UASB reactors.

Scheme UASB Reactor Conditions Dye Compound Biogas Production Reference

UASB reactor
Temperature of 37 ◦C, HRT
20 h, OLR
3.86 kg COD m−3 d−1

Azo dye mixture: Reactive Black
5, Direct Red 28, Direct Black 38,
Direct Brown 2, and Direct
Yellow 12 (250 mg L−1)

2.26 L d−1 (70%CH4,
v/v)

[61]

UASB reactor +
CSTR reactor

Temperature of 37 ◦C. HRT
3–30 h, OLR
2–15 kg COD m−3 d−1

Real textile wastewater 0.36–0.94 L d−1 [60]

UASB reactor Temperature of 37 ◦C, HRT
18.3 h, OLR 0.286 kg m−3 d−1 Red Congo azo dye (100 mg L−1) 2.0–2.7 L d−1 [42]

Two-phase UASB
reactor

Ambient temperature, HRT
12 h, OLR 8 kg COD m−3 d−1

Real dye wastewater + starch
effluent (40:60% v/v) 24.5 L d−1 [64]

UASB reactor Ambient temperature, HRT
24 h, OLR *

Real dye wastewater + starch
effluent (30:70% v/v) 355 L d−1 [63]

Two-phase UASB
reactor

Ambient temperature, HRT
24 h, OLR *

Real textile wastewater + sago
effluent (30:70% v/v) 312 L d−1 [8]

UASB reactor Temperature of 33 ◦C, HRT
50 h, OLR 12 kg COD m−3 d−1 Real textile wastewater 36.04 L d−1 (79%CH4,

v/v)
[59]

UASB reactor Temperature of 45 ◦C, HRT of
24 h, OLR * Textile sludge 1.48 ± 0.89 L d−1

(36.7% CH4, v/v)
[62]

UASB reactor +
aerobic system

Temperature of 37 ± 1 ◦C,
HRT 6 h, OLR
12.97 kg COD m−3 d−1

2-Naphthol Red (100 mg L−1) 3.86 L CH4 m−3 d−1 [48]

Note: *, Data not available. COD: chemical oxygen demand, CSTR: continuous stirred tank reactor, HRT: hydraulic
retention time, OLR: organic loading time, UASB: up-flow anaerobic sludge blanket reactor.

A full-scale UASB reactor was operated for seven years for brewery-effluent treatment
in Korea. COD removal of the UASB reactor averaged over 80% throughout the period,
incurring operating costs of 0.20–0.31 USD m−3 [71]. In Brazil, the energy potential of biogas
from sewage treatment using UASB reactors for wastewater and/or sludge valorization
was estimated at 1.53–3.50 MJ m−3. However, the energetic advantages of UASB have not
been fully explored in the country [72]. In the Brazilian industry, biogas production was
estimated at 0.7 billion Nm3 y−1 in 2022, amounting to only 126 plants [73]. The data show
much room for growth in the Brazilian market, and industries should further explore the
technoeconomic benefits of UASB technology.

On the other hand, energy recovery from dye effluents can be hampered, given the
dye’s low biodegradability and/or high effluent salinity. Pretreatments like advanced
oxidation processes, ultraviolet (UV) photodegradation, and chemical coagulation were
investigated to improve dye biodegradability [74,75]. UV pretreatment improved biogas
production 2.7-fold compared with nonpretreated effluent and increased methane yield in
the anaerobic digestion (AD) of methylene blue [74].

A recent review analyzed landfill-leachate pretreatment methods coupled with AD
to enhance biogas production [76]. Landfill leachate, as a dye effluent, is a complex
and inhibitory wastewater for anaerobic processes [76–79]. Because of its recalcitrance,
biotreatments necessitate employing other techniques to complement and support the AD.
The work concluded that electrochemical systems and photocatalysis are promising due
to their performance and cost effectiveness. Studies on dye-wastewater pretreatments are
scarce, and research is necessary to close existing knowledge gaps in this area. Sludge and
dye-wastewater pretreatments might foster AD and UASB utilization for dye-wastewater
valorization in full-scale applications.

