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Abstract: The utilization of microalgae as a green carbon source for chemical production has attracted
attention for its potential use in sustainable and climate-friendly solutions. This study investigates the
growth of Dunaliella salina, a unicellular green microalga, in response to salinity variations and water
and seawater addition to compensate for evaporation in open cultures. The impact of continuous and
non-continuous water addition, as well as seawater addition, on the growth of D. salina was analyzed
though tank tests. The results showed that different water-addition methods did not significantly in-
fluence cell concentrations, indicating the organism’s resilience to salinity changes. Continuous water
addition maintained stable salinity levels at 12%, but required continuous monitoring, while non-
continuous addition reduced the intervention frequency. The overall results showed that a salinity
range between 12 and 15% did not affect microalgae growth, suggesting flexibility in evaporation-loss
compensation methods based on cultivation-system specifics and resource availability. Maintaining
consistent biomass regardless of the water-addition method used suggests sustainable production
within the tested salinity range, with seawater addition making microalgae cultivation more adapt-
able to regions with varying water availability. Further research, including outdoor pilot tests, is
recommended to validate and extend these findings to natural environments.
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1. Introduction

The utilization of microalgae, with their ability to efficiently convert carbon dioxide
into several compounds (mainly carbohydrate, protein, and lipids) through photosynthesis,
has gained significant attention for its potential role in addressing the global challenge of
transitioning from a fossil fuel-dependent society to a bio-based one [1–3]. Focusing on
microalgae as a sustainable raw material for fermentation and biorefinery processes, thus
exploring microalgae as a green carbon source for biochemical production, opens up new
possibilities for resource-efficient, sustainable, and climate-friendly solutions [4], unlike
conventional discussions that often revolve around biodiesel or lipid extraction.

Biorefinery, a concept inspired by the traditional petroleum refinery, involves the
integrated processing of biomass into a spectrum of products for different industries, such
as food, feed, chemicals, fermentation, pharmaceuticals, etc. [5–9]. By using microalgae
in biorefinery processes, industries can utilize the biomass to produce a range of bio-
based materials, including bioethanol, biopolymers, biofertilizers, nutraceuticals, pigments,
etc. [10,11]. This not only diversifies the bioeconomy, but also contributes to achieving a
carbon-neutral society and helps to mitigate climate change [12].

Dunaliella salina, a unicellular green microalga, is known for its rapid growth rate
under optimal conditions, nutrient-efficient utilization when in seawater or nutrient-rich
wastewater, high content of beta-carotene and other carotenoids (such as alpha carotene,
lutein, etc.), glycerol production, adaptability, toughness, and the ability to thrive in high-
salinity environments, which prevents contamination [13]. Its ability to thrive in extreme
conditions makes it an attractive candidate for large-scale cultivation in diverse geographi-
cal regions and in regions that are unsuitable for regular agriculture, thereby addressing
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land-use concerns and reducing competition with food crops [1,14]. Moreover, the utiliza-
tion of seawater for D. salina cultivation presents an advantage, especially considering the
scarcity of freshwater resources in many regions worldwide.

The widespread adoption of microalgae-based biochemicals depends on the develop-
ment of cost-effective methods for producing biomass. While outdoor open-pond systems
are generally the most common and are considered more economical [15,16], evapora-
tion from microalgae open-cultivation systems significantly impacts production costs and
sustainability, especially in arid regions. Therefore, controlling salinity, particularly for
species like D. salina, is crucial for optimal cultivation conditions. Replenishing lost water
through evaporation helps to maintain optimal salinity levels, mitigating negative effects
on D. salina growth. Strategies such as optimizing system design and implementing water-
recycling technologies are essential for enhancing economic viability and environmental
sustainability in microalgae-based processes.

In this study, we investigated the growth of D. salina in terms of biomass concentration
in response to gradual salinity increases due to evaporation variations and water addition
to compensate for water loss. Studying the addition of water to an outdoor, open D. salina
culture to offset evaporation is crucial for maintaining salinity levels without compromising
the growth of microalgae cells. Evaporation presents a significant challenge in outdoor,
open D. salina cultures, as it leads to salinity increases that can slow their growth. To address
this issue, we evaluated both continuous and non-continuous methods of water addition.
Moreover, we investigated seawater addition instead of freshwater addition, as this can
be important in regions where freshwater scarcity is a concern and offers sustainable
alternatives to freshwater usage.

To the best of our knowledge, there are very limited studies, if any, that address this
issue. The originality of this study lies in comparing continuous and non-continuous
water and seawater addition in D. salina open cultures to recommend the best practices for
achieving better production, ensuring the cost-effectiveness of the system, and promoting
sustainable cultivation practices for microalgae biomass production. This is necessary, as
we aim to maintain low prices for D. salina biomass when used as a raw material in various
industries such as food, feed, fermentation, etc. This contributes to the utilization of a green
carbon source and the shift towards a sustainable society that does not rely on fossil fuels.

