
Citation: Okoro, C.A.; El-Hasan, A.;

Voegele, R.T. Integrating Biological

Control Agents for Enhanced

Management of Apple Scab (Venturia

inaequalis): Insights, Risks, Challenges,

and Prospects. Agrochemicals 2024, 3,

118–146. https://doi.org/10.3390/

agrochemicals3020010

Academic Editor: Christos

G. Athanassiou

Received: 31 January 2024

Revised: 19 March 2024

Accepted: 20 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Integrating Biological Control Agents for Enhanced Management
of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges,
and Prospects
Chisom Augusta Okoro *, Abbas El-Hasan * and Ralf T. Voegele

Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of
Hohenheim, 70599 Stuttgart, Germany; ralf.voegele@uni-hohenheim.de
* Correspondence: chisom.okoro@uni-hohenheim.de (C.A.O.); aelhasan@uni-hohenheim.de (A.E.-H.)

Abstract: Apple scab incited by the ascomycete Venturia inaequalis poses a significant threat to apple
cultivation, necessitating a reassessment of existing disease management strategies. Attempts to
manage apple scab include diverse approaches like developing disease forecasting models and the
extensive application of synthetic chemical fungicides. However, the efficacy of these methods is
compromised by inconsistencies, environmental concerns, and the pathogen’s resistance, necessitating
the exploration of alternative sustainable strategies. Addressing the challenges associated with apple
scab management, this review strongly supports a shift towards the integration of biological control
agents (BCAs). Emphasising the transformative synergy between BCAs and their bioactive secondary
metabolites, we highlight their efficacy in advancing precision disease control through innovative
and sustainable solutions. The review effectively presents a strong justification for the integration of
BCAs and their by-products into apple scab management, offering insights into associated benefits,
risks, and challenges while outlining promising prospects. Ultimately, it is expected to drive the
adoption of environmentally conscious practices for effective apple scab management.

Keywords: biological control agents; bioactive secondary metabolites; disease control; bio-fungicides;
apple scab

1. Introduction

Apple scab incited by the ascomycete Venturia inaequalis (anamorph Spilocea pomi Fr.)
poses a significant threat to apple cultivation and is notably challenging and expensive to
manage [1]. This disease has emerged as a major concern in apple-growing regions world-
wide, particularly in temperate areas characterized by cool and moist spring weather [2].
Despite continuous research efforts, apple scab remains remarkably resilient, emerging as
the most economically damaging pathogen on apple trees globally [3]. The disease causes
substantial economic damage on apple trees, affecting the vitality of leaves and fruits,
and leading to both immediate and indirect losses [3–5]. Its detrimental effects extend
to tree vigour, yield, and fruit quality, making it a paramount concern for growers [3,6].
Even a minor scab lesion renders an apple non-marketable, and the incidence of scab
invariably results in significant losses [7]. Since the emergence of synthetic fungicides in the
1940s, fungicides have become the sole means to control apple scab [4]. Despite numerous
attempts over decades to establish biocontrol strategies, it was only recently that a few of
them have successfully reached the stage of commercial viability [1].

1.1. Overview of Apple Scab (Venturia inaequalis)

The precise time of emergence of scab on cultivated apples is unknown [2]. The initial
documented report of apple scab was published by Fries in Sweden in 1819 [6]. However,
the earliest indication of scab’s incidence dates back to 1600, observed in a painting by
Michelangelo Caravaggio titled ‘The Supper at Emmaus’ held at the National Gallery in
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London [2]. The Simple Sequence Repeat (SSR) analysis of V. inaequalis samples from
28 orchards across five continents suggests a Central Asian origin, and its current global
prevalence reveals significant genotypic diversity in almost all orchards [8].

Apple scab is caused by a pathogenic fungus V. inaequalis, representing the teleomorph
or saprophytic state, and S. pomi Fr., representing the anamorph or parasitic state [6].
The manifestation of V. inaequalis infection on apple trees is a complex process linked to
various factors. The fungus primarily targets young plant tissue and exhibits enormous
adaptability [7]. It is most noticeable and severe on leaves and fruits, but it can also be
seen on sepals, petals, young shoots, and bud scales [5]. In early spring, the initial signs of
apple scab become apparent as dark green velvety spots on the lower surfaces of expanding
leaves. As these lesions advance on the upper surfaces of mature leaves, they grow, leading
to leaf splintering, swelling, scaliness, and eventual leaf drop [6]. Late-season infections,
initially inconspicuous, may become apparent post-storage, leading to the phenomenon of
pin-point scab [7]. Despite extensive research on its biology and control, apple scab remains
a significant challenge, resulting in substantial economic consequences. The extent of losses
varies with disease severity and prevailing weather conditions, establishing apple scab as a
critical limitation to apple production on a global scale [7].

1.2. Infection Mechanism

V. inaequalis employs a sophisticated infection mechanism that adapts to the host’s
phenology and environmental conditions [2]. It thrives as a successful pathogen by accumu-
lating specific genes that facilitate infection and reproduction without causing significant
harmful effects to the host [2]. Investigations on V. inaequalis infection mechanism have re-
vealed a unique infection strategy. Unlike typical host cell penetration, the fungus resides in
the subcuticular space before sporulation, effectively neutralizing the host’s defence mech-
anisms, possibly through specialized effectors [9]. Genetic evidence strongly supports the
secretion of effectors by V. inaequalis. Several candidate effector genes have been identified,
characterized by various features common to effector genes in filamentous fungi [9–11].
Additionally, Thakur et al. [12] identified crucial genes in V. inaequalis associated with
biological processes such as metabolism, transport, and response to stimuli.

The disease cycle consists of two phases: the sexual or primary phase occurring mainly
in winter, and the asexual or secondary phase which takes place during the vegetative
period in spring/summer (Figure 1) [6,13].

During the dormant phase of the host tree, V. inaequalis strategically resides on leaves
and fruit debris as pseudothecial initials or conidia in twig lesions. It adapts to temperature
fluctuations to precisely synchronize with the developmental stage of the host tree, thus
maximizing its possibility for future colonization [2,13]. As host plants break dormancy
in early spring, heterothallic mating between different mating types takes place in the
debris to initiate sexual reproduction. This process involves the fusion of a male hypha
(antheridium) and a female receptive hypha (trichogyne) [5,13]. Subsequently, fertilization
leads to the development of a pseudothecium within a dense mat of fungal mycelium
(stroma), where asci and ascospores are formed. The diploid stage is brief, with meiosis
giving rise to haploid ascospores within the pseudothecium [13]. The negatively geotropic
nature of pseudothecium development causes the ostiole to face the air when leaves
fall. This positioning increases the likelihood of ascospores being dispersed upward in
spring, aiding their anemochoric dissemination [2]. The pathogen strategically discharges
ascospores when host susceptibility is at its highest, optimizing the likelihood of successful
establishment in the host canopy, and, thus, ensuring efficient disease progression [2].
When ascospores land on susceptible host tissue, in conditions of sufficient humidity, they
germinate and attach to the leaf surface through adhesive mucilage, which acts as a bonding
agent, allowing the spore to firmly adhere to the leaf and establish an infection site [7].
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The pathogen utilizes enzymatic hydrolysis of the cuticle, facilitated by enzymes like
cutinase, to penetrate the host, forming nutrient-absorbing stromata which, in turn, lead
to the development of characteristic lesions [9]. The single-celled, uninucleate conidia
produced from these lesions on conidiophores emerge through the leaf cuticle, contributing
to the velvety appearance of scab lesions [13]. The primary spread of the disease occurs
within the canopy of the infected tree. Conidia are released by the pathogen and dispersed
through water films, either locally or via splash-dispersion during rainfall events. This
mode of dispersion allows the conidia to reach nearby susceptible host tissue, contribut-
ing to the spread and establishment of the disease within the orchard [2]. This leads to
secondary infections during the growing season [13].

Susceptibility to V. inaequalis varies with the age of the host tissue. While young tissues
of apple plants rely on a combination of quantitative trait loci (QTLs) and resistance genes (R
genes), mature tissues exhibit ontogenic resistance [9]. This resistance develops as the leaves
and fruit mature and is complete when leaves are fully expanded. Infections primarily occur
on unfolding leaves and internodes between them, with ontogenic resistance developing
faster on the ventral side of the leaves during expansion. The basis of this resistance is
not yet understood, but it becomes inactive as leaves senesce in late seasons [2,9,14,15].
This phenomenon is observed in all apple cultivars and has never been overcome by the
pathogen [9].

