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Abstract: Adenosine Monophosphate-Activated Protein Kinase (AMPK) is the major conserved
regulator of cellular metabolism in eukaryotic cells, from yeast to mammals. Given its pivotal role,
it is not surprising that alterations in its function may contribute to the pathogenesis of numerous
human diseases. Indeed, AMPK has become a promising therapeutic target for several pathologies.
In this context, significant efforts have been dedicated to discovering new pharmacological agents
capable of activating AMPK based on next-generation sequencing (NGS) technology and personalized
medicine. Thanks to computational methodologies and high-throughput screening, the identification
of small molecules and compounds with the potential to directly activate AMPK or modulate its
intricate signaling network has become viable. However, the most widely used drug to activate
AMPK in human patients is still metformin, which has shown promising results in the treatment of
various diseases, such as type II diabetes, atherosclerosis, Alzheimer’s disease, Huntington’s disease,
and several types of cancer. In this review, we present a comprehensive analysis of the involvement
of AMPK in human pathology, emphasizing its significant potential as a therapeutic target.

Keywords: AMPK; human disease; autophagy; therapeutic target; metformin

1. Introduction

The substantial increase in human life expectancy in recent decades can be primarily
attributed to remarkable advancements in the field of biomedicine. The accessibility and
cost-effectiveness of next-generation sequencing (NGS), in conjunction with the develop-
ment of personalized medicine and the discovery of novel pharmaceutical compounds,
have served as pivotal factors in elevating both the quality of life and overall longevity of
individuals [1]. Moreover, these advancements have facilitated a profound understanding
of the molecular mechanisms involved in the development of several diseases, thereby
presenting prospective therapeutic targets within the genetic landscape. In this context,
from a cellular perspective, eukaryotic cells possess an extraordinary capacity to adapt
to unfavorable alterations in the cellular environment, thus ensuring the preservation of
homeostatic conditions [2].

Specifically, cells have developed molecular sensors that detect disruptions in cellular
homeostasis. One of these fundamental sensors is Adenosine Monophosphate-Activated
Protein Kinase (AMPK) which acts as a central hub, connecting diverse cellular functions
and processes to energy availability [3]. From a molecular point of view, AMPK is a
conserved protein kinase found in both unicellular organisms like baker’s yeast and more
complex multicellular eukaryotes such as mammals. In this regard, it was described as the
primary energy sensor in yeast with the identification of its yeast ortholog, SNF1 (Sucrose
Non-fermenting 1), in 1981 [4].

Due to its role in the energy balance at cellular and organismal levels, it is not surpris-
ing that alterations in the AMPK system hold significant implications for human health,
contributing to the development of several diseases, including atherosclerosis, diabetes,
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cancer, inflammatory alterations, neurodegenerative disorders, or viral infections, among
others [5–8].

In this review, we describe the pivotal role of AMPK as the primary energy-sensing
mechanism in eukaryotic cells, orchestrating the intricate regulation of diverse cellular
processes, such as autophagy, lipid metabolism, mitochondrial biogenesis, and glucose
metabolism, among others. Additionally, we will explore in depth the complex mecha-
nisms by which disruptions in AMPK function can actively contribute to the initiation
or progression of diverse human pathologies. Moreover, we will thoroughly analyze the
potential of AMPK as a promising therapeutic target for combating these pathologies from
molecular and integrative perspectives.

2. Structural Configuration and Mechanism of Activation

Given its function as the main energy sensor responsible for maintaining cellular
homeostasis, it is unsurprising that AMPK has been extensively studied and characterized
from an evolutionary perspective. In this regard, AMPK represents a highly conserved
serine/threonine protein kinase that belongs to the AMPK-related kinase family, compris-
ing thirteen kinases found in the human genome [9]. Within mammalian cells, AMPK
takes the form of a heterotrimeric complex, consisting of a catalytic α subunit along with
regulatory β and γ subunits. Each subunit is encoded by distinct genes, called PRKAA (5′-
AMP-activated protein kinase catalytic subunit alpha) for the α subunit, PRKAB (5′-AMP-
activated protein kinase subunit beta) for the β subunit, and PRKAG (5′-AMP-activated
protein kinase subunit gamma) for the γ subunit [10].

Specifically, in humans, AMPK subunits are encoded by seven genes: PRKAA1 and
PRKAA2 for the two isoforms of the α subunit (α1 and α2), PRKAB1 and PRKAB2 for
the two isoforms of the β subunit (β1 and β2), and PRKAG1, PRKAG2, and PRKAG3
for the three isoforms of the γ subunit (γ1, γ2, and γ3), respectively. A functional AMPK
complex comprises one α subunit, one β subunit, and one γ subunit, forming a total
of twelve distinct combinations [11]. These conformations are associated with specific
tissues, cell types, or subcellular locations, and they arise due to the ability to form different
combinations of α, β, and γ subunits (Figure 1).

At the molecular level, the α-subunit of AMPK harbors a serine/threonine kinase
domain at the N-terminal region where a residue Thr172 is situated. In fact, this residue
presents a fundamental role in the enzymatic activity and regulation of AMPK. Phosphoryla-
tion of the conserved residue Thr172 by multiple upstream kinases represents the principal
mechanism for the short-term regulation of AMPK activity. These kinases phosphorylate
Thr172, leading to the modulation of cellular processes involved in energy homeostasis. By
undergoing phosphorylation, Thr172 plays a crucial role in regulating the catalytic activity
and overall functionality of AMPK in response to intracellular signals and energy status
changes [12]. The unique characteristics of the Thr172 residue in AMPK highlight the
existence of an intricate network of kinases responsible for regulating AMPK activity. This
network encompasses multiple signaling pathways that can impact the phosphorylation
status of Thr172 [9]. On the one hand, LKB1 (Liver kinase B1) has been identified as a kinase
capable of phosphorylating Thr172 in response to a diverse range of signals [13]. On the
other hand, another kinase known as CAMKK2 (Calcium/calmodulin-dependent protein
kinase kinase 2) has been shown to phosphorylate Thr172 independently of LKB1, particu-
larly in response to changes in calcium levels [14]. In addition, MAPKKK family member
TAK1/MAP3K7 (Transforming growth factor beta-activated kinase 1)/(Mitogen-activated
protein kinase 7) could phosphorylate AMPK in the position Thr172 too. The presence of
different kinases, such as LKB1, CAMKK2, or TAK1/MAP3K7, underscores the complexity
and versatility of the regulatory mechanisms involved in modulating AMPK activity [15].
The diverse signaling pathways associated with these kinases allow for the integration of
various cellular signals and environmental signals, enabling AMPK to respond and adapt
to different physiological and metabolic conditions.
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Figure 1. The domain structure of AMPK heterotrimer. Functional AMPK complexes consist of
one catalytic and two regulatory subunits. Upon activation, AMPK exerts its effects by decreasing
energy-consuming anabolic processes, including lipid synthesis, glycogen storage, gluconeogenesis,
and protein synthesis. Simultaneously, it enhances energy-providing catabolic processes that generate
ATP, such as glucose metabolism, lipid oxidation, mitochondrial biogenesis, and autophagy. Arrows
represent the increase (green) or decrease (red) in AMPK activity.

