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Abstract: Background: Physical activity (PA) is an important aspect of infant development and has
been shown to have long-term effects on health and well-being. Accurate analysis of infant PA is
crucial for understanding their physical development, monitoring health and wellness, as well as
identifying areas for improvement. However, individual analysis of infant PA can be challenging and
often leads to biased results due to an infant’s inability to self-report and constantly changing posture
and movement. This manuscript explores a population-based network analysis approach to study
infants’ PA. The network analysis approach allows us to draw conclusions that are generalizable to
the entire population and to identify trends and patterns in PA levels. Methods: This study aims
to analyze the PA of infants aged 6–15 months using accelerometer data. A total of 20 infants from
different types of childcare settings were recruited, including home-based and center-based care.
Each infant wore an accelerometer for four days (2 weekdays, 2 weekend days). Data were analyzed
using a network analysis approach, exploring the relationship between PA and various demographic
and social factors. Results: The results showed that infants in center-based care have significantly
higher levels of PA than those in home-based care. Moreover, the ankle acceleration was much higher
than the waist acceleration, and activity patterns differed on weekdays and weekends. Conclusions:
This study highlights the need for further research to explore the factors contributing to disparities
in PA levels among infants in different childcare settings. Additionally, there is a need to develop
effective strategies to promote PA among infants, considering the findings from the network analysis
approach. Such efforts can contribute to enhancing infant health and well-being through targeted
interventions aimed at increasing PA levels.

Keywords: infant; movement; accelerometers; network analysis; physical activity; tummy time;
motor activity; sedentary behavior

1. Introduction

Physical activity (PA) is known to play an important role in the promotion of healthy
development throughout childhood [1–3]. PA is associated with a variety of benefits in early
childhood, including motor skills and cognitive development [2,3]. Historically, society
has thought infants are “active enough” and not in need of efforts to promote PA [4,5].
However, initial evidence suggests that there may be a relationship between movement in
infancy and weight [6,7]. For example, one study of 9-month-old infants found an inverse
relationship between the amount of time infants spent in unrestricted playtime and waist
circumference [8]. Data were collected via questionnaire, and more objective data is needed
to further explore factors related to infant movement.

Due to the growing emphasis on the importance of movement behaviors in the early
years, in 2019, the World Health Organization developed guidelines for promoting healthy
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daytime infant movement, including providing 30 min of PA and no more than 1 h in
a restraint device (e.g., strollers, highchairs) [9]. Despite these guidelines, research on
whether infants are achieving them as well as how their movements may vary based on
demographic and other factors (e.g., type of childcare) is limited [10,11]. This is due in
large part to the lack of a valid and reliable methodology for assessing infant movement.

Unfortunately, tools and methodology to assess infant PA are limited due to the
amount of adult handling (i.e., picked up, carried) and primary reliance on parent self-
report [4,5,12–15]. While accelerometry methodology for the objective assessment of
PA in older children is well established, additional research on their use with infants
is needed [14,16]. Some existing infant accelerometer methodology has involved using a
concurrent activity diary, in which parents report the dominant activity a child participates
in during specific increments throughout the day (e.g., every 30 min) to discriminate in-
dependent activity time once the accelerometer is returned to the researchers [1,17,18]. A
significant limitation of this protocol is that parent-reported periods of independent move-
ment are subject to recall bias, threatening the information’s accuracy [16,19]. Furthermore,
existing clinical procedures assess PA levels by observing a short snapshot of physical
movements within the same day. The downside of this approach is that a conclusion about
the appropriateness of an infant’s movement is drawn using only a single-time instance
when a trained observer or clinician is present instead of a more comprehensive observation
including an infant’s typical routine. Thus, there is a need to identify a novel method for
collecting valid and reliable PA data that can offer a comprehensive understanding of infant
activities, eliminating the above-referenced bias in infant PA assessment.

In this study, we have proposed a population-based network analysis approach that
leverages mobility data collected from accelerometers worn by infants. Network analysis is
a powerful tool for understanding the relationships between different elements in biological
systems [2,19–22]. By representing biological data as a network, it is possible to identify
patterns, trends, and relationships that are not easily apparent from the raw data and
independent analysis. Our paper presents three significant contributions:

1. The creation of a correlation network graph that effectively detects subgroups that are
similar with respect to their PA patterns.

2. An analysis of the PA patterns of each infant, both individually and in comparison to
other infants in the group, by incorporating different time intervals, including hour,
day, and weekday–weekend.