2. Management Strategies of Apple Scab

The introduction of synthetic fungicides in the late 1940s marked a turning point
in the management of apple scab. Most apple cultivars are susceptible, and over time,
fungicides became the predominant method for disease control, with limited exploration
of alternative strategies on a commercial scale [7]. The heavy reliance on numerous fungi-
cide applications results in substantial expenses for growers, coupled with undesirable
environmental consequences [7,16]. To reduce dependence on fungicides, there is a huge
concern to incorporate less-toxic control methods. This shift would not only mitigate costs
for growers but also address environmental concerns associated with extensive fungicide
use in apple cultivation [7,17]. Typically, management practices employed to control apple
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scab focus on disrupting the disease cycle, specifically targeting its critical reproductive
structures (e.g., spore germination).

2.1. Sanitation Practices

This approach involves minimizing overwintering inoculum through the mechanical
removal of fallen leaves, ensuring meticulous orchard sanitation to control primary inocu-
lum and, thereby, reduce the severity of scab infections [3]. Cultural control and sanitation
practices play a pivotal role in mitigating scab infection, encompassing measures such as
leaf shredding, pruning, burning, or burying leaves in the soil, along with the strategic
application of a 5% urea solution to accelerate the decomposition process [6,8].

While cultural control proves indispensable in managing apple scab, it comes with
inherent challenges. These include labour-intensive practices, limited efficacy, timing
sensitivity, potential pathogen resurgence, weather dependency, long-term commitment
requirements, and challenges related to varietal susceptibility [5–7]. Additionally, these
inoculum reduction measures may be costly and impractical for certain operations [6].

MacHardy et al. [2] revealed that the introduction of horticultural practices in apple
production has unintentionally facilitated the spread of V. inaequalis. Practices such as
herbicide-treated strips, repeated mowing, and the use of semi dwarfing and dwarfing
rootstocks, along with modern pruning techniques, create pathways for ascospores to reach
the tree canopy more effectively [2]. These changes enhance ascospore dispersal efficiency,
resulting in an increased number of successful infections. Initially, the impact of these
modifications on scab epidemiology went unnoticed due to simultaneous advancements in
fungicides, application strategies, and technology, which helped manage the challenges
posed by these horticultural changes [2].

Additionally, overhead irrigation systems that promote prolonged leaf wetness have
been linked to the increased disease severity of apple scab [18]. In contrast, drip irrigation
systems that deliver water directly to the roots without wetting the foliage insure dry leaves
which are less susceptible to infection and can help reduce disease development [5,18].

2.2. Mixed Cultivars

Implementing mixed-cultivar orchards, mimicking natural diversity, shows promise
in reducing scab incidence [2]. Carisse and Bernier [1] emphasized the significant potential
for reducing disease severity by taking advantage of cultivar susceptibility to V. inaequalis
through a thoughtful orchard design. This was demonstrated in the work of Blaise and
Gessler [19], where a careful consideration of cultivar selection and arrangement resulted
in a substantial reduction in disease severity. By strategically mixing cultivars within or
between rows, barriers to inoculum spread are created, offering a promising avenue for
reducing susceptible tissue and enhancing disease control [19].

While often notable, the reduction in scab observed in mixed-cultivar orchards is
typically insufficient for effective disease control in commercial production [8]. However,
the most significant concern in implementing mixtures in commercial horticulture is the
potential emergence and rapid build-up of a scab ‘super race’. This combines virulence
factors that can overcome most or all of the resistance genes in the host cultivars present in
the mixture, rendering it ineffective as a mean for scab management [8,20].

2.3. Breeding for Resistance

Many commercially important apple cultivars are at risk of susceptibility to V. in-
aequalis [21,22]. Unfortunately, the slow and challenging transfer of disease resistance
alleles from wild sources to apple cultivars with desirable fruit quality has led to a limited
number of scab-resistant cultivars in commercial production [11]. The current strategy
for cultivating scab-resistant cultivars involves incorporating Rvi resistance (R) genes into
apple cultivars to enhance their defence mechanisms against V. inaequalis [20]. A total of
20 R genes against V. inaequalis, numbered from Rvi1 to Rvi20, have been documented, with
the majority discovered in wild Malus accessions and landraces [20,23]. Several commercial
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varieties show significant susceptibility to scab due to either a lack of known Rvi genes
or a compromised effectiveness against specific races of scab [20]. The primary resistance
gene used in breeding programs against apple scab has been Rvi6, which originated from
the Japanese crab-apple Malus floribunda (Sieb.) sel. 821 [24]. Modern scab-resistant apple
cultivars primarily rely on the Rvi6 gene to enhance resistance against apple scab [25,26]
(Table 1). Unfortunately, several Rvi genes, including the widely utilized Rvi6 gene, have
succumbed to new virulent strains of V. inaequalis [27]. The erosion of Rvi6 has been ob-
served in various varieties, including its origin, M. floribunda [20]. This breakdown of
some of the Rvi genes was initially observed in Germany and later reported in various
countries around the world [24,26–29]. Despite ongoing breeding efforts over the past
decades, the majority of commercially grown scab-resistant apple varieties still rely on the
Rvi6 resistance [30]. Additionally, resistance gene pyramiding, involving the cultivation
of cultivars with multiple resistance genes for durable resistance, has been explored [26].
While some combinations show positive results in field trials, their long-term effectiveness
and commercial viability remain uncertain without direct empirical evidence [31].

Beyond resistance concerns, the widespread adoption of scab-resistant cultivars (such
as Topaz, Prima, and Florina) in commercial orchards is limited due to worries about lower
fruit quality and the uncertain durability of resistance [32]. Moreover, these challenges
include the existence of multiple races of V. inaequalis [6] and the emergence of virulent
races even in certain wild Malus species or genotypes like ‘Golden Delicious’ that remains
highly susceptible despite carrying the Rvi1 gene [6,20]. This situation raises concerns
about fruit quality and poses obstacles for growers to replace existing trees due to cost and
time considerations [3]. Hence, despite offering some protection against scab, resistant
cultivars still face limitations such as less effectiveness against evolving pathogen strains,
vulnerability to genetic uniformity, limitations in horticultural traits, longer development
times, and an unclear long-term environmental impact [3]. Balancing resistant varieties
with other tools is crucial in apple scab management programs.

Table 1. Commercially available apple cultivars and their reactions to apple scab.

Apple Cultivar Reaction to Scab R-Gene Type References

Ahrista R Rvi6 [33]

Antonovka R Rvi10 [25]

Aychurok S - [34]

Batul HR Rvi4 [23]

Cox Orange pippin MS - [35]

Crimson Crisp MR Rvi6 [33]

Dayton HR Rvi6 [27]

Delicious S - [27]

Discovery HS - [35]

Elstar S - [5]

Empire S - [27]

Englischer Prinz MR Rvi14 [33]

Enterprise HR Rvi6 [6,36]

Florina HR Rvi6 [37,38]

Freedom HR Rvi6 [32]

Fuji S - [6]

Gala HS - [39,40]

Golab S - [41]
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Table 1. Cont.

Apple Cultivar Reaction to Scab R-Gene Type References

Gold Rush HR Rvi6, Rvi13 [6,33]

Golden Delicious HS Rvi1 [27,37]

Granny Smith S - [42]

Honeycrisp R Rvi19, Rvi20 [43]

Idared S - [44]

Jonagold S - [39]

Jonafree R Rvi6 [27]

Jonathan S - [5]

Judeline MS Rvi6 [37]

Liberty MR Rvi6 [5,23]

Macfree R Rvi6 [5,24]

Makali R Rvi6 [32]

Malus floribunda 821 MR Rvi6, Rvi7 [37]

Marshalll McIntosh HS None [5]

Mutsu HS - [44]

Nela R Rvi6 [33]

Nova Easygrow HR Rvi6 [6,23]

Pink lady HS - [42]

Pioneer R Rvi6 [5]

Prima HR Rvi1, Rvi6 [37,44]

Primula MR Rvi6 [33]

Priscilla HR Rvi6 [37,45]

Realka R Rvi2, Rvi4, Rvi6 [33]

Redfree R Rvi6 [6,24]

Remo R Rvi6 [5]

Remura R Rvi4 [33]

Topaz R Rvi6 [33,38]

Vilmos renet R Rvi2 [23]

William’s Pride HR Rvi6 [6,46]
R = Resistant; HR = Highly resistant; MR = Moderately resistant; S = Susceptible; MS = Moderately susceptible;
HS = Highly susceptible; - = No resistance gene or unknown.