In the context of AMPK regulation, the γ-subunit of AMPK functions as a sensor
that enables the protein to respond to changes in AMP/ATP or ADP/ATP levels. In this
sense, AMP binding followed by conformational changes allows the phosphorylation of
Thr172. Specifically, the modulation of AMPK activity may occur through three distinct
mechanisms. For example, AMP can inhibit the dephosphorylation of Thr172 by shielding
it from the activity of phosphatases. Additionally, AMP promotes the phosphorylation of
Thr172 by LKB1 and AMP also modulates AMPK through allosteric activation [16–18]. In
fact, AMP can inhibit the dephosphorylation of Thr172 by shielding it from the activity
of phosphatases. Additionally, AMP can also enhance AMPK activity once Thr172 is
phosphorylated, exerting an allosteric effect. Therefore, the multifaceted mechanisms of
AMP regulation, including phosphorylation, allosteric modulation, and the sensing role of
the γ-subunit, collectively illustrate the intricate interplay between AMP, phosphorylation,
and allosteric modulation. These mechanisms work in synergy to precisely adjust AMPK
activity, allowing it to effectively respond to changes in cellular energy status, in which
the phosphorylation status of Thr172 has an essential function as a critical switch in the
activation of AMPK [18].

Despite the well-established understanding of the mechanisms involved in AMPK
activation, there is limited knowledge about the processes that lead to the downregulation
of AMPK activity. In this regard, a mechanism involving the phosphorylation of specific
sites on AMPKα1 and AMPKα2 has been described, specifically at Ser487 (Ser485 in rodent)
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and Ser491 (equivalent to rodent Ser491) in humans, which inhibit AMPK activity [19–21].
From a molecular perspective, Akt plays a role in this inhibitory phosphorylation process.
Specifically, in response to insulin or insulin-like growth factor (IGF-1), Akt phosphorylates
Ser487 site on AMPKα1 in several cell types, including heart cells, adipocytes, or tumor
cell lines, among others [22]. In fact, the phosphorylation of AMPKα1 Ser487 by Akt has
been identified as a mechanism that inhibits the phosphorylation of Thr172, leading to a
reduction in AMPK activity.

Additionally, in vitro studies have demonstrated that recombinant PKA (cAMP-
dependent protein kinase) can also phosphorylate AMPKα1 Ser487. It has been reported
that agents capable of increasing intracellular cAMP levels can stimulate the phosphoryla-
tion of AMPKα1 Ser487 in mouse embryonic fibroblasts and insulin-secreting cell lines [23].
Conversely, AMPKα2 Ser491 has been found to be a less favorable substrate for Akt phos-
phorylation in vitro. However, it has been reported that p70S6 kinase, downstream of
Akt, is involved in the leptin-mediated phosphorylation of AMPKα2 Ser491 in the mouse
hypothalamus and a neuronal cell line [24]. These findings contribute to understanding
the intricate regulatory mechanisms involved in AMPK phosphorylation and highlight the
role of various signaling pathways in modulating AMPK activity.

3. Metabolic Regulation

AMPK is responsible for triggering alternative metabolic pathways when there are
variations in the main carbon or nitrogen sources, thereby enabling cellular metabolism to
adapt to internal environmental fluctuations [25]. In higher eukaryotes, AMPK is activated
in response to an increase in the ratios of AMP (adenosine monophosphate) to ATP (adeno-
sine triphosphate) and/or ADP (adenosine diphosphate) to ATP. Once activated, AMPK
maintains energy homeostasis through two complementary actions: Inhibiting energy-
consuming anabolic processes and promoting energy-generating catabolic processes [26].
Due to its main role in cellular energy balance, AMPK activity is tightly regulated by
multiple upstream regulators, ensuring that cellular metabolism is finely tuned to fluc-
tuating parameters within the internal environment and dynamic changes in nutritional
and energetic demands [27]. Moreover, AMPK signaling pathways participate in a wide
range of physiological processes beyond their primary metabolic functions, encompassing
cytoskeleton remodeling, transcriptional control, and the regulation of essential cellular
processes, such as autophagy or apoptosis [28] (Figure 2).

3.1. Glucose Metabolism

AMPK activity contributes to ATP production by modulating several catabolic and
anabolic pathways involved in glucose metabolism. In this regard, AMPK facilitates
glucose uptake through its inhibitory phosphorylation of TBC1D1 (TBC domain family
member 1) and TXNIP (thioredoxin-interacting protein). Specifically, TBC1D1 and TXNIP
act as negative regulators of the translocation process for glucose transporters GLUT1 and
GLUT4 [29,30]. Consequently, increased AMPK activity results in the enhanced presence
of GLUT1 and GLUT4 transporters on the cell surface. Additionally, AMPK positively
regulates glycolysis by phosphorylating PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase), promoting glucose metabolism [31]. In fact, AMPK also inhibits glycogen
synthesis by phosphorylating several isoforms of GYS (glycogen synthase), preventing
glucose conversion into glycogen [32]. However, AMPK is also involved in glycogen
supercompensation regulation in skeletal muscle. In this sense, during prolonged physical
exercise, sustained AMPK activation stimulates glycogen synthesis, particularly in skeletal
muscle. This occurs due to increased glucose uptake, leading to intracellular accumulation
of G6P (glucose 6 phosphate), which allosterically activates GYS, overriding the inhibitory
effect of AMPK on this enzyme. In addition to its direct effects on specific enzymes, AMPK
modulates glucose metabolism transcriptionally. For instance, during fasting or reduced
glucose intake, gluconeogenesis is activated to maintain blood glucose levels [33]. Upon
re-feeding, an elevation in insulin levels results in the phosphorylation of liver AMPK by
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LKB1 kinases, leading to transcriptional inhibition of key gluconeogenesis genes. This
effect involves AMPK-dependent phosphorylation and nuclear exclusion of CRTC2 (cyclic-
AMP-regulated transcriptional co-activator 2) and HDACs (class IIA histone deacetylases),
essential for gluconeogenic gene transcription. Thereby, AMPK exerts influence on glucose
metabolism through direct regulation of specific proteins and transcriptional control of key
genes involved in glucose metabolism [34,35].

Kinases Phosphatases 2023, 1, FOR PEER REVIEW 5 
 

of physiological processes beyond their primary metabolic functions, encompassing cyto-

skeleton remodeling, transcriptional control, and the regulation of essential cellular pro-

cesses, such as autophagy or apoptosis [28] (Figure 2). 

 

Figure 2. AMPK plays a regulatory role in several metabolic targets. These metabolic pathways gov-

erned by AMPK can be classified into four main categories: Glucose metabolism, lipid metabolism, 

autophagy, and mitochondrial metabolism. 

3.1. Glucose Metabolism 

AMPK activity contributes to ATP production by modulating several catabolic and 

anabolic pathways involved in glucose metabolism. In this regard, AMPK facilitates glu-

cose uptake through its inhibitory phosphorylation of TBC1D1 (TBC domain family mem-

ber 1) and TXNIP (thioredoxin-interacting protein). Specifically, TBC1D1 and TXNIP act 

as negative regulators of the translocation process for glucose transporters GLUT1 and 

GLUT4 [29,30]. Consequently, increased AMPK activity results in the enhanced presence 

of GLUT1 and GLUT4 transporters on the cell surface. Additionally, AMPK positively 

regulates glycolysis by phosphorylating PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase), promoting glucose metabolism [31]. In fact, AMPK also inhibits glycogen 

synthesis by phosphorylating several isoforms of GYS (glycogen synthase), preventing 

glucose conversion into glycogen [32]. However, AMPK is also involved in glycogen su-

percompensation regulation in skeletal muscle. In this sense, during prolonged physical 

exercise, sustained AMPK activation stimulates glycogen synthesis, particularly in skele-

tal muscle. This occurs due to increased glucose uptake, leading to intracellular accumu-

lation of G6P (glucose 6 phosphate), which allosterically activates GYS, overriding the in-

hibitory effect of AMPK on this enzyme. In addition to its direct effects on specific en-

zymes, AMPK modulates glucose metabolism transcriptionally. For instance, during 

Figure 2. AMPK plays a regulatory role in several metabolic targets. These metabolic pathways
governed by AMPK can be classified into four main categories: Glucose metabolism, lipid metabolism,
autophagy, and mitochondrial metabolism.