3. The completion of an enrichment analysis to understand the social and family dynam-
ics of the identified subgroups, such as demographic parameters.

The rest of the manuscript is organized as follows. A detailed methodology is de-
scribed in Section 2, while Section 3 presents the obtained results. Section 4 presents a
discussion of the results. The limitations are explained in Section 5.

2. Methods

The methodology of this study is depicted in Figure 1. It consists of three phases:
Data analysis, network analysis, and PA analysis. The initial phase involved the collection
of PA data from the infant subjects using wearable ActiGraph GT9X (ActiGraph, Inc.,
Pensacola, FL, USA) Link accelerometers. The data was then standardized, and outliers
were removed to facilitate the extraction of relevant features. In the second phase, a
correlation network graph was created by incorporating all of the subjects as nodes (vertices)
and their relationships as edges. The correlation between each pair of nodes was determined
using the Pearson correlation coefficient [23]. This network was then used to identify
clusters that exhibited strong correlations. In addition, the demographic information of
the participants was compared across all clusters to determine the overrepresentation of
demographic parameters. In the final phase, infant PA levels were analyzed utilizing
different time intervals, including hour-wise, day-wise, and weekday–weekend.
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Figure 1. Method overview.

2.1. Data Acquisition and Preprocessing

The purpose of this study was to develop a population-based network analysis method
to assess infant PA patterns using accelerometer data collected from infants. Study approval
was obtained by the University of Nebraska Medical Center Institutional Review Board
(IRB# 0631-19EP). Data were collected between May 2021 and June 2022. A sample of
20 healthy infants (6–15 months) and their primary caregivers (e.g., parents) were recruited
for the study. To be eligible for the study, infants had to be between 6 and 15 months
of age, have no identified developmental abnormalities, be in at least >5th percentile for
weight, and have a parent/guardian sign the parental consent form. Further, the caregiver
was eligible if they were older than 19 years of age and had an infant 6–15 months of age.
Recruitment was accomplished by distributing flyers through social media and email, as
well as referrals from previous research participants. Participants who responded to social
media posts or e-mails completed a brief screening survey through Qualtrics and were
contacted by research personnel via their preferred contact method if eligible (phone call,
text, or e-mail) [24]. The referrals were contacted via email or phone call.

The data from the tri-axial accelerometer were collected with a sampling frequency of
100 Hz using a GT9X ActiGraph Link accelerometer [25]. Infants wore 2 accelerometers,
one on the right side of the waist and the other on their right ankle. An adjustable elastic
belt was used to secure the accelerometer around the waist and an elastic band with
the accelerometer placed inside was used for the ankle. The data were recorded in a
free-living environment where infants and caregivers were instructed to perform their
typical routines for 4 days, including two weekdays and two weekend days. Each sensor
produced a raw signal that was stored in the instrument’s internal memory. Also, the
accelerometer data generated the intensity of the PA in the X, Y, and Z axes, as well as the
vector magnitude. The vector magnitude (VM) was computed automatically by the sensor
using the following formula:

VM =
√

X2 + Y2 + Z2 (1)
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Due to the non-availability of data and the lack of sufficient details, five subjects
were removed from the investigation. Therefore, further analysis was carried out with
only 15 subjects. For the comfort of subject identification, each subject was assigned
a unique ID, K1 through K15. All infant anthropometry measurements were assessed
via standardized procedures, including weight, length, head circumference, and waist
circumference (4However, as the length parameter is unavailable for multiple infants, it has
consequently been excluded from subsequent analyses. In addition, parents’ demographic
information was obtained through a demographic survey, which included questions for
race/ethnicity, childcare status, primary caregiver’s (mother) employment status, and
household income. A summary of demographic information is presented in Table 1.

Table 1. Demographic information overview.

Parameter Value

Age 6–15 months

Gender
Male 10
Female 10

Race/Ethnicity
White 17
Asian 3

Mothers Employment
Full time 11
Housemaker 8
Part time 1

Annual household income
USD 25,000–75,000 3
USD 75,000–125,000 7
USD 125,000–175,000 10

Childcare status
At home with mother 15
Childcare center/home 5

Infant anthropometrics Mean SD

Infant weight 9.2 1.8
Head circumference 17.8 0.61
Waist circumference 17.53 0.95

The data underwent normalization between 0 and 1 using the z-score standardization
technique using the following equation:

Zi =
(
Xi − X

)
S

(2)

where Xi represents the actual data point from the raw sensor data, X is the total mean
activity, and S is the standard deviation of the total activity. To address outliers, the
interquartile range (IQR) property was applied. An outlier is identified if it falls below the
first quartile or above the third quartile. Instead of removal, outliers were replaced with
either the first or third quartile, depending on their position relative to these quartiles. This
process resulted in a normalized dataset that is free from outliers.