2. Materials and Methods

The microalga D. salina (strain CS-744/01) was cultivated in f/2 medium [17,18] with
a salinity of 12% under controlled laboratory conditions. The f/2 medium was prepared by
combining all of the chemicals in a salt solution (Red Sea Salt, Red Sea Fish Pharm Ltd.,
Eilat, Israel). Tanks measuring 31.5 cm in length, 18.5 cm wide, and 24.5 cm high were used
to cultivate D. salina. Each tank was initially filled with 3000 mL of f/2 medium and D.
salina at a concentration of approximately 1 × 104 cells/mL. The cultures were conducted
under LED lights at a light intensity of 300 µmol/m²/s, with the temperature kept constant
at 25 ◦C Celsius. We consistently monitored the cell concentration of D. salina by sampling
25 µL and analyzing it using an Invitrogen Tali Image-Based Cytometer (Thermo-Fisher
Scientific, Waltham, MA, USA).

Prior to conducting tank tests and in order to calculate the approximate water volume
lost due to evaporation, we monitored the water evaporation rate and salinity increase using
saltwater (12%) under controlled laboratory conditions. For this purpose, 3000 mL of salt-
water was introduced into the tank, and the mass and salinity were periodically measured.

Two experimental setups were employed to assess water addition for evaporation
compensation. In one tank, a continuous water (distilled water) addition system was
used, employing a silicone tube connected to the tank’s center bottom, along with a
variable speed peristaltic pump (Fisher Scientific, Pump I, Model 3384, ultra-low flow
with range of 0.005–0.900 mL/min). The silicone tube used for experiments had an inner
diameter of 1.6 mm, and the speed for distilled water addition was set to the reference
number 25 (which equals to 130 mL/day, approximately). In contrast, the other tank
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received non-continuous or manual water addition every seven days, matching the volume
added to the continuous tank or the decreased volume due to evaporation. To avoid
nutrient deficiencies, a few milliliters of 1000-times-concentrated solutions containing
phosphate, nitrate, and other essential elements were added to both tanks every seven days;
maintaining nutrient concentrations aligned with the f/2 culture medium formulation.
Moreover, tank experiments were also conducted using artificial seawater addition (3.5%
salinity) instead of water to adjust salinity. In this case, the peristaltic pump set varied from
references 25 to 50 (130 to 240 mL/day, approximately) to keep the salinity at 12%. The
height of the culture in the tank was recorded. Growth parameters, including cell density
and size, were monitored regularly, and the data were analyzed to evaluate the impact of
different water and seawater addition regimes on D. salina culture growth and productivity.
All experiments were repeated three times. Statistical differences between the sets of data
compared in this study were conducted using Tukey’s test.

3. Results

Evaporation tests were conducted to determine water loss under laboratory conditions
before tank tests. The results showed an approximate water loss of 1900 mL (from an initial
volume of 3000 mL) after 14 days and an increase in salinity from 12–28% (Figure 1). The
impact of continuous and non-continuous water addition due to evaporation on the cell
concentration of D. salina is shown in Figure 2. Although D. salina can thrive in different
salinities, it was expected that salinity levels higher than the optimum (12% in our case,
results not shown) or fluctuating salinity levels might lead to reduced cell concentrations
due to a potential stress response within the microalgae. Decreasing biomass is not desir-
able, as we aim to use this as a raw material and want to maximize productivity. However,
the addition of water, whether continuous or non-continuous (once a week), did not yield
statistically significant changes in cell concentration (Tukey’s test, p > 0.001), even though
the salinity increased over time, rising from 12 to 15% in non-continuous cases. In continu-
ous cases, the salinity did not change over time; it remained at 12% throughout. The cell
concentration in both cases was approximately 1.7 × 104 cells/mL initially. It then entered
the lag phase, followed by the log phase, and reached its maximum after around 10 days,
with a cell concentration of approximately 1 × 107 cells/mL. Subsequently, it entered a
stationary phase. The cell size remained constant at 6 µm throughout the experiment. This
suggests that the frequency of water addition (continuous or non-continuous) in this case
did not influence the growth of D. salina under the experimental conditions and thus did
not negatively impact the biomass concentration and productivity.