3.2. Lipid Metabolism

As previously mentioned, for glucose metabolism, AMPK has been related to lipid
metabolism in a cellular context. Upon activation, AMPK functions to downregulate the
activity of key enzymes involved in lipid synthesis and related processes, ensuring their
activity is aligned with cellular energy levels. One important aspect of this regulation is the
inhibitory phosphorylation of ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA
carboxylase 2), which are key enzymes responsible for the initial step in lipid synthesis. In
fact, AMPK exerts its phosphorylation on specific sites such as Ser79 in ACC1 and Ser221
in ACC2 to modulate lipid homeostasis [36].

Furthermore, AMPK can inhibit HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A
reductase), a crucial enzyme involved in cholesterol synthesis. On the other hand, AMPK
promotes the breakdown of triglycerides into fatty acids by stimulating lipases such as
ATGL (Adipocyte Triglyceride Lipase) and HSL (Hormone-Sensitive Lipase). In this regard,
in cellular energy stress conditions, AMPK facilitates the import of free fatty acids into
mitochondria for β-oxidation, a process that relies on the activity of acyl-transferases from
the CPT1 (Carnitine palmitoyl-transferase 1) family [37,38]. AMPK indirectly regulates
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CPT1 activity by reducing the levels of malonyl-CoA, a potent inhibitor of CPT1, through
the inhibition of ACC1 and ACC2 [39].

Despite its direct activity in lipid metabolism regulation, AMPK also controls sev-
eral transcription factors specifically involved in lipid metabolic processes. In this sense,
AMPK-mediated phosphorylation leads to the inhibition of several transcriptional factors,
including ChREBP (carbohydrate-responsive element binding protein) [40], SREBP1 (sterol
regulatory element binding protein 1), and HNF4α (hepatocyte nuclear factor 4α) [41],
among others [42].

3.3. Autophagic Process

Autophagy, a highly conserved catabolic pathway found in all nucleated cells, is
critical for maintaining cellular homeostasis. While basal autophagic degradation occurs
constitutively, nutrient deprivation and energy scarcity serve as the primary physiological
inducers of autophagy. In this context, autophagy is characterized by the formation
of double-membrane vesicles known as autophagosomes, which sequester and enclose
specific portions of the cytoplasm [43]. This sequestration process serves as a crucial quality
control mechanism, ensuring a harmonious balance between macromolecule synthesis
and degradation [44]. In mammalian cells, autophagic degradation is primarily regulated
by two key kinases: mTOR (mechanistic/mammalian Target of Rapamycin) and AMPK.
mTOR exists in two distinct protein complexes, named mTORC1 and mTORC2. While
mTORC2, as far as we know, has a limited impact on autophagy dynamics, mTORC1 plays
a dominant role as a suppressor of autophagy in mammalian cells [45]. Under conditions
of high energy levels, abundant cellular amino acids, or stimulation by growth factors,
mTORC1 is activated, leading to a negative effect on autophagic degradation.

In contrast, AMPK activation has a positive regulatory effect on autophagy, promoting
its pro-catabolic functions. The activities of mTORC1 and AMPK are interconnected at
the molecular level, with inhibition of mTORC1 being a key mechanism through which
AMPK enhances autophagic degradation. In fact, this antagonistic relationship between
mTORC1 and AMPK highlights their coordinated control over autophagy regulation [46].
From a molecular point of view, under conditions of abundance in energy, growth fac-
tors, or amino acids, mTORC1 inhibits autophagy by phosphorylating ATG13, leading to
decreased activity of the ULK1 complex. This reduction in ULK1 activity impairs the for-
mation of autophagosomes, thereby repressing the autophagic process [47]. Furthermore,
mTORC1 directly targets ULK1 itself, providing an additional mechanism for inhibiting
autophagy. In contrast, AMPK plays an opposing role to mTORC1 by promoting the
activity of the ULK1 complex, positively regulating the initial stages of autophagosome
formation [48]. In this context, AMPK directly phosphorylates specific sites on ULK1,
such as Ser467, Ser555, Thr574, and Ser637. These phosphorylation events enhance the
recruitment of autophagy-related proteins (ATG proteins) to membrane domains involved
in autophagosome formation [49].

Additionally, AMPK exerts a negative regulation on mTORC1 activity, counteracting
its inhibitory effect on ULK1 through two complementary mechanisms. Firstly, AMPK
phosphorylates Thr1227 and Ser1345 residues on TSC2 (Tuberous sclerosis complex 2),
leading to the assembly of the TSC1/TSC2 heterodimer and subsequent inhibition of
mTORC1 activity. Secondly, AMPK directly phosphorylates Ser722 and Ser792 residues
on RAPTOR, resulting in the inhibition of mTORC1. In fact, AMPK also plays a role in
promoting autophagy by exerting differential effects on various components of autophagy-
initiating protein complexes [50,51]. Through specific phosphorylation events, AMPK
influences the regulation of autophagy at different levels. In this autophagic regulation
context, the activities of AMPK and mTORC1 are antagonistic and function together to
integrate autophagy regulation with multiple signaling pathways. Specifically, the ULK1
complex serves as a key checkpoint in the control of autophagy initiation, where AMPK
and mTORC1 converge to modulate autophagic activity [52].
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AMPK is involved in the regulation of the Class III PI3K complex too. In this regard,
ULK1 exerts its pro-autophagic function by phosphorylating various components of this
complex, including Beclin1, AMBRA1, and the catalytic subunit VPS34 [53]. Furthermore,
AMPK can influence autophagic activity through the specific phosphorylation of ATG9,
a transmembrane protein involved in autophagosome biogenesis, by supplying vesicles
that contribute to autophagosome elongation. AMPK-mediated phosphorylation of ATG9
at Ser761 enhances the recruitment of ATG9A to LC3-positive autophagosomes, thereby
promoting autophagosome formation [54].

Furthermore, the acetylation status of autophagy-associated proteins is regulated
by signaling molecules that respond to cellular nutrients and growth factors. In this
context, SIRT1 can be activated in an AMPK-dependent manner when glucose availability is
limited [55]. In addition, SIRT1 and AMPK present a mutual reinforcement in their activity.
For example, SIRT1 plays a role in deacetylating and thereby enhancing the stability
and activity of LKB1 [56], whereas AMPK stimulates SIRT1 activity by increasing the
expression of nicotinamide phosphoribosyltransferase (NAMPT), a crucial enzyme for the
regeneration of NAD+, which serves as a substrate for SIRT1 [57,58]. From an autophagic
perspective, SIRT1 and AMPK play a complementary role in promoting autophagy. On
the one hand, SIRT1 contributes to this process by deacetylating multiple factors, which, in
their deacetylated state, actively participate in the formation of autophagosomes. On the
other hand, SIRT1 also facilitates autophagosome/lysosome fusion by deacetylating the
FOXO1 transcription factor, which promotes the transcription of the gene encoding Rab7,
a crucial G protein involved in this fusion process [59,60].