2.4. Scab Forecasting Models

Considering multiple factors like weather conditions, disease history, and the unique
characteristics of different apple varieties, forecasting models play a crucial role in ap-
ple scab management [47,48]. Two prominent models come to the forefront. The Mills
and LaPlante [49], a foundational framework, focuses on scab infection periods using a
combination of leaf wetness duration and temperature to comprehend and predict scab
onset. Several global studies were conducted to validate Mills’ table and warning system,
revealing some disagreements with the model [50–52]. Building upon this, the revised
model by MacHardy and Gadoury [50], known as ‘Mills/a - 3’, addresses a three-hour
discrepancy observed in Mills’ studies. This curve, along with data from field weather
stations, is used to assess infection risk. Additionally, the integration of sophisticated
models, like the MacHardy/Gadoury ascospore maturity model, into forecasting tools,
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along with the implementation of web-based Decision Support Systems (DSSs), has proven
indispensable in offering real-time advice in horticultural extension services [47,53].

Despite notable advancements, challenges persist, particularly with discrepancies
observed in the outcomes of forecasting tools [47,53]. While models utilizing weather data
demonstrate accuracy in predicting infection periods, the ultimate effectiveness of control
strategies depends on the availability of potent curative fungicides [54].

2.5. Chemical Fungicides

Over the past seven decades, apple scab management has heavily relied on weekly
fungicide applications, with commercial plantations typically undergoing 10 to 30 treat-
ments throughout the growing season [55]. V. inaequalis has been classified by the Fungicide
Resistance Action Committee (FRAC) as a high-risk pathogen [56], signifying a substantial
likelihood of fungicide resistance development in this pathogen [57]. Many different active
ingredients with diverse modes of action have been deployed for apple scab management
(Table 2). The primary objective is to effectively inhibit the initial ascospore-driven primary
infections that occur during early spring [58].

Historically, several multisite fungicides such as Dodine, Captan, sulphur, copper, and
Benzimidazole fungicides played a crucial role in apple scab control. However, fungicide
resistance gradually emerged over time, restricting their effectiveness in managing apple
scab [57,59]. Consequently, single-site fungicides targeting mitochondrial respiration or
ergosterol biosynthesis, including quinone outside inhibitors (QoIs), sterol demethylation
inhibiting fungicides (DMIs), and the newer generation II of Succinate dehydrogenase
inhibitors (SDHIs), emerged as viable alternatives for the control of this pathogen [55,60].
Nevertheless, the specific modes of action of these single-site fungicides pose a significant
risk for resistance development [60,61]. The mechanism underlying DMI fungicide resis-
tance in V. inaequalis involves the overexpression of the CYP51A1 gene, along with efflux
mechanisms and point mutations [62,63]. Resistance to DMI fungicides has been reported
globally [59,60,64–66]. Resistance to QoIs in V. inaequalis is primarily attributed to a target
site mutation in the cytochrome b (cyt b) gene, known as G143A [57,67–69]. SDHI resistance
in V. inaequalis, detected shortly after market introduction, was primarily observed in trial
sites and associated with specific target site mutations (B-T258I, C-N85S, and C-H151R).
Notably, resistance to SDHI fungicides in V. inaequalis was observed as individual cases
and did not show an increase in frequency [57]. Nevertheless, it is important to note that
the high intrinsic activity and target specificity of SDHI fungicides significantly raise the
risk of resistance development, particularly as newer SDHI fungicides are increasingly
relied upon, leading to a reduction in available alternatives for diversifying the chemical
fungicide options [61].

2.6. Biological Control

Biological control is gaining increasing attention as an alternative means for plant
disease management [76]. The availability of diverse products with different modes of
action will play a crucial role in scab control and help mitigate the risk of over-reliance on
individual products or synthetic fungicides. There is an urgent need to develop alternative
products, specifically by exploring biocontrol options and by making multiple biocontrol
products available that target distinct stages of the pathogen life cycle [8].
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Table 2. Some common fungicides used to manage apple scab and their modes of action.

Fungicides Group Chemical Name Mode of Action References

Anilinopyrimidine Cyprodinil,
Pyrimethanil

Inhibiting protein
synthesis [70]

Demethylation
inhibitors (DMIs)

Imidazoles:
triflumizole
Triazoles: bitertanol,
difenoconazole,
fenbuconazole,
flusilazole,
hexaconazole,
myclobutanil,
propiconazole,
tebuconazole

Inhibit sterol
biosynthesis of fungal
membranes by
binding Cyp51 gene

[6,71–73]

Dithiocarbamates
Mancozeb, maneb,
metiram, propineb,
ziram, zineb, maneb

Multi-site inhibitors
inhibit fungal growth
by disrupting
metabolic processes
through the release of
ethylene-bis-
isothiocyanate
sulphide (EBIS)

[6,71,74]

Methyl
benzimidazole
carbamate (MBC)

Benomyl,
carbendazim,
thiophanate-methyl

Prevents mitosis and
cell division in fungi
via binding to the
β-tubulin gene

[72]

Phenylpyrrole Fludioxonil
Interferes with the
osmolarity glycerol
pathway

[70]

Multi-site contact
activity:
Chloronitriles
Guanidines
Phthalimides
Quinones
Inorganic

Chlorothalonil
Dodine
Captan
Dithianon
Copper salts and
sulphur

Multi-site activity
Cell membrane
disruption
Multi-site inhibitors
with activity against
thiol groups in
proteins and peptides
Active against thiol
groups in proteins
and peptides.
Multi-site activity

[6,71]
[70,71]
[70,71]
[70,71]
[6,71]

SDHIs

Boscalid, fluopyram,
fluxapyroxad,
inpyrfluxam and
pydiflumetofen

Inhibit fungal
respiration by
binding to the
succinate
dehydrogenase (SDH)
complex in the
mitochondrial
electron transport
chain

[70,75]

Quinone outside
inhibitors (QoIs)

Methoxyacrylates:
azoxystrobin
Oximino acetates:
trifloxystrobin,
kresoxim-methyl
Methoxycarbamates:
pyraclostrobin

Inhibit mitochondrial
respiration by
binding to the
quinone oxidizing site
(QoI site) of the
cytochrome bc1
enzyme complex

[71,72]
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3. Insight into Integration of Biocontrol in Apple Scab Management

The biological control of plant pathogens involves inhibiting the diseases or their
causative pathogens using living organisms or their specialized metabolites [76,77]. This
encompasses both living and non-living agents, offering environmentally friendly and
specific disease management [77]. Basically, biocontrol involves tipping the ecological
balance in favour of the introduced agent to hinder pathogen development [3]. By utilizing
natural antagonists like bacteria or fungi, biological control serves as an eco-friendly
alternative to synthetic fungicides, potentially posing fewer environmental risks.

Integrating biological control agents (BCAs) and their by-products into scab disease
management represents a transformative approach in sustainable agriculture [58]. Despite
the potential benefits, there has been limited adoption of biocontrol methods for managing
apple scab [78]. While BCAs and their products are often compared to fungicides, such
fundamental comparisons are unjustified due to the living nature of BCAs and their gradual
pathogen-suppressive effects [79]. Numerous studies have revealed that applying BCAs
to a crop can achieve disease control levels comparable to or nearly equivalent to those
achieved by fungicides [78,80]. Instead of replacing fungicides, it is more appropriate to
consider BCAs as a central component of an integrated pest management program [79]. By
BCAs-integration with other management approaches, their impact in agriculture can be
significantly enhanced [48].