2.2. Feature Extraction

The study recorded raw sensor data for a duration of 4 days, including 2 weekdays and
2 weekend days, from 7:00 a.m. to 6:59 p.m. In order to gain a complete understanding of
the PA characteristics, PA data were analyzed by considering three different time intervals:
Hourly activity to assess short-term patterns, day-wise activity to understand overall
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daily activity levels, and weekday–weekend days to study differences in activity patterns
between the two. Therefore, three types of features were extracted: Hour-wise, day-
wise, and weekday–weekend day. These features were derived by segmenting the PA
data by an hour, a day, and a combination of weekdays–weekend days, respectively.
Moreover, each feature set included ankle and waist data separately. The list of three
feature sets is summarized in Table 2. The primary objective of extracting three feature sets
from accelerometer data was to analyze the mobility patterns of infants and study their
movement behavior relative to their PA levels across multiple time frequencies rather than
just observing at a single time scale of time. Hour-wise segmentation of PA data revealed
the movement patterns of infants every hour and provided a within-day understanding of
their movement. Similarly, day-wise feature sets provided daily motor patterns of infants
over four days, allowing for investigation of hour-wise biases in day-wise modeling and
vice versa. While every infant may have a unique PA style, those attending childcare and
those staying at home under parental care may have different mobility patterns. Hence, the
proposed weekday–weekend day features aided in distinguishing the mobility patterns of
infants across weekdays and weekend days.

Table 2. Feature List.

Feature Set Features Count Description

Hour-wise features

m_w_7–
m_w_18 12 Mean (average) of PA measured from the waist sensor

across 4 days for each hour

sd_w_7–sd_w_18 12 Standard deviation (SD) of PA measured from the waist
sensor across 4 days for each hour

m_a_7–
m_a_18 12 Mean (average) of PA measured from the ankle sensor

across 4 days for each hour

sd_a_7–
sd_a_18 12 Standard deviation (SD) of PA measured from the ankle

sensor across 4 days for each hour

Total 48

Day-wise PA features

dm_w_1–
dm_w_4 4 Mean (average) of PA measured from the waist sensor

across 7 a.m. to 18:59 p.m. for each of the 4 days

dsd_w_1–
dsd_w_4 4 Standard deviation (SD) of PA measured from the waist

sensor across 7 a.m. to 18:59 p.m. for each of the 4 days

dm_a_1–
dm_a_4 4 Mean (average) of PA measured from the ankle sensor

across 7 a.m. to 18:59 p.m. for each of the 4 days

dsd_a_1–
dsd_a_4 4 Standard deviation (SD) of PA measured from the ankle

sensor across 7 a.m. to 18:59 p.m. for each of the 4 days

Total 16

Weekday–weekend day PA
features

wm_w_1–
wm_w_4 4 Mean (average) of PA measured from the waist sensor

for 2 weekdays and 2 weekends

wsd_w_1–
wsd_w_4 4 Standard deviation (SD) of PA measured from the waist

sensor for 2 weekdays and 2 weekends

wm_a_1–
wm_a_4 4 Mean (average) of PA measured from the ankle sensor

for 2 weekdays and 2 weekends

wsd_a_1–wsd_a_4 4 Standard deviation (SD) of PA measured from the ankle
sensor for 2 weekdays and 2 weekends

Total 16

2.3. Network Analysis

A network is a graph G (V, E) in which V = {N} and E = {E1, E2,. . ., Em} where N is the
number of data elements that are represented as nodes in the graph, and each edge in E
represents an interrelationship between two nodes (∈V). In this study, the interrelationship
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is the pair-wise correlation between each pair of participants, which is measured using the
Pearson correlation coefficient [23]. By measuring the correlation, a correlation network
graph was constructed. A correlation network graph is a subgraph of graph G in which
any two nodes (Vx and Vy, where Vx, Vy ∈ V) are connected by an edge if and only if the
Pearson pair-wise correlation between Vx and Vy exceeds a certain threshold [21]. In such
a scenario, Vx and Vy are said to be positively correlated. Similarly, if neither of the two
nodes is connected in the correlation graph, then it implies that there is no relationship
between those two nodes.