Despite its direct activity in autophagic process regulation, AMPK also regulates
different transcription factors involved in autophagy. For example, AMPK and mTOR
present an antagonistic role in the context of TFEB/TFE transcription factors, which are
responsible for controlling the expression of genes involved in lysosomal biogenesis and
autophagy [61]. During high energy conditions, mTOR phosphorylates these transcription
factors, inhibiting their function. However, it has been shown that the nuclear translocation
of TFEB/TFE is significantly reduced in cells lacking AMPK or treated with AMPK in-
hibitors. This suggests that AMPK is necessary for promoting the nuclear translocation and
activity of TFEB/TFE, thereby facilitating the expression of genes involved in lysosomal
function and autophagy [62].

3.4. Mitochondrial Biogenesis

AMPK plays a crucial role in maintaining mitochondrial function, particularly in
response to energy imbalances. In this sense, during disruptions in energy levels, AMPK
can promote mitochondrial biogenesis, increasing mitochondrial mass and promoting the
expression of mitochondrial genes. The main genetic regulator in this process is PGC1-
α, a transcription factor that controls the expression of a wide range of mitochondrial
genes [63]. In fact, PGC1-α interacts with PPAR-γ and ERRs to regulate mitochondrial gene
expression, and its activity is tightly regulated by post-translational modifications. From
a tissular perspective, for example, in muscle cells, overexpression of PGC1-α leads to the
conversion of type IIb fibers into type I and type II characterized by higher mitochondrial
content. In the context of PGC1-α regulation, AMPK contributes by direct phosphorylation
of PGC1-α in Thr177 and Ser538 residues [64]. On the other hand, AMPK indirectly
influences PGC1-α by phosphorylating HDAC5, SIRT1, and p38 MAPK, which further
regulate PGC1-α function [65–68]. As previously mentioned, AMPK also promotes the
activity of TFEB, which, in the context of mitochondrial biogenesis, activates the gene
encoding PGC1-α (PPARGC1A) along with other genes involved in autophagy [69].

3.5. Selective Degradation of Mitochondria by Autophagy

In addition to its general regulatory role in autophagic degradation, AMPK also plays
a specific role in the regulation of mitophagy, which is the selective removal of damaged
mitochondria through the process of autophagy [70]. Mitochondria exist in a dynamic
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network that undergoes morphological changes through a combination of fission (divi-
sion) and fusion (merging). Consequently, mitochondria can exhibit various distributions,
ranging from a single interconnected network to numerous small, fragmented units. In
fact, an increase in mitochondrial fission is necessary to facilitate mitophagy [71]. This
process makes mitochondria more susceptible to being engulfed by pre-autophagosomal
isolation membranes, thus enabling the occurrence of mitophagy. Furthermore, it has
been observed that several mitochondrial stressors cause damage to mitochondria and
enhance mitochondrial fission. In this regard, Activation of AMPK plays a crucial role in
promoting mitochondrial fission, thereby linking mitochondrial dynamics to mitophagic
degradation [72]. From a molecular point of view, AMPK phosphorylates and activates a
protein called mitochondrial fission factor (MFF). MFF is located in the outer membrane of
mitochondria and acts as a recruiter for cytoplasmic dynamin 1-like protein (DRP1), guid-
ing it to the outer membrane of the mitochondria. This specific recruitment of DRP1 to the
mitochondrial outer membrane increases mitochondrial fission, leading to the formation of
fragmented mitochondria that are then targeted for mitophagy [73].

On the other hand, SIRT1 also plays a role in promoting mitophagy by increasing the
expression levels of Parkin and Pink1, proteins that tag dysfunctional mitochondria for
autophagic degradation [74]. Moreover, SIRT1 and AMPK not only collaborate to promote
mitophagy but also work together to stimulate mitochondrial biogenesis by activating
post-translational modifications of PPAR and PGC-1α [75,76]. In this regard, it has been
demonstrated that the phosphorylation of ULK1 on Ser555 by AMPK is also crucial for the
induction of mitophagy [77].

By coordinating these actions, AMPK enables the formation of autophagosomes and
regulates mitochondrial size, thus facilitating efficient autophagic degradation of mito-
chondria. In fact, this integrated regulation ensures the effective removal of dysfunctional
mitochondria and maintenance of cellular homeostasis.

4. Role of AMPK in Human Pathologies

Due to its pivotal role as a metabolic sensor for maintaining homeostasis, any pertur-
bation in the function of AMPK can result in genetic dysregulation that impacts diverse
processes, including autophagy, glucose metabolism, lipid metabolism, and mitochondrial
biogenesis [78]. These disruptions potentially contribute to the development of patholog-
ical conditions. Moreover, advancements in sequencing technologies and genome-wide
association studies (GWAS) have revealed that polymorphic variations in different au-
tophagic genes, including AMPK subunits, are directly linked to a range of human diseases
(Table 1) [79]. In this regard, the study and comprehension of AMPK modifications have
identified it as a possible therapeutic target to address several human pathologies.

Table 1. Clinically relevant SNPs in AMPK.

Gen dbSNP rsID Disease Ref.

PRKAA1 rs13361707 Gastric cancer [80]
rs13361707 Colorectal cancer [81]
rs10074991 Colorectal cancer [81]
rs3792822 Hepatitis B [82]
rs10074991 Gastric cancer [83]

rs461404 Gastric cancer [83]
rs154268 Gastric cancer [83]

PRKAA2 rs10789038 Neuropathic pain [84]
rs10789038 Type 2 diabetes [85]
rs2796498 Type 2 diabetes [85]
rs2746342 Type 2 diabetes [86]
rs10224002 Hypertension [87]

rs121908987 Cardiac glycogenosis [88]

PRKAG1 rs1138908 Colorectal cancer [81]
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Table 1. Cont.

Gen dbSNP rsID Disease Ref.

PRKAG2 rs1029947 Colorectal cancer [89]
rs1104897 Colorectal cancer [89]
rs5017427 Type 2 diabetes [90]
rs954482 Type 2 diabetes [90]

rs2727537 Type 2 diabetes [90]

4.1. Type 2 Diabetes

Given the critical involvement of AMPK in the regulation of glucose metabolism,
it is not surprising that alterations in AMPK have been found to be associated with the
development of diabetes [91]. The prevalence of metabolic syndrome disorders, including
diabetes, hypertension, and fatty liver, tends to increase with age on a global scale. In 2019,
it was estimated that 463 million individuals were living with diabetes worldwide [92].
The relationship between diabetes development and AMPK dysregulation further high-
lights the significance of AMPK in maintaining proper glucose metabolism [93]. In this
regard, type 2 diabetes, formerly known as noninsulin-dependent diabetes mellitus or
adult-onset diabetes, is a metabolic disorder characterized by dysregulated glucose levels
in the blood and abnormal metabolism of lipids. This condition occurs when the β cells
in the pancreas, responsible for producing insulin, are unable to compensate for insulin
resistance [94]. Insulin resistance is closely associated with elevated levels of triacylglyc-
erols, particularly in the liver and skeletal muscle. It is widely recognized that individuals
with a genetic predisposition are most susceptible to developing type 2 diabetes as a result
of overnutrition, sedentary lifestyle, and consequent obesity. In fact, to effectively man-
age this disease, regular physical exercise and a suitable dietary regimen are considered
fundamental measures [95].

Elevated blood glucose levels pose a significant challenge in the management of
diabetes mellitus (DM). Thus, interventions that effectively lower blood glucose levels
have the potential to improve DM outcomes. In this context, AMPK activation leads to an
increase in GLUT4 expression, facilitating glucose uptake by muscle cells [96]. Furthermore,
AMPK signaling also influences GLUT1, another key regulator of glucose uptake. GLUT1
modulation holds promise as a therapeutic target for DM, as downregulation of GLUT1 has
been shown to alleviate diabetic retinopathy [97]. Consequently, targeting AMPK signaling
and the glucose transporters situated on the cell membrane represents a viable target to
enhance glucose uptake and ameliorate DM.