The first approach commonly employed for identifying novel BCAs against V. in-
aequalis involves screening several microbial libraries from the environment that might
exhibit antagonistic potential against the pathogen [76]. Subsequently, the selection process
may identify microorganisms capable of inhibiting V. inaequalis through in vitro studies.
Once potential antagonists are identified, understanding the conditions influencing their
inhibitory effects becomes crucial, ensuring their effectiveness across diverse environmental
conditions [81].

In the initial screening for potential antagonists, in vitro studies are preferred over
in vivo studies due to logistical and cost constraints [3]. The advantage of the in vitro
approach lies in its ability to efficiently screen a large and diverse collection of strains for
their antimicrobial or mycoparasitic activities [76]. This makes in vitro experiments a more
manageable method for screening potential BCA candidates [3]. However, as noted by
Collinge et al. [76], in vitro screening has limitations and can be misleading, with results
not precisely indicating an efficacy on plant level. Notably, Fiss et al. [82] discovered
significant antagonistic activity in a yeast strain (H25) against the apple scab pathogen in
seedling assays, despite weak initial inhibitory effects in basic in vitro screenings. While
the in vivo approach is a compromise, it offers a more realistic assessment under simulated
field conditions, enabling a reasonable level of throughput and improved selection of
promising BCA candidates [76]. In general, a comprehensive approach that combines both
in vitro and in vivo methods might provide a more robust evaluation of BCAs against V.
inaequalis [83]. This dual strategy leverages the advantages of high-throughput screening
in vitro while ensuring selected candidates undergo realistic assessments in simulated field
conditions [76,83].

Establishing a reliable and standardized method for assessing BCAs that considers
specific stages in the pathogen’s life cycle is essential for evaluating their impact on the
scab pathogen. Most screening tests directed at traditional criteria like leaf rheology [84,85]
and inhibition of mycelium and conidia production [78] have been considered unreliable
or impractical [3]. Philion [3] argued that screening techniques targeted at the vegetative
phase of V. inaequalis are useless because tests concentrated on mycelium inhibition may
not conclusively demonstrate efficiency in inhibiting pseudothecia formation. The key
criterion suggested for BCAs’ selection is the in vitro inhibition of ascospore production [3].
By focusing on the in vitro inhibition of ascospore production, potential antagonistic agents
that have the capability to suppress or reduce the formation and release of ascospores
by the pathogen have been evaluated [3,16,86,87]. This ascospore inhibition is essential
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for disrupting the pathogen’s reproductive cycle and reducing its overall population size,
ultimately leading to decreased disease severity [3].

Antagonists can alleviate pathogen development through multiple key mechanisms in-
cluding niche or nutrient competition, parasitism, and antibiosis [58,77]. These mechanisms
can act independently or synergistically [58]. While considerable efforts have been dedi-
cated to elucidating the biological activity exhibited by beneficial microorganisms against
plant pathogens, recent findings suggest that a synergistic interplay of various molecules,
such as hydrolytic enzymes and antibiotics, contributes to their effectiveness [58,80,88–90].
Recognizing the crosstalk between potential antagonists and fungal pathogens highlights
the potential for a more informed and rational application of these agents in agriculture [58].

BCAs demonstrate versatile effectiveness in managing plant diseases, both pre- and
post-harvest [7]. Particularly, in apple scab control, BCAs strategically applied after harvest
and before leaf fall influence the overwintering phase and subsequent pathogen devel-
opment [91,92]. This tailored approach not only contributes to a comprehensive disease
management paradigm throughout the orchard’s life cycle but also highlights the remark-
able adaptability of BCAs to various crop growth stages [91].

The history of apple scab biocontrol stretches back to several decades, with key contri-
butions from pioneers like Cinq-Mars [93] and Ross [94] who explored microbial control
strategies. Cinq-Mars focused on antagonists and culture filtrates, highlighting antibiosis
and competition against V. inaequalis. Ross expanded these efforts, introducing microbial
antagonism against pseudothecial development. Subsequent studies have highlighted the
importance of using beneficial antagonists to reduce the overwintering pseudothecia in
apple scab control strategies [86,95,96]. Heye [84] identified Athelia bombacina Pers. as an
effective basidiomycete inhibiting pseudothecia formation. These approaches are preven-
tive and can be seamlessly incorporated into existing management schemes. Nonetheless,
integrating all or some of these methods is more intricate than the straightforward use
of fungicides.

The effectiveness of BCAs is intricately tied to specific environmental conditions and
the unique characteristics of the antagonist [97]. Different agents and target pathogens have
unique preferences and dynamics, necessitating the consideration of specific conditions. For
instance, Carisse and Bernier [1] indicate that for the optimal efficacy of Microsphaeropsis iso-
lates as biocontrol agents, certain conditions such as temperatures between 20 and 25 ◦C, pH
around 4, and a minimum of 8 h of light are favourable. In contrast, Ouimet et al.’s [81] study
on Ophiostoma sp. demonstrated a high inhibitory effect on V. inaequalis (100%), and this an-
tagonist remains effective regardless of temperature (5–25 ◦C) and pH variations (5–7), adapts
to different carbon sources, and is not hindered by light. Therefore, it is essential to consider
the specific characteristics of the BCAs and their favourable environmental conditions.

4. BCAs as Sustainable Alternatives

In recent years, there has been a significant increase in the interest in the biological
control of plant pathogens [89]. This can be attributed, partially, to public concerns about
the use of potentially hazardous chemical plant protection agents (PPAs) [98]. Additionally,
biological control is increasingly seen as a viable approach for managing diseases that
cannot be fully or adequately controlled by other means [76]. The primary objective of
biocontrol is to offer supplementary tools for disease management, featuring modes of
action distinct from conventional chemical PPAs [99]. Moreover, the likelihood of farmers
adopting new products is higher when these products can be easily incorporated into
existing production systems with minimal disruption [100]. By incorporating BCAs into an
integrated pest management program, including sanitation, host resistance and reduced
fungicide rates, the efficient utilization of available resources can be ensured. This approach
not only results in safer production practices, but also maximizes the effectiveness of
disease management [101].

Microbial-based biopesticides stand out as prime candidates to replace or complement
synthetic PPAs, contributing to the promotion of sustainable agri-food production [89,102].
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However, the availability of microbial biofungicides remains limited in comparison to
conventional chemical synthetic fungicides [89]. A few biofungicides that have obtained
official registration globally are primarily marketed for specific niches, notably high-value
crops where there is a demand for PPA-free products [4]. These biofungicides typically
comprise a single strain of an antagonist, limiting their effectiveness to a narrow range
of diseases and limiting their broader application [4]. Considerable efforts have been
made to manage apple scab using microbial biocontrol agents [103–105]. However, despite
numerous reports in the literature, there are, so far, no commercially available BCAs
specifically designed to control apple scab [17,20,106].

5. Biological Control Using Fungi, Yeasts, and Bacteria against V. inaequalis

A diverse range of fungal isolates, yeasts, and bacteria exhibit activity against both
the biotrophic and saprophytic phases of V. inaequalis. Notably, Athelia bombacina [95],
Cladosporium spp. [103], Chaetomium globosum [107], Coniothyrium sp. [86], Ophiostoma
sp. [78], Microsphaeropsis sp. [108], Aureobasidium pullulans [109], Trichoderma and Strepto-
myces spp. [34], Bacillus subtilis [110], and Pseudomonas syringae [111] have been identified. In
Table 3, we compile a summary of various BCAs and their application in scab management
over the past two decades. Some of these agents, such as P. syringae, have demonstrated
complete inhibition of V. inaqualis conidial germination in vitro. The observed effects were
comparable to those obtained using Captan [111].

A holistic strategy for managing apple scab involves applying a BCA in autumn to
disrupt the overwintering structures of the pathogen (i.e., pseudothecia formation) [7].
Several reports demonstrated that lower ascospore numbers were correlated with reduced
disease severity in the subsequent spring [7]. This strategy has been comprehensively stud-
ied [7,16,93,94,108,112]. Additionally, certain fungal members, such as A. bombacina and
Coniothyrium sp., contribute to leaf decomposition and, thus, interfere with pseudothecia de-
velopment. These fungi accelerate the breakdown of senescent leaves while also exhibiting
antifungal properties [3,112–114]. On the other hand, extensive research has been con-
ducted on the disease management of summer epidemics, driven by conidia produced by
the biotrophic mycelia that develop underneath the cuticle of apple leaves [38,82,103,105].