The construction of the correlation network involves a two-step process. Firstly, pair-
wise correlation coefficients are computed between each pair of participants, utilizing the
features outlined in Table 2. This process yields an NxN matrix, as shown in Figure 2,
where N is the number of participants and each matrix entry signifies the correlation
coefficient between the respective participants. The Pearson correlation, typically ranging
from −1 to +1, signifies the degree of correlation, with −1 indicating no correlation and +1
denoting perfect positive correlation. Given that the resulting matrix is symmetric (NxN),
correlation coefficients above the diagonal mirror those below it. Following this, a threshold
“t” is determined by examining the distribution of all correlation values. Subsequently,
an adjacency matrix is formulated by setting threshold “t” to the NxN matrix. If a matrix
entry is greater than “t”, the entry is replaced with 1; otherwise, it is set to 0. Finally, as the
adjacency matrix serves as an abstract representation of a graph, a correlation network is
then constructed based on this matrix. Additionally, the detailed construction methodology
has been explained elsewhere [21].

In the second step, a group of subjects with similar mobility profiles was identified
by employing the Louvain clustering algorithm [26]. The Louvain clustering algorithm
is a popular method for community detection in complex networks. Its significance lies
in its ability to efficiently identify meaningful groups or communities within large-scale
networks, aiding our understanding of network structures, behaviors, and interactions.
A cluster is a collection of nodes with similar properties, and clustering is the task of
identifying such groups that exhibit similar properties. Often, the terms clustering and
community discovery are used interchangeably by the scientific community. In biological
networks, clustering or community discovery is a method of classifying the data elements
(clusters), wherein members of each group are related through certain characteristics [27].

To illustrate this phenomenon, let us consider a specific scenario. Let there be four
individuals, labeled P1 through P4, acting as vertices. The features, denoted as F1 through
Fn, are extracted from the raw sensor data collected from these individuals. The initial
step in network analysis involves computing pair-wise Pearson correlations using these
extracted features. The correlation values are exemplified in Table 3. By representing
individuals as vertices and their pair-wise correlations as edge weights, we construct a
graph as shown in Figure 3.

In the next phase, a correlation threshold of 0.7 is employed to establish the correlation
network. This leads to the formation of the network depicted in Figure 3, wherein edges
between P1–P2, P2–P4, and P2–P3 are eliminated. Following this step, a community
detection algorithm is applied to identify strongly connected communities within the
resulting network. In our example, P1, P3, and P4 constitute a community (marked in
orange circle), while P2 is disconnected from the network, as shown in Figure 4. For
an in-depth understanding of the construction methodology of the correlation network,
readers are referred to a more detailed explanation provided elsewhere [6].
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Table 3. Correlation coefficient values.

Subject ID P1 P2 P3 P4

P1 0 0.4 0.75 0.7
P2 0.4 0 0.5 0.55
P3 0.75 0.5 0 0.9
P4 0.7 0.55 0.9 0

In the context of this study, each participant (N = 15 infants) was represented as a node
in the graph, and a positive correlation between a pair of infants was represented with an
edge between the pair. The main objective of the network analysis was to identify the groups
that are homogeneous and well-separable [19]. It implies that all the subjects in a group
contain similar characteristics, while the subjects between the groups are distinguishable.
In other words, all of the infants that were categorized into a particular group had similar
PA patterns. Conversely, the PA of infants belonging to two different groups was distinct.
The advantage of our methodology is that the results were not influenced by a class label
or parent annotations. Rather, our study findings were completely driven by mobility data
collected from the participants. These data-driven findings enable the analysis of the data
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inherently. Furthermore, they provide rich insights into the data and allow us to identify
natural groups that exhibit similar mobility patterns.
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Although clusters were obtained in the previous step, it was necessary to perform an
enrichment analysis to compare the over-representation of infants’ demographic informa-
tion across the derived clusters. The method of enrichment analysis used was a popular
tool in gene set enrichment analysis (GSEA) that has been widely used to extract gene
expression data and compare similarities across multiple groups [28]. In this method, each
demographic parameter was evaluated and analyzed to check whether the parameter was
over-represented in a group. In the event that a particular parameter is over-represented in
a group, that parameter is said to be enriched for that group. In other words, the subjects
within the group were similar concerning the parameter. This might be a useful insight
for healthcare professionals to comprehend the behavior of infants belonging to various
groups identified in the process.
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2.4. PA Analysis

The PA analysis aimed to explore the PA patterns of infants across multiple time
intervals and extract meaningful insights by integrating the knowledge from the clusters
obtained in network analysis. Thus, to capture infants’ PA behavior across multiple time
domains, we segmented the data into three categories: Hour-wise, day-wise, and weekday–
weekend, and performed network analysis followed by enrichment analysis for each
category. The advantages of using three time intervals were that they capture PA behavior
across multiple time domains and minimize the time domain bias to extract rich insights
from the network analysis.