From a therapeutic perspective, given that skeletal muscle, liver, and adipose tissue
are insulin-resistant peripheral tissues, chronic administration of metformin to activate
AMPK would enhance insulin-mediated glucose uptake in muscle [98]. However, there is
no evidence supporting this assertion in in vivo studies, as mice with AMPKβ1β2 knockout
in muscle or mice overexpressing kinase-dead (KD) AMPKα2 in muscle exhibit normal
insulin-stimulated glucose transport [99,100].

Furthermore, adipose tissue functions as the primary reservoir for plasma-free fatty
acids (FFAs). The excessive accumulation of FFAs in skeletal muscle, liver, and adipocytes
produces diacylglycerol (DAG) accumulation and the activation of protein kinase C (PKC)
that can lead to insulin resistance [101]. Activation of AMPK in adipocytes inhibits lipo-
genesis by increasing phosphorylation of ACC and reducing the expression of lipogenic
genes regulated by the transcription factor SREBP-1c, including stearoyl-CoA desaturase
1 (SCD1), fatty acid synthase (FAS), and ACC1 [102]. By stimulating fatty acid oxidation
and suppressing fatty acid and triglyceride synthesis, interventions that activate AMPK are
anticipated to reduce lipid accumulation in the liver and skeletal muscle, thereby improv-
ing insulin sensitivity. Additionally, these interventions are predicted to directly alleviate
hyperglycemia associated with type 2 diabetes by promoting glucose uptake in skeletal
muscle and inhibiting gluconeogenesis in the liver [103]. In this regard, the administration
of AICAR, an adenosine analog that enters cells through adenosine transporters and is
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converted into the equivalent nucleotide called ZMP, which emulates all the activating
effects of AMP on AMPK, has been shown to reverse various metabolic abnormalities in
animal models of obesity and insulin resistance, including fa/fa rats, ob/ob mice, and
rats fed a high-fat diet [104,105]. In addition, metformin indirectly activates AMPK both
in cells and in vivo by inhibiting the mitochondrial respiratory chain. However, due to
the indirect nature of AMPK activation, it was necessary to specifically analyze its effects
on AMPK activity. To address this, studies using double knock-in (DKI) mice, in which
the endogenous genes encoding acetyl-CoA carboxylase (ACC1 and ACC2) were replaced
with genes carrying single amino acid substitutions that eliminate the AMPK sites, have
provided valuable insights. In fact, these mice exhibited elevated ACC1/ACC2 activities
and cellular malonyl-CoA levels in the liver, accompanied by reduced fatty acid oxida-
tion [36]. Consequently, they displayed increased levels of hepatic di- and triacylglycerols
and increased PKCε activity. Moreover, the mice showed elevated fasting glucose and
insulin levels, glucose intolerance, insulin resistance, and reduced effectiveness of insulin
in suppressing hepatic glucose production. Following long-term (6 weeks) treatment with
metformin, the improvements in metabolic parameters such as fasting glucose, insulin
suppression of hepatic glucose production, and expression of gluconeogenic enzymes
observed in fat-fed wild-type animals were no longer evident in DKI mice. Therefore,
these findings suggest that the insulin-sensitizing effects of metformin can primarily be
attributed to its impact on fatty acid metabolism, mediated by AMPK.

Furthermore, type 2 diabetes is characterized by a reduction in the functional β cell
population within the islets, which coincides with dysregulated glucose-induced insulin
secretion. In this context, targeted inhibition of LKB1 expression in pancreatic β cells led
to a significant enhancement in insulin secretion in response to glucose and improved
glucose tolerance [106]. These effects were accompanied by notable alterations in β cell
mass and polarity in vivo. Moreover, it has been found that LKB1 and AMPK may play
distinct roles in the regulation of insulin secretion by islet β cells, with AMPK activation
demonstrating beneficial effects on β cell function [107]. For example, the administration
of AICAR has been shown to protect against the glucolipotoxicity-induced impairment of
β-cell function [108].

4.2. Cardiovascular Disease

Cardiovascular disease (CVD) is a leading cause of death worldwide, especially among
individuals over the age of 65, highlighting its association with aging [109]. During the
normal aging process, the cardiac tissue undergoes remodeling, characterized by a gradual
reduction in left ventricular mass and end-diastolic volume. However, in pathological
conditions such as CVD, the left ventricle undergoes remodeling that leads to increased
mass, often accompanied by cardiac hypertrophy [110].

The maintenance of cardiac health depends on various factors, including the activity of
autophagy, which presents an important role in both the development of cardiac tissue and
the preservation of cardiomyocyte homeostasis [111]. Autophagy, through the degradation
of cellular components, contributes to the periodic renewal of cytosolic content, thereby
ensuring cellular homeostasis. In CVD, dysregulation of cardiac homeostasis results in
cardiomyocyte loss and an accumulation of extracellular matrix [112].

In the pathology context, a mouse model lacking AMPK subunits β1 and β2 (β1β2M-
KO) exhibits dilated cardiomyopathy [113]. Cardiomyopathy can manifest as hypertrophy
of the heart muscle, which, if untreated, can contribute to heart failure. In different animal
models of myocardial hypertrophy, AMPK activation has shown beneficial effects. It
increases the ejection fraction (EF), which is a measure of the heart’s pumping efficiency,
and decreases the protein synthesis rate in myocardial cells. These effects help to counteract
the detrimental effects of hypertrophy and improve cardiac function [114].

On the one hand, in the complex genetic pathway involved in the development of car-
diomyopathies, it has been observed that the expression levels of SIRT2 are downregulated
in hypertrophic hearts. In fact, knockout of SIRT2 exacerbates cardiac hypertrophy and



Kinases Phosphatases 2023, 1 191

fibrosis and impairs cardiac function in aged mice. On the other hand, overexpression of
SIRT2, specifically in the heart, protects against cardiac hypertrophy and preserves cardiac
function. From a genetic perspective, SIRT2 plays a crucial role in maintaining the activity
of AMPK in the context of hypertrophic hearts [115]. This maintenance is accomplished
through the involvement of LKB1. Additionally, AMPK inhibits myocardial hypertrophy
by regulating myocardial energy metabolism through the SIRT1 signaling pathway.

On the other hand, an alteration in the production or availability of endothelium-
derived nitric oxide (NO) leads to an impaired vasodilator response and the development
of a prothrombotic and pro-inflammatory endothelium, ultimately resulting in endothelial
dysfunction. AMPK plays a crucial role in maintaining vascular health by exerting ben-
eficial effects on various aspects of vascular function. It promotes the production of NO
and facilitates vascular smooth muscle (VSM) relaxation. Additionally, AMPK suppresses
inflammation, reduces ROS production, and boosts antioxidant defenses within the vascula-
ture. In this regard, high-fat diet-induced downregulation of the AMPK/PI3K/Akt/eNOS
pathway and contributes to endothelial dysfunction in a rat model of diet-induced obe-
sity [116]. Specifically, the loss of AMPKα1 in VSMCs promotes atherosclerotic calcifi-
cation in vivo and endothelial cells from AMPKα2 knockout mice exhibit abnormal ER
stress [117,118].