Recently, Caffier et al. [115] explored the potential of using hybridization and host
adaptation to limit the impact of V. inaequalis on apple trees. V. inaequalis also causes scab
disease in other Rosaceae hosts such as Pyracantha and Loquat [115,116]. These authors
tested field isolates from different hosts and the progenies resulting from crosses between
isolates from Pyracantha and apple for pathogenicity. The results revealed a strict host
specificity between apple and Pyracantha isolates, with most causing disease on Loquat.
Progeny resulting from crosses between V. inaequalis f.sp. pyracantha and V. inaequalis f.sp.
pomi were unable to infect apple. The study suggests a potential biocontrol strategy, similar
to sterile insect approaches, involving the introduction of Pyracantha isolates to reduce
V. inaequalis populations in apple orchards without the use of chemicals. This strategy
entails introducing Pyracantha isolates in autumn to produce hybrid ascospores incapable
of causing apple disease in spring, with the aim of reducing the primary inoculum in
apple-producing regions. However, experimental evaluation in orchards is necessary, along
with an assessment of the risk posed by hybrids that may be pathogenic to apple or other
Rosaceae hosts.
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Table 3. Summary of notable antagonists and their usage in apple scab management.

BCA Targeted Structure Application Type Assay Mode of Action Application Time Efficacy Reference

Athelia bombacina Ascospore Mycelial suspension In vivo; applied on shredded scabbed
leaves - Autumn Reduced ascospore

production up to 82% [117]

Aureobasidium
microstictum Mycelim - In vitro—Cellophane

membrane-based method Antibiosis (VOC) - Suppressed V. inaequalis
growth completely [41]

Bacillus sp. Conidia Cell-free supernatant Detached leaf assay
in vitro; Agar plate test Antibiosis - Growth inhibition up to

81% [17]

Botrytis cinerea Mycelia and conidia Agar plugs and
mycelial suspension

In vitro, agar plate - -
Inhibited mycelial
growth up to 86%; [109]

Seedlings inoculation Reduced disease
severity

Chaetomium globosum Ascospore Invert emulsion In vivo; foliar spray on senescent
leaves - Spring Inhibited ascospore

production up to 79% [112]

C. globosum Mycelia Mycelial suspension
In vitro; cellophane membrane-based
method Antibiosis -

Completely inhibited V.
inaequalis growth; [41]

In vivo; seedlings inoculation Reduced disease
severity

Cladosporium sp. Conidia Conidial suspension In vivo; foliar spray, field trial - Spring and summer Reduced disease
severity up to 74% [105]

Cladosporium sp.
(I PK 14)

Mycelia Agar plugs In vitro; agar plate test, -
Inhibited mycelial
growth up to 93%; [109]

Spore suspension Seedlings inoculation Reduced scab severity

Coniochaeta endophytica Conidia Conidial suspension In vivo; seedlings inoculation - - Complete control of
apple scab disease [41]

Gliocladium sp. Storage scab Conidial suspension In vivo; on orchards fruits - Late summer
(harvest) Controlled storage scab [118]

Microsphaeropsis ochracea Ascospore Mycelial suspension

In planta; leaf discs and whole infected
leaf
In vivo; foliar leaf sprayed on tree
canopy and ground

- Autumn Reduced ascospore
production by 84% [108]

Pantoea sp. Mycelia Cell suspension In vivo, agar plate - - Inhibited mycelial
growth [119]
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Table 3. Cont.

BCA Targeted Structure Application Type Assay Mode of Action Application Time Efficacy Reference

Pseudomonas spp. Conidia Cell-free supernatants In vivo; agar plate test
Antibiosis -

Percentage growth
inhibition up to 96%; [17]

In planta; detached leaf assay Reduced disease
incidence and severity

Sporidiobolus spp. Mycelia 1.5 × 107 yeasts
suspension per ml

In planta; seedling inoculation Lysis Spring
Complete suppression
in planta; [82]

In vivo; foliar sprayed on field Scab reduction up to
81%

Trichoderma harzianum
Conidia Conidial suspension In vivo; foliar and soil application - - Reduced scab disease

incidence; [120]

Conidia Conidial suspension In vivo; on orchards fruits Late summer
(harvest)

Effective up to 30 days
against storage scab [118]

Trichodrma
longibrachiatum Ascospore Invert emulsion In vivo; foliar sprayed on senescent

leaves - Spring Inhibited ascospore
production by 66% [112]

Trichoderma viride Conidia Mycelial suspension In planta; seedling inoculation
In vivo; foliar spray Mycopar-asitism Spring

Prevented disease
progression from
80–95%.

[34]
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6. Modes of Action of BCAs against V. inaequalis

BCAs and plant pathogens can engage in various interactions, employing diverse
mechanisms of action. These mechanisms can be broadly categorized into direct antago-
nism against the pathogen, including parasitism, antibiosis, and competition; and indirect
biocontrol activities, such as the induction of systemic resistance and promotion of plant
growth [77,89]. In many instances, the effective control of disease by BCAs is attributed to
their utilization of multiple mechanisms. For instance, T. harzianum has been demonstrated
to suppress various plant pathogens by employing a combination of mechanisms including
antibiosis, cell wall degrading enzymes, and the induction of host resistance [77,121]. The
viability of biological control for disease reduction relies on understanding its mechanisms.
This knowledge is crucial for creating conditions supporting treatment efficacy. Identify-
ing how biocontrol agents suppress a pathogen helps anticipate resistance and prevent
interference from other ecosystem components [88].

6.1. Indirect Biocontrol Activities against V. inaequalis

A commonly observed mechanism associated with the protection of plants by BCAs
involves the induction of host defence pathways [80]. Two main types of induced resistance
exist: systemic acquired resistance (SAR), activated by pathogen infection and requiring
salicylic acid, and induced systemic resistance (ISR), triggered by beneficial microorgan-
isms [122]. This mechanism stems from BCAs releasing elicitors, such as proteins, antibiotics,
and volatiles, ultimately leading to the activation of genes in the salicylic acid pathway or the
jasmonic acid/ethylene pathway [80]. Bolar et al. [123] integrated genes encoding antifungal
proteins, endochitinase, or exochitinase from the biocontrol fungus T. atroviride into ‘Marshall
McIntosh’ apple plants. The resulting plants were evaluated for resistance to V. inaequalis.
The study found that disease resistance correlated with the expression level of each enzyme
when expressed individually, with endochitinase proving more effective than exochitinase.
The persistent expression of fungal chitinases in apple lines was associated with enhanced
resistance against V. inaequalis. Particularly, a significant positive correlation was observed
between the level of endochitinase expression and scab resistance.

On the other hand, various other compounds have been investigated as defence
elicitors to enhance disease management and resistance against apple scab (Table 4) [38]
including chitosan [124] and fructans [38]. Plant defence inducers, including harpins,
and salicylic acid derivatives demonstrated efficacy against V. inequalis under field con-
ditions [125,126]. While these inducers showed a reduction in leaf and fruit scab when
applied at different growth stages, their efficacy was markedly enhanced when used in
combination with fungicides (Boscalid + Pyraclostrobin). In addition, Rusevski et al. [54]
explored the biofungicidal potential of Vacciplant, a biofungicide containing laminarin
as its active ingredient, for the biological control of apple scab. Laminarin, derived from
brown seaweed, is a polysaccharide recognized for its antifungal and defence-inducing
properties [126]. The study revealed comparable efficacy to the standard fungicide Captan,
showing promising results in decreasing infection levels on the leaves and fruits of two
apple varieties.

6.2. Direct Biocontrol Activities against V. inaequalis
6.2.1. Competition

Competition in the context of biological control refers to niche overlap, where two or
more microbial populations simultaneously demand the same resources [127]. Competition
is a widely utilized mechanism in biocontrol. It manifests in various ways, including reduc-
ing inoculum potential through nutrient competition, increasing saprotrophic competition
during substrate colonization, and decreasing the actual pathogen density during survival
or growth phases [127].
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Table 4. Commercially available biopesticides and their actions against apple scab.