In this approach, an infant’s PA was evaluated with respect to its cluster and the other
clusters in the network. Furthermore, the overall PA level was analyzed by considering two
important parameters: (1) PA patterns between the ankle and waist and (2) intensity of PA.
Infants’ PA patterns were analyzed as they were perceived in different time intervals rather
than in a single snapshot. This comprehensive approach to studying infant PA behavior
can provide a more complete understanding of infants’ mobility patterns, enabling insights
into their PA characteristics, and could identify infants who may benefit from interventions
to improve their overall health and well-being.

3. Results

This section will present the results of the network analysis performed on infant PA
data using three different time intervals: Hour-wise, day-wise, and weekday–weekend day.
First, results from the network analysis, including identified communities, are discussed.
Figure 5a depicts the generated network graph as well as the communities identified by
employing the Louvain clustering algorithm. The box plots in Figure 5b were generated
to visualize the distribution of PA levels of the ankle as well as waist among multiple
communities identified in the network model. Second, heatmaps shown in Figure 6a–f
were utilized to study the ankle and waist PA patterns across three time intervals. Finally,
enrichment analysis results are presented in Table 4, which explains the common and
contrasting parameters in communities identified in each of the models.
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analysts better understand relationships and patterns within the data. Therefore, in the 
relative space, infants with stronger correlations were closely grouped, whereas infants 
with weaker correlations were repelled from each other. Isolation from the network and 
disconnected communities represents stronger separation from the other nodes and com-
munities that were connected to each other. 

The analysis results shown in Figure 5a indicate the presence of four distinct com-
munities or clusters within the network, comprising the following nodes: Community 1 
(K1, K4, K5, K12, K15), community 2 (K2, K13), community 3 (K3, K9, K10, K14), and com-
munity 4 (K8, K11). Notably, community 4 formed a disconnected cluster, while infants 
K6 and K7 appeared to be isolated from the network. In this study, a community refers to 
a group of infants exhibiting similar PA patterns, indicating a strong correlation between 
the infants within the same community when analyzed by hour-wise segmentation. Ad-
ditionally, nodes K12 and K15 in community 1, K2 in community 2, and K14 in community 
3 were identified as boundary nodes, while the other nodes were designated as commu-
nity nodes, based on prior research [21]. The relationship between nodes within a com-
munity was highly robust, with comparable PA behavior. However, high-degree nodes 
situated on the boundary of a cluster were more susceptible to being classified into neigh-
boring clusters, suggesting a weaker classification into their respective community. There-
fore, careful analysis of their PA patterns was essential to differentiate them from the com-
munity [29]. 

Figure 6. Average Acceleration of each infant. (a) Hour-wise waist acceleration, (b) Hour-wise ankle
acceleration, (c) Day-wise waist acceleration, (d) Day-wise waist acceleration, (e) Week-wise waist
acceleration, (f) Week-wise ankle acceleration.
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Table 4. Demographic parameters by community.

ID
Childcare Setting Parent Demographics Infant Anthropometrics

Community
IDChildcare/Home Duration

(Hours) Employment Income
(USD) Weight Head

Circumference
Waist

Circumference

K1 Home NA Full-time 100 k 8.67 17.51 18.24 1
K4 Home NA Full-time 175 k 9.29 17.9 17.58 1
K5 Home NA Full-time 175 k 9.11 17.66 18.61 1
K12 Home NA Full-time 150 k 11.19 19.18 19.18 1
K15 Home NA Full-time 175 k 15.12 18.5 16.66 1
K3 Childcare center >40 Full-time 150 k 8.59 18.03 16.89 2
K9 Home NA Part-time 150 k 8.25 17.13 16.06 2
K10 Childcare center 31–40 Full-time 125 k 7.74 16.98 17.34 2
K14 Childcare center 10–20 Part-time 125 k 8.61 18.03 16.08 2

K2 Family childcare
home 31–40 Full-time 125 k 8.05 17.45 18.86 3

K13 Home NA Housemaker 75 k 9.43 18.63 17.68 3
K8 Home NA Housemaker 100 k 9.23 17.29 17.68 4
K11 Home NA Housemaker 125 k 8.15 17.33 17.78 4
K6 Childcare center >40 Full-time 125 k 8.27 18.17 16.63 NA
K7 Home NA Housemaker 50 k 8.74 18.08 17.68 NA