5.2. Reclaimed Water

The dye industries consume a high amount of water, and, consequently, a high waste
volume is discharged [80]. To solve such issues, water recovery for reuse in textile industries
might allow environmental and economic benefits. However, the UASB technology must
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be integrated to produce clean water for recycling. Therefore, a treatment train is required.
An integrated system comprising reverse osmosis (RO), electrochemical oxidation, and
electrodialysis was investigated. It demonstrated feasibility for large applications [81].
This system could produce 0.97 tons of clean water at 24.7 kWh per m3 of dye wastewater.
However, high energy demand can make this integrated process less competitive.

Recent studies have analyzed driven-pressure membrane processes, such as ultra-
filtration (NF) and nanofiltration (UF), demonstrating the ability of these techniques to
produce reclaimed water [82,83]. Hybrid bio-oxidation and NF processes performed well in
removing soluble dyes and surfactants. They could significantly reclaim water from textile
wastewater [83]. In this work, the authors highlighted that integrating both treatments to
produce recycled water is needed, corroborating the necessity of combining recovering
technologies. Membrane-based methods like RO, NF, and UF have been used for treating
several kinds of wastewater for effective pollutant removal, making effluents reusable for
industrial, agricultural, or domestic purposes [84–86].

Erkanli et al. [82] analyzed different configurations of the two-stage UF process for
recovering water from actual dye wastewater. A two-stage UF using membranes with a
molecular weight cut off of 2 kDa produced high-quality water to an extent that allows for
reuse in fabric dyeing. At an estimated 200–400 L of water per kg of fabric, water recovery
could promote significant economic savings. Also, the UF method is economical and less
energy intensive than other membranes like NF and RO [23,87]. Thus, it can be a potential
candidate to be integrated with UASB technology, with an aim to produce clean water.
Table 4 summarizes the relevant studies on membrane-based methods for dye-containing
effluent treatment for water reuse.

Table 4. Membrane-based methods for dye-containing effluent treatment for water reuse.

Treatment Scheme Features Main Findings Reference

SBR + NF

Dye: raw textile wastewater;
Membrane: Alfa Laval (Alfa Laval,

Sweden);
Operating conditions: TPM = 5 bars,

20 ◦C.

COD and color removal of >80% and
>96%;

Water flux of 23.71 LMH;
Combined SBR and NF treatment cost

estimated at 0.97 USD m−3.

[88]

UF

Dye: raw textile wastewater;
Membrane: UF-GH 2 kDa GE (Water

and Process Technologies);
Operating conditions: TPM = 10 bars,

25 ◦C.

COD and color removal of 56% and
>95%

Water flux of 20–30 LMH;
Treated water was suitable for dyed

knitted cotton fabric washing.

[89]

SBR + NF

Dyes: Reactive Blue 21 and Sodium
Dodecyl Sulfate;

Membrane: NP010
(Microdyn Nadir);

Operating conditions: TPM = 10 bars,
25 ◦C.

COD and dye removal of 97% and
96%;

Water flux of 15.4 LMH for 1 h;
NF process could produce reclaimed

water.

[83]

RO

Dye: Biologically treated textile
wastewater;

Membrane: 8-inch DOW FILMTEC™
FORTILIFE™ CR100 RO element;

Operating conditions:
TPM = 8–20 bars, recovery of 70%,

30–40 ◦C.

Water flux of 19 LMH;
COD, color, and conductivity

parameters within required limits for
reuse in the dyeing process.

[90]

Two-step UF

Dye: raw textile wastewater;
Membranes: UF-GH 2 kDa and

UF-PT 5 kDa (GE Osmonics);
Operating conditions:

TPM = 2–4 bars, volume reduction
factor of 2.5–10, 25 ◦C.

TOC removal of >70%;
Water flux of 4.5–16 LMH;

The proposed treatment produced
salty water for reuse.

[82]
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Table 4. Cont.

Treatment Scheme Features Main Findings Reference

Ozonation + UF + RO

Dye: Biologically treated textile
wastewater;

Membranes *;
Operating conditions: UF, TPM *; RO,

TPM = 15–25 bars.