Biopesticide Commercial
Name Group/a.i. * Efficacy Defence Inducer Targeted

Propagule Application Type Country Ref.

Chitosan ARMOUR-Zen 15 Polysaccharide Low efficacy - Ascospore Foliar spray Botry-Zen Ltd. (Dunedin,
New Zealand) [124]

Chitosan - Polysaccharide Active on leaf scab Inducer Conidia Foliar spray Viresco Ltd., (Thirsk, UK) [125]

Fructans (Levans) -
Fructose-based
oligo- and
polysaccharide

Active Inducer Mycelial growth Foliar spray - [38]

Harpin protein Messenger® Harpin αβ protein Active on leaf and
fruit scab Inducer Conidia Foliar spray Plant Health Care,

(Manchester, England [125]

Laminarin Vacciplant® oligosaccharide Active Inducer Conidia Foliar spray - [54]

Salicylic acid Rigel-G Salicylic acid Active on leaf and
fruit scab Inducer Conidia Foliar spray Orion, Future Tech.,

(Colchester, England) [125]

Serenade ASO - B. subtilis QST 713 Active on scab - Conidia and
ascospore Foliar spray Bayer AG (Leverkusen,

Germany) [124]

SERENADE
Garden B. subtilis QST 713 Active on scab - Scab Foliar spray AgraQuest, Inc., (British

Columbia, Canada) [6]

* a.i. = Active ingredient.
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BCAs utilize strategies like sequestering iron through the production of iron-binding
siderophores, aiming to reduce the availability of iron to other organisms [80]. This is partic-
ularly significant in the context of the effectiveness of biological control against pathogenic
fungi, as these fungi heavily rely on iron (Fe3+) for their growth and virulence [128]. In their
study, Miliute et al. [119] found that sterile culture filtrates from Pantoea species inhibited
the growth of V. inaequalis and produced siderophores. They attributed the inhibition of
V. inaequalis mycelial growth to these biochemical traits. Padder et al. [17] also attributed
the mechanism of induced iron starvation as one of the possible reasons for the antifungal
behaviour of Bacillus and Pseudomonas sp. against V. inaequalis. They also observed that
iron chelation through this mechanism does not impact plant development, as plants can
grow at significantly lower iron levels than the invading pathogenic microflora. While
competition for nutrients and space plays a major role in biocontrol, appropriate methods
are lacking to separate these two mechanisms of action [127].

6.2.2. Mycoparasitism

Mycoparasitism involves a series of steps in microbial interaction, including close con-
tact with the pathogen, mutual recognition, the release of lytic enzymes, penetration, and
active development inside the host [128]. Through mechanisms like haustoria formation
or invading the pathogen’s mycelium, mycoparasites absorb nutrients from the host for
their survival and growth [106]. While mycoparasites weaken the host gradually, they do
not completely eradicate it. Applying mycoparasites when the pathogen is first detected is
crucial, as these biocontrol agents depend on a host for their survival [106].

Compared to synthetic chemical fungicides, mycoparasites exhibit a slower onset of
action and require sufficient time to colonize and eliminate the pathogen. Consequently,
when rapid action is imperative, biofungicides employing direct antibiosis should be
prioritized [106].

Benyagoub et al. [58] offer valuable insights into the cellular mechanisms of my-
coparasitism, specifically focusing on the interactions between the antagonistic fungus
Microsphaeropsis sp. and the apple pathogen V. inaequalis. Through ultrastructural and
cytochemical analyses, they showed a sequence of events in the mycoparasitic process,
including attachment, penetration, fungal host structural response, and active multipli-
cation of the mycoparasite. The antagonist, Microsphaeropsis sp., penetrated V. inaequalis
hyphae by disrupting the osmiophilic coating layer. This disruption likely caused signifi-
cant metabolic changes, exposing the underlying wall layers to mechanical pressure and
potential enzymatic attack.

6.2.3. Antibiosis

Antibiosis stands out as the most extensively studied mechanism, as it provides a
direct means for evaluating candidates based on their inhibitory activity [78]. Antibio-
sis is specifically characterized by the secretion of volatile and/or non-volatile products
that inhibit or restrict the growth of the target pathogen [81]. It constitutes a chemically
diverse group of organic, low-molecular-weight compounds synthesized by microorgan-
isms [90]. Over the past decades, a multitude of studies has unequivocally shown that
various metabolites, including antibiotics, enzymes, proteins, and volatiles produced by
antagonistic bacteria and fungi, play crucial roles in controlling a wide array of plant
pathogens [90]. The identification of specific secondary metabolites considered potential
biological control agents against V. inaequalis has roots dating back several decades.

Early research led by Cinq-Mars [93] involved isolating microorganisms from apple
leaves. Among these, Penicillium species, especially, demonstrated the production of an-
tibiotics inhibiting V. inaequalis mycelial growth. In 1953, Ross [94] isolated 13 saprophytic
fungi from apple leaf litter. These fungi were found to produce antibiotic substances in
liquid culture, leading to complete or partial inhibition of V. inaequalis mycelial growth.
Notably, only Oospora lactis and Penicillium species exhibited the secretion of toxic metabo-
lites with activity against the pathogen. However, their fungitoxic effects were found to
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be lower than that of the organo-mercurial fungicide (‘Tag’) used for comparison. Later,
Simard et al. [129] evaluated some fungal isolates for their antibiotic properties against V.
inaequalis. Among the organisms isolated from apple leaf litter, 34 were identified to impede
the germination of conidia, as determined by the sprayed-plate test. Remarkably, twelve of
these isolates belonged to the genus Penicillium, consistent with the findings previously
reported by Cinq-Mars [93]. In 1984, Cullen and Andrews [130] investigated the potential of
Chaetomium globosum and Athelia bombacina for apple scab control, revealing that C. globosum
produced essential antibiotics. Antibiotic production varied among C. globosum strains,
with higher levels positively correlating with increased antagonism against V. inaequalis
on seedlings. Chetomin, tentatively identified in culture extracts, was observed using
thin-layer chromatography and ultraviolet absorbance. In 1997, Ouimet et al. [78] identified
Aureobasidium sp., Phoma sp., and Ophiostoma sp. as strong inhibitors, suppressing over
80% of V. inaequalis mycelial growth. Meanwhile, Ophiostoma sp. exhibited a prolonged
inhibitory effect lasting beyond 58 days. However, the impact of metabolites released by the
fungi results in an inhibitory effect of less than 5%. Recently, Padder et al. [17] isolated and
characterized bacterial endophytes with antifungal properties from apple germplasm. They
reported a 100% suppression of scab disease using bacterial cell-free supernatants. The
observed impact on disease severity and incidence at all concentrations was linked to the
presence of antimicrobial compounds, including but not limited to phenazines, ammonia,
pyrrolnitrin, hydrocyanic acid, and pyoluterorin. In their study, Ebrahimi et al. [41]. inves-
tigated the antifungal properties of various endophytic fungi against V. inaequalis in vitro.
The study aimed to determine the release of metabolites from Aureobasidium sp. and C.
globosum. Notably, the volatile organic compounds produced by specific isolates, including
A. microstictum 7F2 and C. globosum 2S1, along with others, were found to completely
prevent the mycelial growth of V. inaequalis.

Desmyttere et al. [131] conducted a comprehensive investigation into the antifungal
properties of B. subtilis lipopeptides against V. inaequalis. Fengycin displayed potent an-
tifungal activity comparable to the chemical fungicide tebuconazole, particularly against
sensitive strains. Surfactin and mycosubtilin, either alone or in combinations, displayed
varying effectiveness. In a similar study, Leconte et al. [110] explored the efficacy of B.
subtilis lipopeptides in combating apple scab. Their in vitro tests on three lipopeptide
families and their mixtures revealed varying levels of antagonistic activity against V. inae-
qualis. Notably, Fengycin exhibited significant inhibition among the three. Orchards trials
revealed a reduction in scab incidence by 70%, with the mycosubtilin/surfactin mixture
demonstrating better reproducibility. Combining these potent antifungal molecules in
orchard treatments against V. inaequalis is likely to result in a synergistic effect against the
pathogen [110].