3.1. Physical Activity Analysis

The network graph shown in Figure 5a was obtained by constructing a correlation
network graph, followed by employing the Louvain clustering algorithm. In these graphs,
15 infants are denoted as nodes/vertices while the edges represent interrelations between
them. In this context, an interrelationship indicated a positive correlation between infants,
which was measured by utilizing their PA data. For example, in Figure 5a, the edge
between K2 and K13 signifies that they were positively correlated due to their similarity
in hourly PA, whereas K7 and K2 were not connected by an edge because they were
not correlated. Furthermore, we have employed the Fruchterman–Reingold algorithm to
represent each network graph, which allows us to visualize the strength of correlation in
the form of distance [2]. The Fruchterman–Reingold algorithm is a force-directed graph
drawing algorithm used to visualize graphs and networks in two-dimensional space. It
is significant in network analysis and data visualization for its ability to create clear and
visually appealing representations of complex network structures, helping researchers
and analysts better understand relationships and patterns within the data. Therefore,
in the relative space, infants with stronger correlations were closely grouped, whereas
infants with weaker correlations were repelled from each other. Isolation from the network
and disconnected communities represents stronger separation from the other nodes and
communities that were connected to each other.

The analysis results shown in Figure 5a indicate the presence of four distinct communi-
ties or clusters within the network, comprising the following nodes: Community 1 (K1, K4,
K5, K12, K15), community 2 (K2, K13), community 3 (K3, K9, K10, K14), and community 4
(K8, K11). Notably, community 4 formed a disconnected cluster, while infants K6 and K7
appeared to be isolated from the network. In this study, a community refers to a group of
infants exhibiting similar PA patterns, indicating a strong correlation between the infants
within the same community when analyzed by hour-wise segmentation. Additionally,
nodes K12 and K15 in community 1, K2 in community 2, and K14 in community 3 were
identified as boundary nodes, while the other nodes were designated as community nodes,
based on prior research [21]. The relationship between nodes within a community was
highly robust, with comparable PA behavior. However, high-degree nodes situated on the
boundary of a cluster were more susceptible to being classified into neighboring clusters,
suggesting a weaker classification into their respective community. Therefore, careful
analysis of their PA patterns was essential to differentiate them from the community [29].

From the grouped box plots shown in Figure 5b, we can observe that the ankle PA
levels were generally higher than the waist PA levels in all four communities. However,
the difference between ankle and waist PA levels varied across the four communities.
Community 3 had the largest difference in mean between ankle and waist activity and
the largest interquartile range (IQR), indicating a higher level of PA compared to the
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other groups. Nevertheless, waist activity was much lower than ankle activity. Similarly,
Community 2 had a relatively high mean difference, suggesting higher PA levels than
Community 1 and 4. Although community 2 exhibited lower variability in overall activity
levels, they showed the highest ankle and waist mean compared to other communities.
Community 1 had the smallest mean difference, indicating the lowest level of PA among
the four groups.

The observed differences in activity levels between waist and ankle in community
3 may be due to differences in environmental factors between childcare and home settings.
The ankle box plot of community 3 shown in Figure 5b demonstrates a much higher median
and a much wider range than the waist box plot. From the demographic information
presented in Table 4, K3, K10, and K14 of community 3 and K2 from community 2 attended
childcare. Furthermore, as perceived by the activity patterns shown in Figure 6a–f, most
of the infants in community 2 and community 3 were active during the day, including
weekdays and weekend days. One possible reason for the higher ankle PA levels among
Group 3 individuals who attended childcare was that childcare environments may provide
more opportunities for PA compared to home environments. On the other hand, K8 and
K11 infants of group 4 exhibited lower PA levels than those of the other communities,
indicating a possible reason for their separation from the network. Although group 3′s
daily and weekday–weekend day patterns in Figure 6c–f show moderate PA levels, hourly
patterns in Figure 6a,b show an absence of activity between 7 a.m. to 9 a.m. and 1 p.m. to
3 p.m. This could be because infants in group 3 might have had different sleep schedules
than other infants in the population. Nonetheless, infants in community 1 seemed to have
typical PA levels, as there was no evidence to explain their distinct activity patterns.

Infants K7 and K6 were isolated due to distinctive PA characteristics when compared
with other infants in the population. Analysis of the day-wise and weekday–weekend day
heatmaps depicted in Figure 6c–f indicates that the waist acceleration of infant K7 was
significantly higher than ankle acceleration, which was distinct from other infants. Further
research may be required to validate the overall PA of infant K7. Infant K6 was also isolated
because of the fact that data were only available for K6′s PA for one weekday and almost
insignificant activity was recorded on other days, as can be observed from Figure 6c,d.