COD and color removal of >99% in
RO;

The reuse rate of reclaimed water is
equal to 86.6%;

UF treatment cost = 0.04 USD m−3

and RO treatment
cost = 0.14 USD m−3;

The proposed treatment produced
high-quality water for reuse.

[91]

RO + EO + BMED

Dye: raw textile wastewater;
Membrane: SG1812 (GE Power and

Water Technologies)
Operating conditions: TPM = 12 bars,

recovery of 70%, 25 ◦C.

COD and color removal of >70 and
100%;

Water flux of 19 LMH;
The energy demand of combined

RO–EO–BMED is equal to
24.6 kWh m−3

RO permeate meets the requirements
for water reuse.

[81]

Note: *, Data not available. BMED: bipolar membrane electrodialysis. COD: chemical oxygen demand. EO:
electrochemical oxidation. LMH: L m−2 h−1. NF: nanofiltration. RO: reverse osmosis. SBR: sequencing batch
reactor. TPM: transmembrane pressure. TOC: total organic carbon. UF: ultrafiltration.

Likewise, manufacturing membranes with enhanced proprieties aiming for higher dye
rejection and water flux during wastewater purification is a hot topic for research [92–94].
Gnanasekaran et al. [95] fabricated NF membranes incorporating MIL-100 (Fe) into chitosan
(CS) using a film-casting technique. The prepared CS/MIL-100 (Fe) composite membrane
attained improved water flux from 5.2 to 52.5 LMH with a 99% rejection of Methylene Blue
and Methyl Orange dyes.

5.3. Sludge Valorization

The excess sludge from UASB reactors requires dewatering, drying, stabilization,
and/or disinfection for the final destination [96]. The dye sludge contains toxic chemicals,
so its proper treatment must be guaranteed. Efforts have been made to recover added-
value products from dye sludge (e.g., dyes, energy, salts, metals, and nutrients) [97],
representing an exciting opportunity for economic savings and more sustainable operation
in textile industries.

The AD of textile dye sludge has been extensively studied. In this case, sludge pretreat-
ment to enhance organics solubilization and maximize biogas production is particularly
important. Some pretreatments, such as thermal and alkaline, showed improvements in the
AD performance of textile dyeing sludge. However, pretreated sludge did not perform as
well in biomethane potential tests as expected [98,99]. In recent work, anaerobic codigestion
(coAD) using food waste as a cosubstrate was evaluated with thermally pretreated diges-
tate [100]. The biomethane yield increased by 20 to 40%. In addition, this work performed
an energy balance. It showed that the electricity produced by biogas could satisfy the
electric consumption of the wastewater-treatment facility and the coAD system with 57.69%
and 41.78%, respectively.

Apart from using AD for sludge valorization, thermochemical processes were investi-
gated. Yildirir and Ballice [101] treated textile biological sludges via hydrothermal gasifica-
tion to produce fuel gas. The calorific value of the produced fuel gas was 24.3 MJ/Nm3

after gasification (30 min of time reaction). Hydrothermal gasification is promising to
convert wet sludge into clean fuel gas with high caloric value without any drying process.
More research in thermochemical methods, including pyrolysis and torrefaction, might
contribute to dye-sludge valorization.
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6. Conclusions

This work reviewed studies on UASB reactors for dye-wastewater valorization. UASB
reactors offer a dual advantage of degrading dye pollutants in wastewater while also
serving as a significant source of bioenergy. Color and COD removal efficiencies of 50–97%
and 60–90% are reported in bench-scale studies. A biogas yield of 1.48–2.70 L d−1 in UASB,
which treats dye-containing effluents, is reported. The successful adoption of this tech-
nology depended on establishing a dense granular sludge bed. Therefore, mechanisms of
sludge granulation and control methods to reduce the start-up of UASB reactors should be
developed. Cotreatment of dye wastewater and locally available substrate could increase
biogas productivity in UASB reactors. In addition, integrating UASB with membrane
processes (e.g., UF and NF) and pretreatment methods of dye wastewater and sludge are
promising routes for dye-waste valorization. Future studies on these combined systems
are recommended. Moreover, the technoeconomic evaluation of biogas and water produc-
tion while treating real dye-containing wastewater in full-scale applications is critical to
promoting UASB technology in textile industries.
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