Figure 3 provides insights into the response of D. salina to seawater addition aimed
at compensating for salinity increase through evaporation. Despite an increase in the
salinity (from 12–15%) and overall height level of the culture in the tank (from 5 cm
to 8 cm, results not shown), no statistically significant alterations in cell concentration
were observed (Tukey’s test, p > 0.001). The salinity increased over time in the non-
continuous case, reaching 15%, and then decreased to 12% with seawater addition, while
it remained constant at 12% in continuous cases. The initial cell concentration in both
scenarios was about 1 × 104 cells/mL. It then went through a short lag phase, moved
into the log phase, and peaked at around 10 days, reaching a concentration of about
1 × 107 cells/mL. Following this, it entered a stationary phase. This suggests that while
seawater addition effectively mitigated water loss due to evaporation, it did not induce
notable changes in the growth of D. salina in terms of biomass concentration. These findings
underscore the robustness and stability of D. salina in maintaining its cellular concentration
despite variations in environmental conditions, particularly salinity and water availability;
however, further studies need to be performed to assess whether this affects the production
of compounds such as beta-carotene, protein, and carbohydrates, among others. It may also
be necessary to evaluate cases where evaporation rates are higher due to several factors
such as temperature, humidity, wind speed, etc., and where the increase in salinity is
also higher.
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4. Discussion

The experiments involving water addition due to evaporation highlighted the re-
silience or adaptive mechanisms of D. salina to changes in salinity. Continuous and non-
continuous water additions did not significantly alter cell concentrations, indicating that
the organism may have adaptive mechanisms to regulate its growth in response to salinity
increases or decreases, with the latter being due to water addition. This adaptive capacity
can be attributed to the osmoregulatory mechanisms present in D. salina, enabling it to
maintain cellular homeostasis despite fluctuations in salinity levels [19]. The lack of a
rigid cell wall allows for instant cell volume adjustments, expanding when environmental
salinity drops or shrinking when salinity increases, along with subsequent changes in
glycerol and ion concentrations [20].

Furthermore, experiments examining the effects of seawater addition to compensate
for water loss through evaporation yielded promising results. Despite an increase in overall
water levels within the culture tank, due to the volume of artificial seawater being added
to decrease and maintain salinity at 12%, no notable changes in cell concentration were
observed. This suggests that while seawater addition effectively compensates for water loss,
it did not trigger substantial changes in the growth or biomass production of D. salina, high-
lighting the possibility of sustainable microalgae production in regions with limited water
resources. In the case of non-continuous seawater addition, this indicates its capacity to
adapt to varying environmental conditions without compromising its biomass production.

Continuous evaporation-loss compensation ensures a stable and controlled environ-
ment for the microalgae, minimizing stress by maintaining a relatively constant salinity
level; however, it may require the continuous monitoring of evaporation rates and salinity
levels or an automation system, which could increase the biomass cost. In that case, a pump
activated by a solar panel, for example, could be considered. Non-continuous salinity
adjustment reduces the frequency of interventions and monitoring required. This approach
may be more practical for small-scale production or when resources or automation capa-
bilities are limited; however, rapid and greater increases in salinity levels (more than 3%)
than those tested in this research may stress the algae, potentially affecting their growth.
Additionally, the microalgae may need time to acclimate to the new salinity levels, which
could temporarily impact productivity.

In our experiments, we demonstrated that a salinity of between 12 and 15% may not
affect the growth of the microalgae. Therefore, in general, the choice between continuous
and non-continuous evaporation-loss compensation approaches depends on the specific
circumstances of the cultivation system and the resources available. For large-scale com-
mercial operations or cases where precision is required, a constant adjustment approach
may be preferable. Conversely, smaller-scale operations with limited resources may find
periodic adjustments more practical, despite the potential drawbacks in precision and
control. The key is to maintain stable and optimal conditions for D. salina to produce
biomass in a cost-effective manner.

In this initial study, to simplify and avoid complex parameters in outdoor experiments
and to focus on the salinity impact on biomass, we utilized controlled laboratory conditions.
However, to validate and extend the findings of this study, further research is recommended,
including pilot tests conducted outdoors to assess the reproducibility of the results in
natural settings. Outdoor pilot tests would provide valuable insights into how D. salina
responds to environmental fluctuations, such as natural variations in sunlight, temperature,
wind, and nutrient availability, which may influence its growth dynamics differently
compared to controlled laboratory conditions. Moreover, comparative studies could be
conducted to assess the impact of variations in pigment levels (such as carotenes and
chlorophyll), beta-carotene, protein, carbohydrates, lipids, and other compounds due to
fluctuations in salinity.



Appl. Biosci. 2024, 3 218

5. Conclusions

This study contributes to the understanding of the resilience or adaptability of D. salina
to salinity variations and the methods of water and seawater addition in open cultures. No
statistically significant difference was observed between continuous and non-continuous
systems where salinity was kept constant and non-constant, respectively. The findings
suggest that both continuous and non-continuous water and seawater addition approaches
can be viable for maintaining stable growth conditions under varying salinity conditions
ranging from 12 to 15% salinity. Further research is recommended to validate these results
in an outdoor setting, consider resource management and operational preferences, and
assess the impact on compound production, thereby enhancing the sustainability and
cost-effectiveness of microalgae-based biorefinery processes.
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