3.2. Enrichment Analysis

Table 4 exhibits the outcomes derived from an enrichment analysis conducted on the
network graph, focusing on the prevalence of childcare settings, parental demographic
factors, and infant anthropometrics. Infants were categorized based on their community
IDs. This tabulation presents two distinct variable types: Categorical variables encom-
passing childcare settings and parental income and occupation, and numerical variables
detailing infant weight, head circumference, and waist circumference. Our methodology
uncovered insightful and exclusive findings through this analysis. Figure 7 depicts the
distributions of infant weight, head circumference, and waist circumference across the
four communities. Additionally, to visually represent parental demographic details and
childcare settings across the four communities, we employed barplots in Figure 8. The X-
axis delineates communities, while the Y-axis portrays the percentage over-representation
of corresponding parameters, encompassing childcare settings, parental income, and em-
ployment details. Community 1 is comprised solely of infants receiving parental care at
home. All parents within this community were full-time employees, and except for K1, all
other infants belonged to the high-income bracket, earning an annual income above USD
150 k. Conversely, in community 2, aside from K9, most infants attended formal childcare
centers. Furthermore, all were from high-income households, earning more than USD 125 k
annually. Infants K2 and K13 were clustered together, with only K2 attending a family
childcare home—a different setting compared to the conventional childcare center, typically
comprising a larger group of children based on age and situated in a commercial building.
In contrast, a family childcare home tends to have a mixed-age group of children within a
residential setting.
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Figure 7 presents a comprehensive box plot comparison showcasing the distributions
of infant weight, head circumference, and waist circumference across the four communities.
The X-axis denotes communities, while the Y-axis signifies each anthropometric parameter.
In terms of weight, community 1 displays a wider weight range, with a notable outlier
observed at 15.12 kg. Conversely, communities 2, 3, and 4 exhibit narrower interquartile
ranges (IQR), indicating more uniform weight distributions among infants within these
communities. Regarding head and waist circumferences, community 1 demonstrates a
broader range of head circumferences, with an outlier at 19.18 cm. Additionally, as high-
lighted in Table 4, infant K15 in community 1 displays a higher weight of 15.12 kg compared
to other infants, while K12 in the same community exhibits a larger head and waist circum-
ference of 19.18 cm, surpassing other infants’ measurements. Notably, despite their higher
weight, head, and waist circumferences, these infants elevated anthropometric measure-
ments do not align with increased physical activity levels. As elucidated earlier, community
2, comprising infants attending childcare facilities, demonstrates higher physical activity
levels compared to other communities.

4. Discussion

In this study, we have proposed a methodology that can analyze the PA of infants by
processing the raw sensor data captured from wearable sensors in a free-living environment.
First, a correlation network graph was constructed. Then the Louvain clustering algorithm
was utilized to extract clusters that were closely connected. A cluster represented a group
of infants that contained similar activity profiles. In other words, they were strongly similar
in their movement behavior. An edge between any two nodes in the graph resembled
a positive correlation. It is important to realize that the network was constructed by
considering ankle and waist sensor data separately, which allowed the network to reveal
significant differences between ankle and waist PA data.
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The purpose of incorporating three time intervals was not to compare one feature
against another but rather to analyze and comprehend the movement patterns of infants
across multiple time domains. Each time interval feature revealed certain useful information
that could be effectively utilized in understanding an infant’s PA characteristics. For
instance, the raw sensor signal of K6 was detected for only one day, while the remaining
three days showed minimal recorded activity. Although this could be attributed to an
artifact in the data collection process, this anomaly was only identified upon analyzing
PA patterns using day-wise features. Furthermore, network analysis is a group analysis
instead of an individual analysis. As similar individual analyses have played a crucial role
in the interpretation of a child’s cognitive development and assisted in the early detection
of childhood developmental disorders such as autism, this approach could also be helpful
in the diagnosis of specific movement disorders [3].

Network analysis brings several implications that can be applied back to the original
problem domain. In this study, findings from network analysis can be utilized to understand
the overall physical health of infants. For instance, K8 and K11 belong to the lower PA
range category compared to other infants. Though the objective of the study was not to
determine the appropriateness of the infants’ PA, it may be important to further investigate
these differences to understand if these differences relate to other developmental outcomes.
Similarly, K7 was peculiar in terms of PA patterns when compared to all other infants in
the population of subjects. However, further assessments are needed to understand these
differences. In summary, these conclusions may help in future research or interventions
aimed at promoting PA in infant care settings.