In the context of myocarditis, a cardiovascular disease that can progress to dilated car-
diomyopathy (DCMI), using cardiac tissue samples from both younger and older patients
with DCMI, it has been found that male DCMI patients present an increase in both the
expression and phosphorylation of AMPK in the cardiac tissue [119]. However, there are
no significant alterations in the expression of SIRT1 compared to control groups. According
to the essential role of AMPK in regulating mitochondrial homeostasis, the upregulation
of AMPK could have an impact on mitochondrial biology. In this sense, the reduction in
mitochondrial mass observed in these patients could be attributed to an enhancement in
mitochondrial clearance through autophagy, possibly driven by the heightened activity of
AMPK [120].

As mentioned previously, AMPK plays an important role in maintaining normal
structure and function of the atria due to the observed aberrant alterations in cardiomyocyte-
specific AMPKβ1/β2 knockout mice, which exhibit significant remodeling of the left atria
and spontaneous occurrence of atrial fibrillation (AF) [113]. In the specific context of heart
failure with preserved ejection fraction (HFpEF), it has been found that the activity of
AMPK is significantly reduced in the left atrial tissue of HFpEF mice, as indicated by
decreased phosphorylation of AMPK. However, when HFpEF mice were treated with
metformin, a significant increase in AMPK signaling was observed. This increase in AMPK
signaling was associated with a reduction in the preponderance of AF, as evidenced by
decreased inducibility and duration of AF episodes [121].

Furthermore, in cardiac tissue from HF patients and transverse aortic constriction
(TAC)-induced mice, an isoform shift from AMPKα2 to AMPKα1 and a decrease in mi-
tophagy and mitochondrial function have been described. However, overexpression of
AMPKα2 in mouse hearts prevents the development of TAC-induced chronic HF, leading
to increased mitophagy pathways and improved mitochondrial function. Conversely,
AMPKα2−/− mutant mice showed aggravation of early progression of TAC-induced HF
mediated by decreased cardiac mitophagy [122].

Therefore, induction of autophagy mediated by AMPK could serve as a potential
therapeutic approach in different cardiac pathologies. By promoting autophagy, AMPK
activation aims to preserve cellular homeostasis, ultimately contributing to the restoration
and maintenance of proper cardiac function [123].

4.3. Atherosclerosis

Atherosclerosis is a genetically predisposed inflammatory disorder affecting elastic
and musculoelastic arteries, characterized by the development of atheromatous plaques
primarily composed of cholesterol [124]. These plaques can lead to arterial stenosis or
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thrombosis, particularly in cases where the plaque exhibits instability. This disease affects
individuals as they age, and its associated complications, particularly coronary heart
disease and stroke, are the leading causes of mortality in developed nations [125]. The
main complications, coronary heart disease and stroke, are the predominant etiologies of
mortality in developed countries. AMPK modulates atherosclerosis through its influence
on macrophage cholesterol homeostasis, vascular dysfunction, and inflammation [126].

Vascular dysfunction, recognized as an early stage of atherosclerosis, arises primarily
from immune cell infiltration into the vascular wall, inflammation, oxidative stress, im-
paired nitric oxide (NO) bioavailability, and endothelial cell apoptosis. These factors often
coincide with a decrease in AMPK activity in the endothelium of the aorta [127]. Thereby,
activating AMPK in vascular tissues may represent an effective approach to preserving
cardiovascular health [8]. In fact, AMPK in cultured human aortic endothelial cells inhibits
TNFα-stimulated leukocyte adhesion, accompanied by reduced secretion of monocyte
chemotactic protein 1 (MCP-1) [128]. In this sense, activation of AMPK by adiponectin
effectively counteracts palmitate-induced production of reactive oxygen species (ROS)
and subsequent apoptosis mediated by p38 mitogen-activated protein kinase in endothe-
lial cells.

Furthermore, the perturbation of macrophage cholesterol homeostasis plays a substan-
tial role in the advancement of atherosclerosis through the process of monocyte infiltration
during plaque formation [129]. This infiltration event induces the release of a variety
of pro-inflammatory mediators and chemokines, ultimately leading to the generation of
atherogenic foam cells due to the excessive uptake of modified low-density lipoprotein
(LDL) particles, which further aggravates the progression of atherosclerosis. However,
AMPK has demonstrated its ability to inhibit cholesterol buildup within macrophages by
enhancing the efflux of cholesterol to high-density lipoprotein (HDL). This mechanism
leads to a significant reduction in atherosclerotic plaque formation in ApoE-/- mice [130].
The favorable impact of AMPK is likely attributed to the upregulation of ATP-binding cas-
sette sub-family G member 1 (ABCG1) and ATP-binding cassette transporter A1 (ABCA1)
gene expression, accompanied by an increase in the expression of liver X receptor α (LXRα)
among others [131].

On the other hand, AMPK could be involved in the release of inflammatory cytokines
in macrophages, as reduced AMPK activity has been observed in lipopolysaccharide (LPS)-
stimulated macrophages. In this context, activation of AMPK in macrophages through
pharmacological agonists has been shown to attenuate LPS-induced pro-inflammatory
factors while increasing the levels of anti-inflammatory cytokines [132]. From a molecular
point of view, this effect may be mediated by the reduced acetylation and transcriptional
activity of NF-κB, induced by SIRT1. In addition, AMPK has been shown to mediate the
activation of the nucleotide-binding domain and leucine-rich repeat-containing protein 3
(NLRP3) inflammasome, which plays a significant role in both inflammation induced by
saturated fatty acids in macrophages and the anti-inflammatory effects of monounsaturated
fatty acids [133]. In the atherosclerosis context, NLRP3 inflammasome can be triggered by
crystalline cholesterol, an endogenous factor and risk that contributes to the progression of
the disease [134].

Moreover, metformin has been shown to alleviate oxidative stress and restore en-
dothelial function through the activation of the AMPK/peroxisome proliferator-activated
receptor δ (PPARδ) pathway. These findings highlight the potential of targeting AMPK
signaling as a therapeutic strategy for mitigating vascular dysfunction and promoting
cardiovascular health [135].

4.4. AMPK in Inflammatory Diseases

Inflammatory processes have been extensively linked to various diseases, such as
diabetes, cancer, arthritis, and cardiovascular disorders. The initiation of inflammation
occurs when the immune system, comprising bone marrow-derived cells like monocytes
and macrophages, as well as non-bone marrow-derived cells, detects the presence of
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infection or tissue damage, serving as the body’s initial defensive response [136]. In this
context, emerging evidence suggests AMPK possesses anti-inflammatory properties, and
these effects may be mediated through its metabolic activities [137]. In resting immune
cells, such as dendritic cells, neutrophils, and T cells (among others), oxidative metabolism
is the primary means of ATP generation. However, upon activation, these cells undergo a
metabolic shift towards aerobic glycolysis, similar to the metabolic alterations observed
in tumor cells. In this regard, this metabolic switch in dendritic cells is associated with
reduced AMPK activation, which can be inhibited by pharmacological activation of AMPK
and promoted by downregulation of AMPK. Similar patterns are observed in macrophages,
where classically activated (M1) macrophages involved in pro-inflammatory processes
predominantly utilize aerobic glycolysis, while alternatively activated (M2) macrophages
associated with inflammation resolution tend to rely on oxidative metabolism [138].

In fact, it has been shown that when using macrophages that present a downregulation
in AMPK, AMPK normally attenuates the production of inflammatory cytokines. In this
sense, AMPK-β1 knockout mice models present alterations in macrophages homeostasis
due to a reduction in the phosphorylation of ACC, decreased mitochondrial content, and
impaired fatty acid oxidation rates, leading to the accumulation of pro-inflammatory
diacylglycerols [139].