Considering chitin as a main component of fungal cell wall, several studies have partic-
ularly focused on identifying antagonistic BCAs with chitinolytic properties [123,132–135].
This interest has led to the exploration of diverse chitinolytic microorganisms as poten-
tial biological control agents effective against various fungal plant pathogens [90,119,123].
Taking a genetic approach, Bolar et al. [132] sought to enhance apple resistance against
apple scab by introducing genes from Trichoderma harzianum encoding endochitinase and
exochitinase. The simultaneous expression of these enzymes resulted in a synergistic re-
duction in disease severity, with minimal effects on plant vigour. Later, Miliute et al. [119]
extended the exploration by identifying chitinase-producing endophytes from apple plants,
specifically Pantoea species and the Pseudomonas fluorescens group. These endophytes exhib-
ited the ability to inhibit the mycelial growth of V. inaequalis. Three isolates of Pantoea spp.
demonstrated inhibitory effects, with one exhibiting additional trait, including siderophore
production and hydrogen cyanide generation.

Chitosan, a deacetylated derivative of chitin, has emerged as a particularly promising
compound due to its well-documented antifungal activity [124,125,136,137]. The potential
synergies resulting from combining chitosan with BCAs was investigated by DeGenring
et al. [124]. They found that chitosan, when applied pre-harvest, reduced the incidence and
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severity of apple scab, sooty blotch, flyspeck, and rust. The combination of chitosan with a
biopesticide was even more effective in disease suppression.

In line with the ongoing efforts to advance scab management strategies, Hossain et al. [138]
explored the inhibitory potentials of proteins from P. fluorescens Bk3. Their research revealed
substantial inhibition in bacterial cell suspension (73%) and extracellular proteins (100%).
Key proteins, such as solute-binding protein, alkaline metalloprotease, and peptidoglycan-
associated lipoprotein, exhibited inhibitory effects ranging from 20% to 42%.

7. Biological Control of Apple Scab Using Botanicals

Plant extracts offer promising alternatives for pest and pathogen control [139,140].
They have long been utilized as natural pesticides due to their cost-effectiveness, ease of
preparation, and eco-friendly properties with no resistance risks [141]. Plant extracts
contain low-molecular-weight secondary metabolites, produced in response to stress,
that serve as potential alternatives for controlling apple scab without harm to non-target
organisms [139,142]. Various promising plant extracts have demonstrated effective control
against apple scab (Table 5). Bengtsson et al. [140] investigated the impact of Yucca schidigera
extract in controlling V. inaequalis, comparing it with the chemical resistance inducer
acibenzolar-S-methyl (ASM). Yucca extract and ASM significantly reduced apple scab
symptoms and sporulation in seedling assays, exhibiting similar control efficacy to sulphur.
Yucca extract and sulphur inhibited conidial germination in vitro, while ASM did not.
Yucca extract inhibited conidial germination by 98% to 100%, sulphur exhibited inhibition
ranging from 72% to 97%, and ASM showed inhibition of 5% to 25%. Yucca extract
primarily acted fungitoxically, inhibiting pre-penetration and penetration, while ASM
hindered the subsequent infection stages. Gene expression studies on apple seedlings
suggested that Yucca extract may influence plant defence, with the upregulation of PR1
and PR8 genes resembling levels observed after ASM treatment. Additionally, essential
oils like those from Thymus vulgaris and other extracts are well-suited for addressing
plant pathogen control, including apple scab, owing to their antimicrobial and antifungal
properties [143,144]. However, the effectiveness of extracts and essential oils may vary
under different circumstances, especially in field conditions. Therefore, a well-developed
formulation is crucial to maintaining consistency and ensuring reliable performance during
field trials [144,145].
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Table 5. Some botanicals and their actions against apple scab.

Plant Extracts Source Solvent Targeted Propagule Assay Type Efficacy Active Components Ref.

Artemisia, Mentha and Thyme
extracts

Artemisia annua
Hexane Ascospore

In vitro; ascospore
infected floral buds
in petri dishes

Reduced the ascosporic
inocula between 85 and
90% at 6% conc.

Artemisinin
[146]Mentha piperita Menthol

Thymus vulgaris Thymol

Essential oils of Thyme and
Cinnamon

T. vulgaris - Conidia In vivo;
field trial

Reduced disease severity Thymol [143]Cinnamonum verum -

Hop cone and leaf extract Hop plant Hydro-
ethanolic dichloromethane Conidia

In vitro; laboratory
study, liquid
medium

Significant activity
against two strains with
IC50 of 1.6 and
5.1 mg L−1

Xanthohumol [147]

Juncus effusus extract Medulla of J. effusus Ethyl acetate Conidia
In planta;
greenhouse and
growth chambers

95% disease control at
500 µg mL−1

Dihydrophena-
nthrene
dehydroeffuso

[145]

Magnolia officinalis bark extract M. officinalis Ethyl acetate Conidia Seedling assay 97% efficacy at 1 mg
extract mL−1

Honokiol and
Magnolol [148]

Morinda royoc crude extract Morinda royoc roots Ethanol Conidia In vitro;
Agar plate test

Complete inhibition of
conidial growth at 4.8 to
0.3 mg mL−1

- [149]

Morus root bark Morus sp. Methanol Conidia

In vitro;
glass slide and
microscopy
detached leaf assay

100% germination
inhibition at 300 µg/mL.
Antifungal efficacy of
98% at 10.0 mg/mL

Diels-Alder adducts [142]

Populin Black popular buds Hexane Conidia
In vitro;
agar plate test

Slow down conidia
growth Populin [139]

In vivo;
foliar spray Reduced scab severity

Saponin Fruit pericarp of
Sapindus mukorosis

Aqueous extract and
chloroform-methanol Conidia

In vitro;
greenhouse and field
trials

Reduced sporulation by
43% seedlings symptom
reduction up to 99%

Sapindoside B [150]

Yucca schidigera extract Y. schidigera
(Norponin® BS Liquid)

- Conidia
In vitro; glass slide
and microscopy No conidia germinated Saponin [140]
In planta; seedling
assay

significantly reduced
apple scab
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8. Risks and Challenges of Utilizing BCAs in Apple Scab Management

Introducing new microorganisms to leaf and fruit surfaces, while common, presents
potential risks and both positive and negative outcomes [97]. The complex interactions be-
tween these introduced microorganisms and the existing balance in the plant environment
need careful consideration due to the potential for unexpected effects [151,152].

Concerns arise from the potential misidentification of microorganisms during screen-
ing processes, leading to the inadvertent selection of harmful strains, including those
that may pose threats to both plants and humans [77]. In the context of commercial-
ization, screening for BCAs presents a substantial challenge, as it involves identifying
organisms suitable for commercial development while ensuring the exclusion of potential
pathogens [3]. Instances of initially identified BCAs turning out to be possible human
pathogens highlight the need for accurate identification to mitigate risks [77]. Trichothecium
roseum Link. have demonstrated pathogenic traits under certain conditions, affecting both
apple orchards and other plant species [3]. Effectively navigating this challenge is crucial
for ensuring that selected BCAs not only prove effective in pest management but also pose
minimal risks to agriculture, the environment, and human health when deployed on a
commercial scale [76,77]. The integration of genomic sequencing has emerged as a possible
solution [77], enhancing the identification process and thereby minimizing the potential
hazards associated with introducing new microorganisms into diverse ecosystems.

Another associated risk with BCAs is the production of harmful metabolites or my-
cotoxins [3,76]. A case in point is the ascomycete C. globosum, which initially showed
promise in effectively controlling V. inaequalis within the phyllosphere. However, despite its
efficacy, the production of toxins including chaetomin led to its eventual abandonment as a
commercially viable BCA [76,130,153]. This case highlights the delicate balance required
in selecting BCAs, emphasizing the necessity of a thorough evaluation not only for their
efficacy in pest control but also for their potential to produce harmful substances that
could have adverse consequences on both the target species and the surrounding environ-
ment [76]. This risk calls for a comprehensive understanding of the metabolic pathways
and secondary metabolite profiles of potential BCAs to ensure their safety and effectiveness
in practical applications.