In the present physical activity (PA) analysis, validation is challenging as there are
no ground truth labels related to the subjects—all infants under the study are healthy.
However, the robustness of the analysis is substantiated by the outcomes of the enrichment
analysis illustrated in Table 4. Notably, a significant portion of infants attending childcare
is consolidated into a single community. This observation underscores the methodology’s
capability to discern distinctions among infants in diverse childcare settings, showcasing
its potential efficacy.

5. Limitations

This analysis has been carried out with a limited sample of 15 infants. Although the
methodology has been presented with multiple time frequencies, the limited population
sample might be one of the inherent limitations of this study. Future work should acquire
PA data from a larger number of infants. In addition, it is possible that the averaging
bias might have been introduced while aggregating total time series data into hours. The
data has been collected as time series data with an epoch of one second using body-worn
wearable sensors. It is essential to combine data into smaller samples by taking the average
of the larger sample. Therefore, we do not reject the presence of average bias in the
resultant sample.

Another limitation of this study was that the accelerometer data were only captured
during daytime hours, from 7 a.m. to 7 p.m., for a total of 12 h. No data were collected
during nighttime hours, as the focus of the study was on analyzing daytime PA when
infants are typically active. The analysis presented in the study focuses on the PA patterns
of the population of infants rather than individual patterns. Thus, it is important to interpret
the results within the context of a population study.

6. Conclusions

Adequate PA is one of the most important aspects of early infancy. Analyzing infants’
PA levels is a challenging task since infants have irregular and unpredictable movement
patterns, making it difficult to record and analyze their PA levels individually. Furthermore,
individual assessment is often biased by visual observation and does not lead to an objective
conclusion. In this study, we have developed a population-based network analysis method
that can potentially identify infants with various PA levels. Individual analysis in the light
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of their peers provides rich insights that can be integrated into the diagnosis and treatment
of specific movement disorders. The uniqueness of our methodology is that the results
were not led by a known group label; rather, they were data driven. Moreover, results were
generated by integrating three time factors, including day, hour, and weekday–weekend
day. In conclusion, this analysis approach could be used by healthcare professionals
to educate parents and caregivers on the importance of providing opportunities for PA
in infants’ daily routines. By doing so, they could promote healthy habits and prevent
sedentary behavior that can lead to negative health outcomes later in life. For future
work, we plan to use machine learning algorithms to predict the various physical activities
performed by the infants, and to integrate network analysis and machine learning to
provide a comprehensive understanding of infants’ movement behavior. Additionally,
future research should collect and analyze sleep data to further enhance our understanding
of infants’ health.
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15. Radu, L.E.; Făgăraş, S.P.; Vanvu, G. Physical activity index of female university students. Procedia-Soc. Behav. Sci. 2015, 191,
1763–1766. [CrossRef]

16. Van Cauwenberghe, E.; Gubbels, J.; De Bourdeaudhuij, I.; Cardon, G. Feasibility and validity of accelerometer measurements to
assess physical activity in toddlers. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 67. [CrossRef]

17. Costa, S.; Barber, S.E.; Cameron, N.; Clemes, S.A. The objective measurement of physical activity and sedentary behaviour in 2–3
year olds and their parents: A cross-sectional feasibility study in the bi-ethnic Born in Bradford cohort. BMC Public Health 2015,
15, 1109. [CrossRef]

18. Johansson, E.; Hagströmer, M.; Svensson, V.; Ek, A.; Forssén, M.; Nero, H.; Marcus, C. Objectively measured physical activity in
two-year-old children–levels, patterns and correlates. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 3. [CrossRef]

19. Thelagathoti, R.; Ali, H. A population analysis approach using mobility data and correlation networks for depression episodes
detection. Ann Depress. Anxiety 2022, 9, 1112.

20. Rastegari, E.; Azizian, S.; Ali, H. Machine learning and similarity network approaches to support automatic classification of
parkinson’s diseases using accelerometer-based gait analysis. In Proceedings of the Hawaii International Conference on System
Sciences 2019, Maui, HI, USA, 8–11 January 2019.

21. Thelagathoti, R.K.; Ali, H.H. A Data-Driven Approach for the Analysis of Behavioral Disorders with a Focus on Classification
and Severity Estimation. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Las Vegas, NV, USA, 6–8 December 2022; pp. 821–825.
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