From a therapeutic perspective, activation of AMPK using A-769662 exhibited an
enhanced capacity for fatty acid oxidation in macrophages of wild-type phenotype, whereas
macrophages lacking β1 subunit did not display a similar response [139]. Moreover,
the suppressive effects of A-769662 on inflammation were compromised in the presence
of blocked fatty acid oxidation. Thereby, AMPK’s anti-inflammatory mechanism could
operate through its impact on fatty acid oxidation. In addition, direct activation of AMPK
in the context of inflammation could be by salicylate, a natural compound that served
as the precursor for the synthesis of aspirin (acetyl salicylate). Both salicylate and A-
769662 exhibit binding affinity for the identical site on AMPK, acting as selective activators
specifically targeting complexes that contain β1 receptors [6]. Moreover, both compounds
demonstrated the ability to stimulate an increase in systemic fatty acid oxidation in mice
with intact β1 receptors, whereas their impact on fat oxidation was absent in mice lacking
β1 receptors [140].

4.5. AMPK in Neurodegenerative Disorders

Currently incurable diseases, such as Parkinson’s disease (PD), Huntington’s disease
(HD), and Alzheimer’s disease (AD), exemplify well-known instances of neurodegenerative
disorders. These pathologies are characterized by progressive degeneration of neuronal
structure and function [141]. In fact, PD is predominantly recognized as a neurodegen-
erative condition primarily affecting motor function. The pathology of PD involves the
depletion of dopaminergic neurons in the substantia nigra and the formation of aggregates
of α-synuclein, known as Lewy bodies [142]. HD, on the other hand, is an age-related
disorder that affects both movement and cognitive abilities. It arises from the expansion
of CAG triplet repeats in exon 1 of the Htt gene [143]. The principal pathological change
observed in HD is a pronounced reduction in the number of neurons involved in the
synthesis of enkephalin and γ-aminobutyric acid (GABA). In addition, AD is the most
prevalent form of dementia, typified by the presence of senile plaques and intracellular neu-
rofibrillary tangles, primarily resulting from the accumulation of misfolded Aβ peptides
and hyperphosphorylated tau in cortical and hippocampal regions of the brain [144]. It has
been elucidated that the inability to effectively counteract the accumulation of misfolded
proteins prone to aggregation impairs cellular viability and triggers progressive deteri-
oration in central nervous system function. This phenomenon, observed across various
neurodegenerative disorders, is closely associated with a dysfunction in the autophagic
degradation of mitochondria, which is frequently compromised in these conditions. In
the specific context of brain-specific AMPK activation, conflicting reports have emerged
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regarding the diverse roles of AMPK in either facilitating or mitigating the progression of
neurodegeneration, depending on the specific circumstances [145,146].

In AD, the role of AMPK as a crucial regulator of Aβ generation has been well-
established. In this regard, pharmacological activation of AMPK, leading to the induction of
autophagy, has been shown to effectively prevent the accumulation of Aβ [147]. Moreover,
the activation of AMPK has been associated with the impact of leptin on neuronal cells,
including the reduction of tau phosphorylation, which is implicated in the formation
of neurofibrillary tangles [148]. However, the effects of AMPK activation on neuronal
cells may exhibit gender-dependent variations. In this context, chronic administration of
metformin has been reported to exert beneficial effects, specifically in females, whereas in
males, administration of metformin may lead to exacerbation of memory dysfunction [149].

On the other hand, in PD, AMPK activation has shown potential benefits in patients
due to its interaction with parkin, a key regulator involved in maintaining mitochondrial
homeostasis. This cooperative relationship between AMPK and parkin suggests a potential
therapeutic role for AMPK activation in PD [150]. However, it has also been reported that
poly(ADP-ribose) polymerase (PARP) activation can trigger the degeneration of dopamin-
ergic neurons by activating AMPK. This additional role of AMPK in PD, mediated by PARP,
adds complexity to the understanding of the several functions of AMPK in the context of
this neurodegenerative disorder [151].

In addition, in a pathological context of HD, it has been demonstrated that the activa-
tion of AMPK by several pharmacological compounds, such as AICAR in striatal neurons,
can promote neuronal loss and the formation of aggregates containing mutant huntingtin
(Htt) protein [152]. However, the administration of metformin has shown promise as a
potential protective intervention in HD [153]. The conflicting results observed in different
studies could be elucidated by taking into account the timing of AMPK activation. It is
postulated that AMPK activation may confer beneficial effects, particularly during the
early stages of HD. This suggests that the therapeutic efficacy of AMPK activation may be
contingent upon the stage of disease progression in HD.

4.6. Glaucoma

Glaucoma, an optic neuropathy disease characterized by the progressive apoptotic
death of retinal ganglion cells (RGCs), poses a significant threat to vision as it damages
the optic nerve irreversibly if left untreated [154]. This condition is marked by optic
disc cupping, loss of axons, and degeneration of RGC bodies. In fact, several factors,
such as elevated intraocular pressure, vascular abnormalities, oxidative damage, ischemia,
excitotoxicity, and inflammation, have been found to contribute to the pathogenesis of
glaucoma [155]. Phosphorylated AMPK levels have been found to increase in the optic
nerves of glaucoma patients. This AMPK hyperactivation has been associated with synaptic
elimination and dendrite retraction in RGCs [156]. Furthermore, increased deposition of
extracellular matrix (ECM) components such as fibronectin, collagen, and matrix metallo-
proteinases have been observed in the trabecular meshwork cells of mammalian glaucoma
models and the aqueous humor of patients with open-angle glaucoma [157,158]. In this
regard, pharmacological activation of AMPK by AICAR treatment has been shown to
downregulate cytoskeletal and ECM proteins in primary human trabecular meshwork
cells by phosphorylating RhoA at Ser188 [159]. In addition, ocular hypertension, which
is characterized by increased intraocular pressure, also triggers AMPK activation and
contributes to RGC loss [160]. Furthermore, the spatiotemporal expression of MAPKs in
the retina and optic nerve has also been implicated in the pathogenesis of glaucoma with
increased intraocular pressure.

4.7. Hepatitis C Infection

The Hepatitis C virus (HCV) is responsible for causing acute and chronic hepatitis. The
global burden of HCV infection is substantial, with over 170 million individuals diagnosed
with HCV worldwide. Among them, approximately 71 million individuals experience the
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chronic form of the disease. In addition, the prevalence of HCV infection varies across
different regions, with a rate of 1.5% in the European Union. In fact, the Eastern Mediter-
ranean region exhibits the highest prevalence, with a rate of 2.3%. From a mechanistic
point of view, it has been estimated that an infected hepatocyte can generate approximately
50 viral particles per day [161]. Considering that viral replication requires the synthesis of
viral proteins, lipids, and RNA, it is plausible to assume that this process leads to height-
ened ATP turnover and subsequent activation of AMPK, which has the potential to hinder
ongoing viral replication [162]. However, surprisingly, in a cell culture model from HCV
infection, AMPK activation is downregulated. In this regard, this downregulation could be
mediated by the viral protein NS5A, which interacts with and activates phosphoinositide
3-kinase (PI3K), leading to the activation of the PKB/Akt pathway [163]. The activation
of this pathway promotes protein and lipid synthesis and cell survival but concurrently
inhibits AMPK activity by phosphorylating AMPK-α1 at Ser487 within the ST loop.