Furthermore, establishing a reliable method for assessing BCAs, particularly in the
context of apple scab, is complicated by difficulties in the in vitro production of fungal
asexual and sexual structures (e.g., conidia or pseudothecia) [3]. The difficulty in repli-
cating these structures outside their natural environment hampers the precision of BCA
evaluations. In response to this challenge, alternative parameters, with mycelium being one
such focus, have been explored [3]. However, relying on mycelium alone in evaluating the
efficacy may potentially lead to misleading conclusions [3]. This emphasizes the continual
need to refine and diversify evaluation methods for a comprehensive understanding of
BCAs’ efficacy and potential against V. inaequalis.

The effectiveness of specific BCAs against plant pathogens can be influenced by
various factors, including environmental conditions, the timing of treatment, the season of
application, the nature or method of treatment, and the frequency of application [1,81,154].
BCAs in orchards encounter challenges in colonizing apple leaves under cold conditions,
adapting to industrial production and employing multiple modes of action against V.
inaequalis [1,2]. The efficacy of BCAs during colder periods, particularly in the autumn,
represents a substantial hurdle, demanding the development of strategies to enhance their
effectiveness under these challenging conditions [3,7]. In colder climates characterized
by harsh winter conditions, the conidia and mycelia of V. inaequalis cannot withstand the
low temperatures and freezing [155–157]. Consequently, V. inaequalis overwinters within
scabbed leaves as pseudothecia [155]. The ability of BCAs to establish a robust presence on
apple leaves in cold climates is crucial for their success in scab management, necessitating
innovative approaches to address these specific environmental challenges [158].

On the other hand, biological products encounter challenges in achieving widespread
adoption due to inconsistencies in their performance observed in both in vitro and in vivo
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assays [159]. Ouimet et al. [78] explored the effect of fungal antagonists on the in vitro
inhibition of mycelial growth of V. inaequalis and found that Ophiostoma sp. emerged as a
potent inhibitor and completely prevented mycelial growth across various environmental
conditions, including temperature, pH, and light variations. The same BCA reduced
ascospores production up to 88.7% in a single trial [86]. However, subsequent trials
conducted by Carisse et al. [108] presented a contrasting outcome. Despite the recorded
successes of the inhibitory potential of this antagonist, the Ophiostoma sp. isolate showed
a notable failure to inhibit ascospore production. Across all tests, the average ascospore
inhibition was merely 8.2%. Additionally, the slow commercial adoption of BCAs for plant
disease management also stems from issues related to host specificity [154] as exemplified
by the study on Epicoccum purpurascens and T. roseum [3]. Despite their reported antagonistic
activities in other plant-pathogen systems, these fungi showed no antagonistic ability
against apple scab in the specific conditions of the study. This emphasizes the importance
of understanding the context-specific interactions between BCAs and their target pathogens
to ensure their effectiveness in practical applications.

To fully harness the potential of biocontrol, a shift towards comprehensive, field-
oriented research and the optimization of commercial formulations is essential [77]. Re-
grettably, the transition from laboratory efficacy to real-world field success remains a
challenge for many biological agents [128,154]. The discrepancy in effectiveness is often
attributed to the limitations imposed by physiological and ecological factors inherent in
field conditions [128]. Genetic engineering and molecular methods offer new ways to
improve biocontrol agent selection and evaluation [128]. Manipulating the genetic makeup
of these agents optimizes their performance, ensuring a more seamless transition from
controlled laboratory conditions to the complex and dynamic environments found in actual
fields [128,160]. These molecular approaches provide a valuable toolset to finetune the char-
acteristics of biocontrol agents, potentially overcoming the hurdles posed by physiological
and ecological factors that hinder their success in real-world applications.

Another significant challenge with BCAs is ensuring consistent efficacy and address-
ing limited shelf life, attributed to the variability of BCAs and external environmental
factors [77]. Köhl et al. [103] identified Cladosporium cladosporioides (H39) as a promising
biocontrol agent, demonstrating significant reduction of V. inaequalis sporulation in orchard
conditions. However, challenges in maintaining efficacy and shelf life hindered commercial
success [104]. To address these challenges, there is a critical need to advance the devel-
opment of new formulations of BCAs that boast a higher degree of stability, efficiency,
and survival [89,128,161,162]. This necessitates the integration of novel biotechnological
practices to enhance the overall performance and reliability of BCAs in practical agricul-
tural applications [154]. Fenta et al. [128] suggested the development of both dry and
liquid formulations to enhance the efficacy of biocontrol and extending its shelf life. These
formulations offer practical solutions for the challenges faced in commercial applications,
ensuring that biocontrol agents remain effective and viable under diverse packaging condi-
tions. By leveraging cutting-edge biotechnological approaches, working towards creating
formulations that are more resilient, adaptable, and effective across a broader range of envi-
ronmental conditions can be achieved [89,154,161]. This proactive approach is crucial for
unlocking the full potential of biological control in plant disease management, ensuring that
BCAs can provide consistent and reliable results in various agricultural settings [154,162].
As the field of biotechnology continues to evolve, it partly holds the key to overcome the
challenges hindering the widespread commercial use of BCAs and establishing them as
integral components of sustainable agriculture [89,128,162].

The commercial viability of microbial BCAs hinges on their efficacy at defined doses,
adherence to industrial production standards, and practical benefits for growers [7]. The
upscaling of a specific BCA to the commercialization stage is an expensive and multi-step
process [154]. Initial steps include the isolation of the microorganism in pure culture or its
enrichment, followed by accurate identification and characterization processes. Subsequent
stages involve the development of a suitable formulation, mass production, efficacy testing
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of the product, inspection of storage stability, registration of the product, and subsequent
marketing efforts to make the BCA available to end-users [154]. The complex nature of
these processes underlines the significant challenges and resource investments associated
with bringing a BCA from research and development stages to practical, commercially vi-
able application [76]. For instance, Microsphaeropsis ochracea demonstrated a robust 80–90%
efficacy in reducing ascospore production in the field, making it a promising biofungi-
cide [163]. However, challenges related to commercialization, including significant time
and financial investments, coupled with grower acceptance, have impeded its progress into
widespread use [164]. Despite extensive research and numerous reports on the biological
control of plant pathogens, the global availability of registered biofungicides remains rather
limited [4,89,128,165]. The majority of these biofungicides are commercialized for specific
niches, particularly in high-value crops where there is a demand for pesticide-free prod-
ucts [4]. This targeted commercialization reflects the challenges associated with scaling up
and registering biofungicides for broader agricultural applications.

9. Future Trends and Conclusions

In the forthcoming years, the outlook for biological control in apple scab management
is highly promising. Ongoing advancements in research tools, such as next-generation
sequencing and functional genomics, are providing detailed insights into the specialized
metabolic pathways of potential fungal and bacterial antagonists. This deeper understand-
ing opens new avenues for the development of more potent BCAs against V. inaequalis. The
evolution of the omics approach holds great potential for integrating biocontrol into apple
scab disease management. A comprehensive understanding of the molecular processes
underlying the biocontrol activity of BCAs against plant pathogens lays the groundwork
for subsequent experiments using functional genetics approaches.

Generally, addressing challenges related to adoption, susceptibility to environmental
factors, and enhancing the efficacy and persistence of microbial biocontrol agents is imper-
ative for sustainable disease management. Overcoming these challenges requires united
efforts to develop innovative strategies and bridge existing gaps in our understanding.
Genetic engineering and genomic sequencing offer avenues to enhance the specificity and
effectiveness of BCAs. By identifying and modifying key genes or traits, BCAs can be cus-
tomized to more effectively counter specific pathogens, withstand adverse environmental
conditions, and improve their overall performance. Moreover, a deeper understanding of
the ecological dynamics within orchard ecosystems can guide the development of strategies
to optimize the application and persistence of BCAs under varying conditions. Integrating
this knowledge with innovative biotechnological approaches holds promise for creating
more adaptable BCAs that can survive in adverse orchard environments.

In conclusion, despite extensive research on microbial antagonists, the formulation
of BCAs for managing apple scab epidemics remains elusive. Additional research and
innovative strategies are essential to fill these gaps and enhance our understanding, ul-
timately paving the way for the successful management of scab outbreaks. The primary
goal of biocontrol research is to provide supplementary tools for disease management and
the successful integration of BCAs into existing production systems. Moving forward,
continued research and collaborative efforts will be key to realizing the full potential of
biocontrol in apple scab management.
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