4.8. Cancer

Due to the role of AMPK in regulating cell proliferation by modulating cell energy,
AMPK activation has emerged as a promising therapeutic target for various types of
cancer [164]. The initial link between AMPK and cancer was established when it was
discovered that LKB1 serves as the upstream kinase responsible for activating AMPK
in response to energy stress and certain drugs like biguanides. LKB1 is described as a
classical tumor suppressor, prompting investigations into whether its tumor-suppressive
effects are mediated through AMPK [16,165]. LKB1 is also involved in phosphorylating
and activating a family of twelve AMPK-related kinases that possess kinase domains
closely related to AMPK. While one or more of these kinases may contribute to the tumor-
suppressor properties of LKB1, AMPK remains the most plausible candidate due to its
ability to inhibit mTORC1 and nearly all biosynthetic pathways required for cell growth, as
well as its capacity to induce cell cycle arrest [50]. Phenotypically, AMPK can act as a tumor
suppressor by impeding pro-tumorigenic metabolic processes and directly triggering cell
cycle arrest in cancer cells. In this sense, AMPK activation initiates multiple mechanisms of
cell death, influencing cell cycle checkpoints, autophagy, mitophagy, and apoptosis [166].
As mentioned earlier, AMPK promotes autophagy and mitophagy while initiating the
apoptotic program through the activation of p53, p21, and p27. Furthermore, it induces cell
cycle arrest by inhibiting HUR and concurrently activating Cyclins A, B1, and D1 [167].

In this regard, several studies have provided evidence for the anti-cancer effects of
AMPK activation. For example, the treatment of hepatocellular carcinoma cells with AMPK
activators, such as AICAR and metformin, has been shown to significantly inhibit cell
proliferation and induce cell cycle arrest at the G1-S phase [168]. In fact, AMPK activation
promotes autophagic and apoptotic cell death through the AMPK/JNK signaling pathway.
In addition, the tumor-suppressor role of AMPK-α1 has been demonstrated by employing
T-cell-specific knockouts of the PTEN and PRKAA1 genes, which encode AMPK-α1. In
these models, the absence of PTEN and PRKAA1 genes led to early-onset lymphoma
development, with significantly more aggressive tumors [169].

From a genetic perspective in the context of human cancers, biallelic loss-of-function
mutations in LKB1 are frequently observed, occurring in up to 30% of non-small cell lung
cancers, 20% of cervical cancers, and 10% of melanomas [170,171]. Loss of LKB1 function
results in the failure of AMPK activation during energy stress. Furthermore, mutations in
the subunits of AMPK itself appear to be less common in human cancer, possibly because
each subunit, unlike LKB1, is encoded by multiple genes. However, downregulation of
AMPK-α2 expression is relatively frequent in hepatocellular carcinoma and is associated
with a poor prognosis [172].

Despite the evidence supporting the tumor-suppressing function of AMPK, there is
ongoing debate regarding its potential pro-tumorigenic and pro-neoplastic properties. In
this context, the tumor-suppressive effects of AMPK may be counteracted by the presence
of intracellular stress or oncogenic signals within malignant cancer cells. These factors can
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disrupt the normal functioning of AMPK and impair its ability to inhibit tumor growth
and progression [173]. However, the activation of AMPK in response to stress conditions
such as glucose depletion or hypoxia can confer increased resistance to metabolic stress in
tumor cells. For example, in the context of glioblastoma development, elevated levels of
activated AMPK have been observed, and inhibiting AMPK has been shown to significantly
decrease the growth rate of tumor cells. This suggests that AMPK plays a role not only in
regulating ATP levels but also in modulating cell replication [174]. In this regard, AMPK
is necessary for increased mitochondrial biogenesis in response to glucose limitation.
However, studies propose that under conditions of glucose limitation, cancer cells achieve
metabolic homeostasis and adapt to metabolic stress through the activation of the AMPK-
p38-PGC-1α axis [175]. Moreover, under nutrient-starved conditions, AMPK may exhibit
pro-tumorigenic effects and support tumor survival, whereas, in the presence of sufficient
nutrients, AMPK displays tumor-suppressing effects [176]. Furthermore, AMPK-mediated
autophagy provides a survival advantage to cancer cells by promoting cell growth and
survival through the provision of metabolic substrates required for biosynthesis, meeting
the metabolic demands of rapidly proliferating cancer cells. While mTORC1 inhibition
prevents protein synthesis and cell proliferation, it has been suggested that mTORC2 may
activate the PI3K-Akt signaling pathway, thereby promoting tumor cell survival [177].

The complex interplay between AMPK and cancer cells highlights the multifaceted
nature of AMPK’s role in tumorigenesis. Its effects can vary depending on the specific
metabolic and nutrient conditions within the tumor microenvironment. Moreover, AMPK-
mediated autophagy and its interactions with other signaling pathways contribute to the
intricate balance between tumor suppression and tumor promotion. Further research
is needed to elucidate the precise mechanisms underlying these dual effects and their
implications for cancer therapy [164].

5. Conclusions

AMPK acts as the main conserved regulator of cellular metabolism across several
organisms, from yeast to mammals. Due to this reason, it is not surprising that disruptions
in its function can contribute to the pathogenesis of several human diseases (Figure 3). In
fact, AMPK has emerged as a promising therapeutic target for different human pathologies.
In this context, with the advancements in NGS technology and the progress of personalized
medicine, considerable efforts have been made to find new pharmacological agents capable
of modulating AMPK (Table 2). Using computational approaches and high-throughput
screening, it was possible to identify small molecules and compounds with the potential to
activate AMPK directly or modulate its complex signaling network. In this sense, currently,
the widely used AMPK-activating drug in human patients remains metformin. In fact, as
previously mentioned, metformin has demonstrated promising outcomes in the treatment
of diverse metabolic diseases, including type II diabetes, atherosclerosis, Alzheimer’s
disease, Huntington’s disease, and various types of cancers.

Furthermore, due to the pivotal role of AMPK in autophagy regulation, which has
recently been recognized as a hallmark of health, AMPK has the potential to act as a
health-modifying agent. Thereby, the involvement of AMPK in the regulation of autophagy,
coupled with the beneficial effects of autophagy in various physiological processes, suggests
that the activation of autophagy could be a mechanistic link underlying some of the positive
effects of AMPK activation during pathological situations.

Future studies focusing on unraveling the precise molecular mechanisms through
which AMPK exerts its diverse beneficial effects on human health will provide further
insights into these intriguing questions.
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Table 2. Potential AMPK activators.

Compound Activation Mechanism Target Ref.

Metformin Increase of AMP-ATP ratio Complex I (mitochondrial respiratory chain) [80,135]
Troglitazone Increase of AMP-ATP ratio Complex I (mitochondrial respiratory chain) [178]
Pioglitazone Increase of AMP-ATP ratio Complex I (mitochondrial respiratory chain) [179]
Resveratrol Increase of AMP-ATP ratio F1F0-ATPase-ATP synthase [180]
Quercetin Increase of AMP-ATP ratio F1F0-ATPase-ATP synthase [181]
Genistein Increase of AMP-ATP ratio F1F0-ATPase-ATP synthase [182]
Berberine Increase of AMP-ATP ratio Complex I (mitochondrial respiratory chain) [183]
Curcumin Increase of AMP-ATP ratio F1F0-ATPase-ATP synthase [184]

Cryptotanshinone Increase of ROS unknown [185]
AICAR Direct AMPK activation No isoform specificity [104]

A-769662 Direct AMPK activation β1 subunit specificity [186]
Benzimidazole (Compound 911) Direct AMPK activation β1 subunit specificity [187]

Compound 13 Direct AMPK activation α1 subunit specificity [188]
PT-1 Direct AMPK activation y1 subunit specificity [189]

MT 63–78 Direct AMPK activation β1 subunit specificity [190]
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